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Abstract. A crucial point of the theoretical study of lower-hybrid (LH) current drive in a tokamak
plasma is the spectral gap problem, i.e., the fact that the parallel (to the magnetic field) refractive
index spectrum generated at the plasma edge does not appear to be wide enough for the interaction
of the wave with a large number of electrons. This is in contrast with experimental observations.
Diffraction is one of the mechanisms that can lead to the observed wave spectrum broadening and
solve the spectral gap problem. For this reason, a new beam tracing code,LHBEAM, has been
developed in order to study the diffraction effects on the propagation and the absorption of LH
waves in tokamak plasma. In this work, the parallel spectralwidth is addressed on the basis of the
beam tracing approximate solution. A preliminary implementation of the results is done inLHBEAM
which has been also compared with the ray tracing codeC3PO for the assessment of the trajectory
of the central ray and of the evolution of the parallel refractive index on this ray.
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ON THE SPECTRUM OF THE BEAM TRACING SOLUTION

With regard to the description of LH wave beams, diffractionis an important aspect
for both the broadening of the beam cross-section and the wave energy absorption
mechanism [1] which, in particular, involves the parallel (to the magnetic field) energy
spectrum [2, 3]. The beam tracing description [4] of electromagnetic wave beams allows
us to take into account the effects of diffraction. A new LH beam tracing code,LHBEAM
[5], has been developed on the basis of the electron-cyclotron codeTORBEAM [6], and
the first results provide a clear picture of diffraction effects on the beam width. We shall
now address the effects of diffraction on the parallel energy spectrum as relevant to the
calculation of LH power deposition.

The construction of the beam tracing solution requires the identification of a specific
geometric optics ray, the reference ray, that represents the path of the beam in the plasma.
On making use of normalized coordinatesx = r/L, L being the scale length of the plasma
inhomogeneity, the reference ray amounts to a curvex = x0(τ) which is computed
together with the carried refractive indexN = N0(τ). Near the reference ray, we can
introduce curvilinear coordinates(τ,v), v = (v1,v2), with v = 0 on the reference ray. In
terms of(τ,v), the beam tracing solution for the electric field of a purely Gaussian beam



reads [4, 5]
EBT(τ,v) = E0(τ)eikNα(τ)vα

e−
k
2Aαβ (τ)vα vβ

, (1)

where, here and throughout the paper, the sum over repeated indices is implied,k =
ωL/c� 1 is the normalized frequency of the beam (c being the speed of light),E0(τ) is
the wave electric field on the reference ray,Nα(τ) = xα(τ) ·N0(τ) is the component of
the refractive index along the direction of the coordinatevα , with xα(τ) = ∂x/∂vα |v=0,
and the matrixA(τ) = (Aαβ (τ)) is retrieved from the solution of the beam tracing
equations given by the codes [5, 6]. Let us recall thatv can span either a curved surface
across the beam or a plane. Usually the latter case is considered, but here we shall need
curved cross-sections.

The specific form (1) of the beam tracing solution naturally entails a description of the
beam in terms of the evolution inτ of the beam cross-sections spanned by the transversal
coordinatesv = (v1,v2); it must be noted, however, that the evolving cross-sections, or,
equivalently, the coordinatesv = (v1,v2), are arbitrary.

With this picture in mind, we consider the energy spectrum ofthe cross-sections only.
First, we compute the squared absolute value of the Fourier transformẼBT(τ,Nα) of (1)
with respect tov, upon lettingv run over the whole two-dimensional space; the result
defines aτ-dependent distribution for the componentsNα of the refractive index along
vα , namely,

|ẼBT(τ,Nα)|2 ∝ |Ẽ0(τ)|2e−kBαβ
1 (τ)

(
Nα−Nα (τ)

)(
Nβ−Nβ (τ)

)
, (2)

whereBαβ
1 (τ) = ReBαβ , B(τ) = (Bαβ (τ)) being the inverse matrix ofA(τ) = (Aαβ (τ)).

Strictly speaking, the domain ofv is limited to a small neighbourhood of the reference
ray, rather than covering the whole two-dimensional space,but this technical difficulty
can be overcome by an extension argument which allows us to prove that (2) approxi-
mates the energy spectrum of the cross-sections within an accuracy ofO(1/

√
k).

The substantial difficulty in the application of (2) to the description of the wave-
particle interaction is twofold: first, we need to show that,during their interaction with
the wave, particles are sensitive to the cross-sections of the beam only, and not to the
whole beam; then, we have to determine which are the relevantcross-sections. The latter
point is particularly important since the distribution (2)depends strongly on the choice
of the beam cross-sections. It appears that a fully satisfactory and rigorous solution of
these two points requires a careful analysis from first principles; here, we limit ourselves
to simple heuristic considerations.

