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Abstract. Global linear gyro-kinetic particle-in-cell (PIC) simtians of electromagnetic modes
in pinch and tokamak geometries are reported. The Toroidi@éA Eigenmode and the Kinetic
Ballooning Mode have been simulated. All plasma specieg een treated kinetically (i.e. no
hybrid fluid-kinetic or reduced-kinetic model has been &)l The main intention of the paper is
to demonstrate that the global Alfvén modes can be treatidthe gyro-kinetic PIC method.
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INTRODUCTION

The most rigorous first-principle approach to the kinetiedty of MHD modes is the
global gyro-kinetic description. Recently, a global gyioetic eigenvalue code [1, 2]
has been developed. Being capable of capturing all kinéfects in the linear regime,
this approach is however difficult to extend for nonlineastgems. In contrast, the gyro-
kinetic particle-in-cell (PIC) method can be used both meér and nonlinear regimes.
In the past, electromagnetic PIC simulations have wrestlgk stringent numerical
constraints associated with the so-called cancellatioblpm [3, 4]. This problem has
been solved recently [3-7]. The key point to its solution caeeful balance between the
adiabatic current computed with the markers and the sedalkin terms in Ampére’s
law discretized on the spatial grid. In this paper, we empl®y method of Ref. [7] to
solve the cancellation problem.

We use the linear two-dimensionaf PIC-code GYGLES [4-11]. The code allows
for electromagnetic perturbations and treats all parsglecies (ions and electrons) on
the same footing (kinetically). The code solves the gymekc Vlasov-Maxwell system
of equations [12, 13]. The distribution function is splitarnthe background part and
the perturbationfs = Fos+ 0 fs (the indexs =i, e is used for the particle species). The
background distribution function is usually taken to be axdvallian. The perturbed part
of the distribution function is discretized with markers:

Sfs(R,v|, i,t) z Wey (1) 3(R—Ry) (V) —Vy)O(H — Hy) (1)

whereNp is the number of markergRy, vy, Ly) are the marker phase space coordi-
nates andvs, is the weight of a marker. The electrostatic and magnetiemgatls are
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FIGURE 1. The shear Alfvén spectrum in a tokamak. The TAE mode frequessulting from the PIC
simulations is compared with the MHD result. The continuuniches corresponding to the coupling
modes with the poloidal mode numbens= 3 andm = 4 are plotted as well. The toroidal mode number
isn=—-2.

discretized with the finite-element method (Ritz-Galerkatmeme):

Ns Ns
(p(X) = I;(n/\l (X) ) AH(X) = IZlall\l (X) ) (2)

where/\ (x) are the finite elements (tensor product of B splines [14,,1g])s the total
number of the finite elementg, anda, are the spline coefficients. A detailed description
of the discretization procedure can be found in Refs. [4,,8, 20]. We apply the so-
called phase factor transform [8] to all perturbed quagditn the code. The cancellation
problem [3, 4] is solved using the iterative scheme No. 2 dlesd in Ref. [7].

SIMULATIONS

Toroidal Alfvén Eigenmode (TAE). We consider a large-aspect-ratio circular cross-
section tokamak with the major radid = 10 m, the minor radius, = 1 m, the
magnetic field on the axiBy = 0.95 T, the safety facton(r) = 1.6+ 0.6(r /rg)? with r

the small radius. The ion and electron temperature and tyepsifiles are taken to be
constant withl; = Te = 3.8 keV andng = 2 x 108 m~3 [these parameters correspond to
B = 2uono(T; 4 Te) /B? ~ 0.7%)]. We use flat profiles in order to exclude the influence of
diamagnetic effects on the TAE mode (their role will be stabielsewhere).

We present the results of our TAE simulations in Figs. 1-3Fig. 1, the part of
the shear Alfvén spectrum containing the TAE gap is plotfHte mode frequency
w = 418 kHz lies inside the gap and close to the TAE frequencyutatied from
ideal MHD theory (CAS3D). The eigenmode structure is showhig. 2 (electrostatic
and magnetic potential). The position of the maximum of tbeeptial coincides with
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FIGURE 2. The eigenmode structure (the electrostatic and magnet@gnpals in arbitrary units) of the
TAE mode in a tokamak. One sees two coupling modes with thageallmode numbens = 3 andm=4.
The toroidal mode number is= —2. Gyrokinetic PIC result (solid lines) is compared vs. the Bresult
(dotted lines).

the position of the gapy, in the shear Alfvén spectrum. Furthermore, the eigenmode
structure calculated within ideal MHD is sufficiently closethe gyro-kinetic one. In
Fig. 3, the time evolution of the electrostatic and magnptitential is presented. One
sees a decaying mode with two dominant coupled Fourier haicaavith the poloidal
mode numbersn= 3 andm = 4. Also, the side bands witln =2 andm =5 having a
much smaller amplitude can be seen. The dampingyate— 3.4 kHz corresponds to
y/w = 0.8%. The numerical parameters in our simulations are asviistithe number of

ion markerd\; = 4000000, the number of electron markBs= 16 000000, the number

of radial B-splined\, = 80, the number of B-splines in the toroidal directip= 32,

the time step\t = 108 s.

