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Abstract. A crucial point of the theoretical study of lower-hybrid (L.Hurrent drive in a tokamak
plasma is the spectral gap problem, i.e., the fact that thalph(to the magnetic field) refractive
index spectrum generated at the plasma edge does not apfeawtde enough for the interaction
of the wave with a large number of electrons. This is in ctitrath experimental observations.
Diffraction is one of the mechanisms that can lead to the miesewave spectrum broadening and
solve the spectral gap problem. For this reason, a new besimgr code LHBEAM has been
developed in order to study the diffraction effects on thepaigation and the absorption of LH
waves in tokamak plasma. In this work, the parallel spegtidth is addressed on the basis of the
beam tracing approximate solution. A preliminary impletagion of the results is done IlHBEAM
which has been also compared with the ray tracing c&@feOfor the assessment of the trajectory
of the central ray and of the evolution of the parallel refikgcindex on this ray.
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ON THE SPECTRUM OF THE BEAM TRACING SOLUTION

With regard to the description of LH wave beams, diffractisran important aspect
for both the broadening of the beam cross-section and the waergy absorption
mechanism [1] which, in particular, involves the paralltel the magnetic field) energy
spectrum [2, 3]. The beam tracing description [4] of elettagnetic wave beams allows
us to take into account the effects of diffraction. A new LHtyetracing code, HBEAM
[5], has been developed on the basis of the electron-cpclaodeTORBEAM([6], and
the first results provide a clear picture of diffraction efieon the beam width. We shall
now address the effects of diffraction on the parallel epsmectrum as relevant to the
calculation of LH power deposition.

The construction of the beam tracing solution requires dieatification of a specific
geometric optics ray, the reference ray, that represeatsdth of the beam in the plasma.
On making use of normalized coordinates r /L, L being the scale length of the plasma
inhomogeneity, the reference ray amounts to a curve xo(7) which is computed
together with the carried refractive indék= Ng(7). Near the reference ray, we can
introduce curvilinear coordinatés, v), v = (vi,v?), with v = 0 on the reference ray. In
terms of(t1,v), the beam tracing solution for the electric field of a pureuSsian beam



reads [4, 5]
EBT(T,V) _ EO(T)eikNa(T)V“eflé(Aaﬁ(T)v“vB, (1)

where, here and throughout the paper, the sum over repeataxs is impliedk =
wL/c> 1is the normalized frequency of the beanbéing the speed of lightl (1) is
the wave electric field on the reference rily,(T) = Xq(T) - No(T) is the component of
the refractive index along the direction of the coordingtewith x4 (1) = 9x/dv? |y—o,
and the matrixA(T) = (Aqp(T)) is retrieved from the solution of the beam tracing
equations given by the codes [5, 6]. Let us recall thean span either a curved surface
across the beam or a plane. Usually the latter case is coaedidaut here we shall need
curved cross-sections.

The specific form (1) of the beam tracing solution naturatiiaés a description of the
beam in terms of the evolution nof the beam cross-sections spanned by the transversal
coordinates = (v, v?); it must be noted, however, that the evolving cross-sestion
equivalently, the coordinates= (v%,v?), are arbitrary.

With this picture in mind, we consider the energy spectrurtinefcross-sections only.
First, we compute the squared absolute value of the FouaiesformEgT(7,Ngy) of (1)
with respect tov, upon lettingv run over the whole two-dimensional space; the result
defines ar-dependent distribution for the componeNkg of the refractive index along
v?, namely,

Ear(1,Na) 2 0 [Eo(1) [2e~KEL (1 (No—Na(1)) (N =5 (1)) @

whereB{” (1) = ReB?P, B(1) = (B%#(T)) being the inverse matrix #¥(1) = (Aqp(T)).
Strictly speaking, the domain efis limited to a small neighbourhood of the reference
ray, rather than covering the whole two-dimensional spbhaethis technical difficulty
can be overcome by an extension argument which allows usoteehat (2) approxi-
mates the energy spectrum of the cross-sections withinamazy ofO(1/vk).

The substantial difficulty in the application of (2) to thesdeption of the wave-
particle interaction is twofold: first, we need to show tleatying their interaction with
the wave, particles are sensitive to the cross-sectionseobéam only, and not to the
whole beam; then, we have to determine which are the relevass-sections. The latter
point is particularly important since the distribution (Bpends strongly on the choice
of the beam cross-sections. It appears that a fully sat@mfaand rigorous solution of
these two points requires a careful analysis from first ples; here, we limit ourselves
to simple heuristic considerations.