For LH waves we expect that the wave-particle interaction depends on the parallel
(to the magnetic field) spectrum only. Hence, for the application of (2), we require that
the group velocity (∝ dx0(τ)/dτ) never lines up with the magnetic field unit vector
b(x0(τ)) throughout the propagation, so that the magnetic field keepstangent to some
beam cross-sections that we have now to determine. Since theorbits of the particles,
roughly speaking, follow the magnetic field line, it is natural to assume that the magnetic
field line passing throughx0(τ) belongs to the beam cross-section passing through the
same pointx0(τ). There is, however, another degree of freedom that should befixed in
order to determine uniquely the beam cross-sections, and the eventual result will depend
on this choice: this is still an open problem; in the following we make the simplest



choice: we assume that the relevant beam cross-section nearthe reference ray can be
parametrized byx(τ,s,u) = x(τ,s) + eu(τ)u, wherex(τ,s) is the parametrization of
the magnetic field line passing throughx0(τ) in terms of its own arc lengths, and
eu(τ) ∝ (dx0(τ)/dτ)× b(x0(τ)) is a vector orthogonal to both the group velocity (∝
dx0(τ)/dτ) and the magnetic field unit vectorb(x0(τ)). The corresponding coordinates
v = (v1,v2) can be defined byv1 = sandv2 = u but this is not mandatory. Then, we find
b(x0(τ)) = bα(τ)xα(τ) andN‖ = b(x0(τ)) ·N = bα(τ)Nα , while from (2) we obtain

∆N‖(τ) =
1√
2k

[
bα(τ)bβ (τ)

∂
∂Bαβ

1

logdetB1(τ)

] 1
2

, (3)

where logdetB1 is regarded as a function of the entriesBαβ
1 of the matrixB1 = (Bαβ

1 ).
Let us remark that in toroidal geometry with no poloidal magnetic field we have

b = bφ ∇φ , whereφ is the toroidal angle. Hence,N‖ = bφ Nφ , Nφ being the toroidal com-
ponent of the refractive index, and this relationship transfers to both the central value and
the width of the distribution, namely,N‖(τ) = bφ (τ)Nφ (τ), and∆N‖ = bφ (τ)∆Nφ(τ).
The spectrum inNφ is particularly relevant since in axisymmetric plasmas theequi-
librium is independent on the toroidal angleφ (i.e., φ is a cyclic coordinate), hence,
ray tracing calculations [7] show thatNφ is constant along the rays and so is∆Nφ . We
wonder whether analogous conservation laws can be stated inpresence of diffraction
effects. TheNφ -spectrum can be described by (2), provided that one of the beam coordi-
nates can be identified withφ , e.g.,v2 = φ . Then,N2 = Nφ and its distribution, obtained
from (2), exhibits the central valueNφ (τ) = N2(τ) = constant for axisymmetric plas-
mas; furthermore, from the codeLHBEAM we find∆Nφ (τ) = constant too. Besides the
numerical results, it is possible to show that whenevervα is cyclic, all the momenta of
the normalizedNα distribution (in particular,∆Nα ) are constant inτ. This is not evident
a priori, since the tails of the distribution correspond to evanescent harmonics that are
reflected back changing the shape of the spectrum: our proof shows that these effects
occur at higher orders in 1/

√
k. As a consequence of this conservation law, for axisym-

metric plasmas with no poloidal magnetic field, the profiles of N‖(τ) and∆N‖(τ) are
determined bybφ (τ) = 1/R(τ), R being the major radius on the reference ray.

Formula (3) has been studied and tested in a two-dimensionalslab geometry with
Cartesian coordinates(x,y) and with the magnetic field directed along they-axis; in
this case the relevant beam cross-section amount to the fieldlines, with no further
degree of freedom. Here are the results. (i) For free-space propagation, we find the
expected constant value∆N‖ = c/(ωw0), wherew0 is the beam width at the waist. (ii)
In correspondence of anx-dependent electron density profile we find∆N‖ = constant;
in this case the magnetic field points along a cyclic variable. (iii) The constant value
obtained in (ii) is in agreement with that computed from the numerical Fourier transform
of the beam tracing solution. In general we find that the valueof ∆N‖ is the result of a non
trivial combination of the beam width and the curvature of the phase front; an example
is given by the case of free-space propagation (i) in which the beam width balances the
effect of the phase-front curvature yielding the constant value of the parallel spectral
width.



LHBEAM results. The spectral width (3) has been implemented in the beam tracing
codeLHBEAM. Nevertheless, the results thus obtained should be considered very prelim-
inary: although the expression (3) has been rigorously derived, the underlying choice of
the coordinatesv = (v1,v2) spanning the beam cross-sections is, at the moment, poorly
justified for the reasons discussed above.

