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Abstract. Global linear gyro-kinetic particle-in-cell (PIC) simulations of electromagnetic modes
in pinch and tokamak geometries are reported. The Toroidal Alfvén Eigenmode and the Kinetic
Ballooning Mode have been simulated. All plasma species have been treated kinetically (i.e. no
hybrid fluid-kinetic or reduced-kinetic model has been applied). The main intention of the paper is
to demonstrate that the global Alfvén modes can be treated with the gyro-kinetic PIC method.
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INTRODUCTION

The most rigorous first-principle approach to the kinetic theory of MHD modes is the
global gyro-kinetic description. Recently, a global gyro-kinetic eigenvalue code [1, 2]
has been developed. Being capable of capturing all kinetic effects in the linear regime,
this approach is however difficult to extend for nonlinear problems. In contrast, the gyro-
kinetic particle-in-cell (PIC) method can be used both in linear and nonlinear regimes.
In the past, electromagnetic PIC simulations have wrestledwith stringent numerical
constraints associated with the so-called cancellation problem [3, 4]. This problem has
been solved recently [3-7]. The key point to its solution is acareful balance between the
adiabatic current computed with the markers and the so-called skin terms in Ampére’s
law discretized on the spatial grid. In this paper, we employthe method of Ref. [7] to
solve the cancellation problem.

We use the linear two-dimensionalδ f PIC-code GYGLES [4-11]. The code allows
for electromagnetic perturbations and treats all particlespecies (ions and electrons) on
the same footing (kinetically). The code solves the gyro-kinetic Vlasov-Maxwell system
of equations [12, 13]. The distribution function is split into the background part and
the perturbationfs = F0s+ δ fs (the indexs= i,e is used for the particle species). The
background distribution function is usually taken to be a Maxwellian. The perturbed part
of the distribution function is discretized with markers:

δ fs(R,v‖,µ, t) =
Np

∑
ν=1

wsν(t)δ (R−Rν)δ (v‖−vν‖)δ (µ −µν ) , (1)

whereNp is the number of markers,(Rν ,vν‖,µν) are the marker phase space coordi-
nates andwsν is the weight of a marker. The electrostatic and magnetic potentials are
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FIGURE 1. The shear Alfvén spectrum in a tokamak. The TAE mode frequency resulting from the PIC
simulations is compared with the MHD result. The continuum branches corresponding to the coupling
modes with the poloidal mode numbersm= 3 andm= 4 are plotted as well. The toroidal mode number
is n = −2.

discretized with the finite-element method (Ritz-Galerkinscheme):

φ(x) =
Ns

∑
l=1

φl Λl (x) , A‖(x) =
Ns

∑
l=1

al Λl (x) , (2)

whereΛl (x) are the finite elements (tensor product of B splines [14, 15]), Ns is the total
number of the finite elements,φl andal are the spline coefficients. A detailed description
of the discretization procedure can be found in Refs. [4, 5, 7, 8, 10]. We apply the so-
called phase factor transform [8] to all perturbed quantities in the code. The cancellation
problem [3, 4] is solved using the iterative scheme No. 2 described in Ref. [7].

SIMULATIONS

Toroidal Alfvén Eigenmode (TAE). We consider a large-aspect-ratio circular cross-
section tokamak with the major radiusR0 = 10 m, the minor radiusra = 1 m, the
magnetic field on the axisB0 = 0.95 T, the safety factorq(r) = 1.6+0.6(r/ra)

2 with r
the small radius. The ion and electron temperature and density profiles are taken to be
constant withTi = Te = 3.8 keV andn0 = 2×1018 m−3 [these parameters correspond to
β = 2µ0n0(Ti +Te)/B2 ≈ 0.7%]. We use flat profiles in order to exclude the influence of
diamagnetic effects on the TAE mode (their role will be studied elsewhere).

We present the results of our TAE simulations in Figs. 1-3. InFig. 1, the part of
the shear Alfvén spectrum containing the TAE gap is plotted.The mode frequency
ω = 418 kHz lies inside the gap and close to the TAE frequency calculated from
ideal MHD theory (CAS3D). The eigenmode structure is shown in Fig. 2 (electrostatic
and magnetic potential). The position of the maximum of the potential coincides with
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FIGURE 2. The eigenmode structure (the electrostatic and magnetic potentials in arbitrary units) of the
TAE mode in a tokamak. One sees two coupling modes with the poloidal mode numbersm= 3 andm= 4.
The toroidal mode number isn=−2. Gyrokinetic PIC result (solid lines) is compared vs. the MHD result
(dotted lines).

the position of the gaprm in the shear Alfvén spectrum. Furthermore, the eigenmode
structure calculated within ideal MHD is sufficiently closeto the gyro-kinetic one. In
Fig. 3, the time evolution of the electrostatic and magneticpotential is presented. One
sees a decaying mode with two dominant coupled Fourier harmonics with the poloidal
mode numbersm= 3 andm= 4. Also, the side bands withm= 2 andm= 5 having a
much smaller amplitude can be seen. The damping rateγ = −3.4 kHz corresponds to
γ/ω = 0.8%. The numerical parameters in our simulations are as follows: the number of
ion markersNi = 4000000, the number of electron markersNe= 16000000, the number
of radial B-splinesNr = 80, the number of B-splines in the toroidal directionNz = 32,
the time step∆t = 10−8 s.