For LH waves we expect that the wave-particle interactiopedels on the parallel
(to the magnetic field) spectrum only. Hence, for the appibeeof (2), we require that
the group velocity [l dxo(T)/dT) never lines up with the magnetic field unit vector
b(xo(7)) throughout the propagation, so that the magnetic field kespgent to some
beam cross-sections that we have now to determine. Sincerlts of the particles,
roughly speaking, follow the magnetic field line, it is natlbo assume that the magnetic
field line passing througko(T) belongs to the beam cross-section passing through the
same poinko(T). There is, however, another degree of freedom that shoufokdse in
order to determine uniquely the beam cross-sections, aneMéntual result will depend
on this choice: this is still an open problem; in the follogime make the simplest



choice: we assume that the relevant beam cross-sectiortheeegference ray can be
parametrized by(t,s,u) = X(1,s) + ey(T)u, wherex(t,s) is the parametrization of
the magnetic field line passing through(t) in terms of its own arc lengtls, and
eu(T) O (dxo(T)/dT) X b(Xp(T)) is a vector orthogonal to both the group velocity (
dxo(T)/dT) and the magnetic field unit vectbfxo(7)). The corresponding coordinates
v = (v}, v?) can be defined by! = sandv? = u but this is not mandatory. Then, we find
b(Xo(T)) = b%(T)Xa(T) @andN; = b(xo(T)) - N = b%(7)Ng, while from (2) we obtain

1 9 2

ANH(T):ﬁ( b“(r)bﬁ(r)ﬁBaBIogdetBl(r) : (3)
1

where logdeB; is regarded as a function of the entr&%g of the matrixB; = (Bfﬁ).

Let us remark that in toroidal geometry with no poloidal meimn field we have
b =b%Cg, whereg s the toroidal angle. Henchl = b?Ny, Ny being the toroidal com-
ponent of the refractive index, and this relationship tferssto both the central value and
the width of the distribution, namely, (7) = b?(T)Ny(1), andAN; = b?(T)ANy(T).
The spectrum irNy, is particularly relevant since in axisymmetric plasmas ¢eii-
librium is independent on the toroidal angpe(i.e., ¢ is a cyclic coordinate), hence,
ray tracing calculations [7] show thal, is constant along the rays and sa\i§,. We
wonder whether analogous conservation laws can be statecesence of diffraction
effects. TheN,-spectrum can be described by (2), provided that one of tamlm®ordi-

nates can be identified witp, e.g.,v2 = @. Then,N, = N, and its distribution, obtained
from (2), exhibits the central valud, (1) = No(T) = constant for axisymmetric plas-
mas; furthermore, from the cod¢HBEAMwe find ANy (T) = constant too. Besides the
numerical results, it is possible to show that whenefeis cyclic, all the momenta of
the normalized\, distribution (in particularANy) are constant ir. This is not evident

a priori, since the tails of the distribution correspond to evanaslsarmonics that are
reflected back changing the shape of the spectrum: our phmoisthat these effects
occur at higher orders in/1/k. As a consequence of this conservation law, for axisym-
metric plasmas with no poloidal magnetic field, the profilésNp(t) and AN, (1) are

determined by?(7) = 1/R(1), R being the major radius on the reference ray.

Formula (3) has been studied and tested in a two-dimensgiallgeometry with
Cartesian coordinate,y) and with the magnetic field directed along thaxis; in
this case the relevant beam cross-section amount to thelifnels, with no further
degree of freedom. Here are the results. (i) For free-spageagation, we find the
expected constant valueN; = c/(wwp), wherewy is the beam width at the waist. (ii)
In correspondence of ardependent electron density profile we filtl, = constant;
in this case the magnetic field points along a cyclic variapig The constant value
obtained in (ii) is in agreement with that computed from thewerical Fourier transform
of the beam tracing solution. In general we find that the vafueN| is the result of a non
trivial combination of the beam width and the curvature & gihase front; an example
IS given by the case of free-space propagation (i) in whiehbsam width balances the
effect of the phase-front curvature yielding the constaltie of the parallel spectral
width.



LHBEAM results. The spectral width (3) has been implemented in the beammgaci
codeLHBEAM Nevertheless, the results thus obtained should be coesligery prelim-
inary: although the expression (3) has been rigorouslyeddrithe underlying choice of
the coordinates = (v',v?) spanning the beam cross-sections is, at the moment, poorly
justified for the reasons discussed above.