On the other hand, our numerical results are well in agreement with the theory. More
specifically, the conservation law∆Nφ = constant has been clearly confirmed as well
as the expected relation between∆N‖ and∆Nφ for the case of purely toroidal magnetic
field. In addition, upon entering a very large value for the tokamak major radiusR0, we
can reproduce in the code a slab geometry, and in that case we found∆N‖ = constant
(cf., point (ii) in the previous section). From another point of view, these results provide
a further check of the accuracy of the integration of the beamtracing equations in the
LHBEAM code.
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FIGURE 1. The spectral width∆N‖, Eq. (3) in coordinates(s,u) defined in the text, with and without
poloidal magnetic field.

As an example, Fig. 1 shows the spectral width (3) as a function of the toroidal angle
φ (which plays the role ofτ) with and without the poloidal component of the magnetic
field. The following plasma parameters are used: major radius R0 = 296 cm, minus
radiusa = 125 cm, Shafranov shift∆ = 0, elongationκ = 1 and toroidal magnetic
field B = 3.45 T on the magnetic axis. The LH beam frequency isω/2π = 3.7 GHz.
The profile of the electron densityne and the safety factorq are given in the form
ne = (ne,0−nedg)(1−ρ2)+nedg with ne,0 = 3×1013 cm−3 andnedg= 3×1012 cm−3,
andq= 1+3ρ2 (ρ is the normalized minor radius). The initial value of parallel refractive
index isN‖,0 = 1.8. The beam is launched in equatorial plane, from low-field side with
Nϑ = 0 and the full electromagnetic dispersion relation is solved.

From Fig. 1 it appears that the effect of the poloidal component of the magnetic field
yields a significant broadening of the parallel energy spectrum, yet this result is non
conclusive as it depends on the choice of the beam cross-sections as stated above.

COMPARISON OF LHBEAM AND C3PO CODES

As mentioned at the beginning,LHBEAM solves the beam tracing equations in a tokamak
geometry for arbitrary launching conditions and for analytic magnetic equilibria. In



particular, the plasma dielectric tensor is calculated in the cold plasma limit and in the
range of LH frequency approximation (ω2

ci � ω2 � ω2
ce) and the code allows us to

choose between the full electromagnetic and electrostaticdispersion function.
In order to perform a check of the accuracy ofLHBEAM, we compare the trajectory

of the central ray ofLHBEAM, which obeys the standard ray tracing equations with the
result obtained by means ofC3PO code, which is a ray tracing code for an inhomoge-
neous and anisotropic plasmas with arbitrary axisymmetricmagnetic equilibrium and
nested flux surfaces [3, 8]. Parameters employed in this comparison are the same of the
parameters used in the previous section along with a second run with q = constant and
N‖,0 = 1.5.

From Figs. 2 the ray trajectories of two codes appear very similar; there is an excellent
agreement in the toroidal wave propagation (Fig. 2(b)) whereas small differences appear
in the poloidal wave propagation (Fig. 2(a)), in particular, in the last part of the ray
trajectory.
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FIGURE 2. The central ray trajectory ofLHBEAM with the corresponding ray ofC3PO for N‖ = 1.8
andq = 1+3ρ2. (a) Poloidal and (b) toroidal wave beam propagation.

150 200 250 300 350 400 450

−100

−50

0

50

100

R[cm]

z[
cm

]

 

 

C3PO LHBEAM

−500 −400 −300 −200 −100 0 100 200 300 400 500
−400

−300

−200

−100

0

100

200

300

400

x[cm]

y[
cm

]

 

 

LHBEAM

C3PO

(a) (b)

FIGURE 3. The central ray trajectory ofLHBEAM with the corresponding ray ofC3PO for N‖ = 1.5
andq = 4. (a) Poloidal and (b) toroidal wave beam propagation.

In order to try to understand the cause of these differences we consider a second
run with q = 4 andN‖,0 = 1.5, which is shown in Figs. 3. The specific choice of these
parameters is aimed to simplify the poloidal magnetic field profile for both codes (see
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FIGURE 4. The parallel refractive index as a function of toroidal angleφ for LHBEAM and C3PO. (a)
N‖ = 1.8 andq = 1+4ρ2; (b) N‖ = 1.5 andq = 4.

Refs. [5] and [8] for details, respectively). From poloidalwave propagation (Fig. 3(a))
one sees that the small differences of ray trajectories are still there but smaller than
before; on the other hand, from the toroidal ray propagation(Fig. 3(b)), the agreement
remains very good. A comparison between the evolution of theparallel refractive index
(N‖) as a function of the toroidal angleφ is plotted in Figs. 4 for both cases and confirms
the good agreement between two codes. Summarizing, for the cases considered, the
comparison ofLHBEAM andC3PO is satisfactory despite the fact that there are small
discrepancies due to, seemingly, the different proceduresadopted in the two codes for
the calculation of the equilibrium.
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