Kinetic Ballooning mode (KBM). In Ref. [16], it has been shown that the low-
frequency part of the Alfvén continuum can become unstabtaeé presence of the ion
temperature gradient. The Alfvén lon Temperature Gradigiven modes (or Kinetic
Ballooning modes) are the drift-Alfvén eigenmodes, debta by the free energy
of the thermal particles in the presence of the pressureigrgdesulting from the
discretization of the unstable continuum due to non-idéfaices (e.g. Finite Larmor
Radius effects). These instabilities may have significaumtications for both energetic
and thermal particle transport.

We consider a circular cross-section tokamak with the ma@diusRy = 2.0 m, the
minor radiusr, = 0.5 m, the safety factog(p) = 1.25+ 0.67p? + 2.380° — 0.06p*
where p = r/ry, r is the small radius. The temperature profil§gp) = Te(p) =
Toexp{—0.5tant(p — 0.6)/0.2]} with the temperature on the axig = 7.5 keV. The
density profile is defined a%(p) = nyexp{—0.44tanh(p — 0.6)/0.35]} with the den-
sity on the axisng chosen appropriately in order to obtain tfevalue needed. We
choose the toroidal mode numbee= 7 and the poloidal mode numbers8m < 20.
Results of our simulations are presented in Figs. 4 and 5ign4; the frequency and
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FIGURE 3. Time evolution of the electrostatic and magnetic potes{iatbitrary units). The TAE mode
in a tokamak. One sees that the modes with the poloidal moadersm= 3 andm= 4 couple with each
other. The toroidal mode numberns= —2.

the growth rate of the instability is plotted. One can see liog electrostatic mode
(here, the Trapped Electron Mode coexisting with the lon perature Gradient driven
mode) is replaced by the KBM instability whehis large enough (recall that the time
evolution particle-in-cell approach delivers the mosttabke mode in the spectrum). In
Fig. 5, the spatial structure of the electrostatic and thgmatc potentials is shown in
the tokamak cross-section. One can see that both poteh&iaésballooning structure.
The numerical parameters in our simulations are as folltesnumber of the ion mark-
ersN; = 1000000, the number of the electron markigs= 4000000, the number of
radial B-splined\; = 64, the number of B-splines in the toroidal directigp= 32, the
time stepAt =5x 10 ° s.

CONCLUSIONS

In this paper, we have presented global gyrokinetic PIC Rtians of the Toroidal

Alfvén Eigenmode and the Kinetic Ballooning Modes. The keynerical component
of our simulations is the solution of the cancellation peshl[3, 4] using the iterative
approach of Ref. [7]. This allows to keep the number of markethe same range as in
comparable electrostatic PIC simulations. The main regwur paper is to demonstrate
that global Alfvén modes can be treated in a unified manndr thi¢ gyrokinetic PIC

method. Up to now, the kinetic properties of the global Atfwéodes in a tokamak
geometry have been approached using reduced-kinetich¥iid fluid-kinetic [18] or

gyrokinetic-eigenvalue approaches [1]. The drawback efdduced-kinetic and hybrid
fluid-kinetic approaches is that they can not guaranteedidae all relevant physical
mechanisms. The gyrokinetic eigenvalue approach beingltapo capture all physics
is limited to linear problems only. Being a first-principl®emperturbative approach,
the gyrokinetic PIC simulations can recover all kineticeeff, too. In contrast with the
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FIGURE 4. The frequency and the growth rate of the ITG+TEM (sn@)land KBM (largerf3)
instabilities in tokamak geometry.
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FIGURE 5. The structure of electrostatic and magnetic potentialsNKiBstability) in the tokamak
cross-section. Parameters as in Fig. 4 corresponding todimé with 8 = 4%.

eigenvalue approach, the PIC method can be easily extendbé nonlinear regimes.
The linear simulations presented in this paper are an irapbgtep towards the global
nonlinear gyrokinetic treatment of electromagnetic moaetokamak geometry (both
electromagnetic turbulence and nonlinear dynamics oftiad¢HD modes destabilized
by the fast particles). The PIC simulation of the kineticeeté caused by the fast
particles will be the focus of our future work.
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