On the other hand, our numerical results are well in agreémigin the theory. More
specifically, the conservation laM\, = constant has been clearly confirmed as well
as the expected relation betwe®N; andAN, for the case of purely toroidal magnetic
field. In addition, upon entering a very large value for theatmak major radiu®y, we
can reproduce in the code a slab geometry, and in that caseumd AN, = constant
(cf., point (ii) in the previous section). From another gahview, these results provide
a further check of the accuracy of the integration of the b&aeing equations in the
LHBEAM code.
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FIGURE 1. The spectral widtiAN;, Eqg. (3) in coordinate¢s u) defined in the text, with and without
poloidal magnetic field.

As an example, Fig. 1 shows the spectral width (3) as a fumctidhe toroidal angle
¢ (which plays the role of) with and without the poloidal component of the magnetic
field. The following plasma parameters are used: major sRBy= 296 cm, minus
radiusa = 125 cm, Shafranov shifdA = 0, elongationk = 1 and toroidal magnetic
field B = 3.45 T on the magnetic axis. The LH beam frequencwjm = 3.7 GHz.
The profile of the electron density. and the safety factog are given in the form
Ne = (Neo — Nedg) (1 — P?) + Negg With Neg = 3 x 101 cm™3 andnggg= 3 x 10'% cm3,
andq = 1+ 3p? (p is the normalized minor radius). The initial value of paghikfractive
index isN| o = 1.8. The beam is launched in equatorial plane, from low-fiedi svith
Ns = 0 and the full electromagnetic dispersion relation is stlve

From Fig. 1 it appears that the effect of the poloidal compboéthe magnetic field
yields a significant broadening of the parallel energy spett yet this result is non
conclusive as it depends on the choice of the beam crossiseets stated above.

COMPARISON OF LHBEAM AND C3PO CODES

As mentioned at the beginningHBEAMsolves the beam tracing equations in a tokamak
geometry for arbitrary launching conditions and for analyhagnetic equilibria. In



particular, the plasma dielectric tensor is calculatechandold plasma limit and in the
range of LH frequency approximatiorao(ﬁ < w? < W) and the code allows us to
choose between the full electromagnetic and electrostesipersion function.

In order to perform a check of the accuracyLdiBEAM we compare the trajectory
of the central ray o HBEAM which obeys the standard ray tracing equations with the
result obtained by means G@BPO code, which is a ray tracing code for an inhomoge-
neous and anisotropic plasmas with arbitrary axisymmetagnetic equilibrium and
nested flux surfaces [3, 8]. Parameters employed in this adsgn are the same of the
parameters used in the previous section along with a secomdith g = constant and
Njo=15.

HFrom Figs. 2 the ray trajectories of two codes appear verifainthere is an excellent
agreement in the toroidal wave propagation (Fig. 2(b)) wasismall differences appear
in the poloidal wave propagation (Fig. 2(a)), in particularthe last part of the ray
trajectory.
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FIGURE 2. The central ray trajectory dfHBEAMwith the corresponding ray di3POfor N, = 1.8
andq = 1+ 3p2. (a) Poloidal and (b) toroidal wave beam propagation.
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FIGURE 3. The central ray trajectory dfHBEAMwith the corresponding ray d83POfor N, = 1.5
andqg = 4. (a) Poloidal and (b) toroidal wave beam propagation.

In order to try to understand the cause of these differencesamsider a second
run withq = 4 andN; o = 1.5, which is shown in Figs. 3. The specific choice of these
parameters is aimed to simplify the poloidal magnetic figlofife for both codes (see
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FIGURE 4. The parallel refractive index as a function of toroidal angfor LHBEAM and C3PO. (a)
N, = 1.8 andg = 1+4p? (b) N; = 1.5 andq = 4.

Refs. [5] and [8] for details, respectively). From poloidave propagation (Fig. 3(a))
one sees that the small differences of ray trajectories tdre¢here but smaller than
before; on the other hand, from the toroidal ray propagatiog. 3(b)), the agreement
remains very good. A comparison between the evolution optrallel refractive index
(N}) as a function of the toroidal angéeis plotted in Figs. 4 for both cases and confirms
the good agreement between two codes. Summarizing, forabescconsidered, the
comparison ol.HBEAMand C3PO is satisfactory despite the fact that there are small
discrepancies due to, seemingly, the different procedadepted in the two codes for
the calculation of the equilibrium.
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