Kinetic Ballooning mode (KBM). In Ref. [16], it has been shown that the low-
frequency part of the Alfvén continuum can become unstable in the presence of the ion
temperature gradient. The Alfvén Ion Temperature Gradientdriven modes (or Kinetic
Ballooning modes) are the drift-Alfvén eigenmodes, destabilized by the free energy
of the thermal particles in the presence of the pressure gradient, resulting from the
discretization of the unstable continuum due to non-ideal effects (e.g. Finite Larmor
Radius effects). These instabilities may have significant implications for both energetic
and thermal particle transport.

We consider a circular cross-section tokamak with the majorradiusR0 = 2.0 m, the
minor radiusra = 0.5 m, the safety factorq(ρ) = 1.25+ 0.67ρ2 + 2.38ρ3− 0.06ρ4

where ρ = r/ra, r is the small radius. The temperature profilesTi(ρ) = Te(ρ) =
T0exp{−0.5tanh[(ρ −0.6)/0.2]} with the temperature on the axisT0 = 7.5 keV. The
density profile is defined asn0(ρ) = naexp{−0.44tanh[(ρ −0.6)/0.35]} with the den-
sity on the axisna chosen appropriately in order to obtain theβ -value needed. We
choose the toroidal mode numbern = 7 and the poloidal mode numbers 8≤ m≤ 20.
Results of our simulations are presented in Figs. 4 and 5. In Fig. 4, the frequency and
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FIGURE 3. Time evolution of the electrostatic and magnetic potentials (arbitrary units). The TAE mode
in a tokamak. One sees that the modes with the poloidal mode numbersm= 3 andm= 4 couple with each
other. The toroidal mode number isn = −2.

the growth rate of the instability is plotted. One can see howthe electrostatic mode
(here, the Trapped Electron Mode coexisting with the Ion Temperature Gradient driven
mode) is replaced by the KBM instability whenβ is large enough (recall that the time
evolution particle-in-cell approach delivers the most unstable mode in the spectrum). In
Fig. 5, the spatial structure of the electrostatic and the magnetic potentials is shown in
the tokamak cross-section. One can see that both potentialshave ballooning structure.
The numerical parameters in our simulations are as follows:the number of the ion mark-
ersNi = 1000000, the number of the electron markersNe = 4000000, the number of
radial B-splinesNr = 64, the number of B-splines in the toroidal directionNz = 32, the
time step∆t = 5×10−9 s.

CONCLUSIONS

In this paper, we have presented global gyrokinetic PIC simulations of the Toroidal
Alfvén Eigenmode and the Kinetic Ballooning Modes. The key numerical component
of our simulations is the solution of the cancellation problem [3, 4] using the iterative
approach of Ref. [7]. This allows to keep the number of markers in the same range as in
comparable electrostatic PIC simulations. The main resultof our paper is to demonstrate
that global Alfvén modes can be treated in a unified manner with the gyrokinetic PIC
method. Up to now, the kinetic properties of the global Alfvén modes in a tokamak
geometry have been approached using reduced-kinetic [17],hybrid fluid-kinetic [18] or
gyrokinetic-eigenvalue approaches [1]. The drawback of the reduced-kinetic and hybrid
fluid-kinetic approaches is that they can not guarantee to include all relevant physical
mechanisms. The gyrokinetic eigenvalue approach being capable to capture all physics
is limited to linear problems only. Being a first-principle non-perturbative approach,
the gyrokinetic PIC simulations can recover all kinetic effects, too. In contrast with the
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FIGURE 4. The frequency and the growth rate of the ITG+TEM (smallβ ) and KBM (largerβ )
instabilities in tokamak geometry.

FIGURE 5. The structure of electrostatic and magnetic potentials (KBM instability) in the tokamak
cross-section. Parameters as in Fig. 4 corresponding to thepoint with β = 4%.

eigenvalue approach, the PIC method can be easily extended to the nonlinear regimes.
The linear simulations presented in this paper are an important step towards the global
nonlinear gyrokinetic treatment of electromagnetic modesin tokamak geometry (both
electromagnetic turbulence and nonlinear dynamics of kinetic MHD modes destabilized
by the fast particles). The PIC simulation of the kinetic effects caused by the fast
particles will be the focus of our future work.
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