
Kinetic Effects on Slowly Rotating Magnetic
Islands in Tokamaks

M. Siccinio� and E. Poli�

�Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany

INTRODUCTION

The full comprehension of the dynamics of magnetic islands is a critical point in order to
predict and to improve the performance of a tokamak reactor, since their appearance can
lead to a substantial deterioration of the radial confinement of both particles and energy.
The presence of an island in the plasma generates a parallel current perturbation, through
several physical mechanisms. This current affects in turn the stability of the island itself
[1]. In this paper, we focus on the current connected with the rotation of the island with
respect to the surrounding plasma. In particular, the rotation frequency range is extended
beyond the standard assumption that, for ions, the island frequency is larger than the
parallel streaming along the island itself for passing particles and than the magnetic
precession frequency for trapped particles. In this case, the standard polarization current
contribution becomes smaller, and other electric and magnetic effects play a role [2]. An
analytical approach is employed, which consists in a two-parameter series expansion of
the drift-kinetic equation [3, 4]. When the island propagation frequency drops below the
parallel streaming of the ions, the main current contribution is shown to be linked to the
interaction of the toroidal electric field generated by the island and the magnetic toroidal
precession of trapped particles. A resonance mechanism between preceeding trapped
particles and the island is also identified and discussed. The contribution of passing
particles is on the other hand shown to be secondary. Numerical calculations performed
with the drift-kinetic Hamiltonian code HAGIS [5] support the analytical results.

APPROACHING THE PROBLEM

We suppose a large-aspect-ratio tokamak, with circular cross section and circular
concentric equilibrium magnetic surfaces. Equilibrium geometric coordinates are the
poloidal flux χ , the poloidal angleθ and the toroidal angleζ . We suppose thatθ = 0
corresponds to the outer midplane. To include the magnetic island, it is convenient to
define the helical angleξ =mθ �nζ �ωt, wherem;n are the poloidal and toroidal mode
number, respectively, andω is the island propagation frequency. The total magnetic
field has the expression:

B = I (χ)∇ζ +∇ζ �∇(χ + ψ̃ cosξ )



whereI (χ) = RBζ andψ̃ is constant according to the well-known constant-ψ approxi-
mation [1]. We define a perturbed flux surface label:

Ω =
2(χ �χs)

2

W2
χ

�cosξ ;

whereWχ is the island half-width expressed inχ units, and the subscripts labels quan-
tities evaluated on the resonant surface. The electrostatic potential is not calculated self-
consistently, but an analytical expression is given supposing the electrons immediately
shorting out every parallel electric field [4]:

Φ =
ωq
mc

[χ �χs�h(Ω)] ; (1)

whereh(Ω) is an integration constant determined from boundary conditions.
In this paper, we solve the drift-kinetic equation [6] by means of aδ f method, which

consists in writing the distribution functionf as f = F0 + g whereF0 is known, and
supposed to be a homogeneous isotropic MaxwellianFM (in order to neglect perturbed
bootstrap current effects [3, 4]), whileg is the perturbation on the distribution, supposed
to be small.

The problem is solved numerically using the drift-kinetic Hamiltonian code HAGIS
[5], and analytically by a double-parameter series expansion ofg [3, 4]. In particular we
write

g=

∞

∑
n;m

g(n;m)δ n∆m
; δ =

ρb

w
∆ =

w
a
; (2)

whereρb is the ion banana width,w the island half-width anda the tokamak minor
radius. Within these assumptions, the drift-kinetic equation takes the form
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In the course of the paper, we will assume different scalings for the island prop-
agation frequencyω, discarding the standard assumptionω > k

k
vth, defining k

k
=

�m(χ �χs)=Rq q0s=qs, where the apex0 indicates a derivative with respect toχ . This
exploration of the parameter space is meaningful because a theory which gives a the-
oretical value ofω is not available yet. Collisions are not considered in our analytical



treatment. Their role will be clarified when we compare our results to numerical simula-
tions (which include pitch-angle scattering). Our final purpose is to discuss the breaking
down of the quadratic dependence of the polarization current on the frequency [4] for
low values ofω, which was already pointed out in Ref.[2].

THE ω � ω� REGIME

A standard assumption in NTM literature consists in supposingω � ω�, whereω� is
the equilibrium electron diamagnetic frequency [4]. This corresponds to the following
ordering for the terms in Eq.(3):

∆ : 1 : ∆ : ∆ : ∆ : δ : ∆δ : ∆δ : ∆2δ : δ : ∆δ :

It is important to note that the assumptionω � ω� impliesω � k
k
v
k
, supposingv

k
� vth.

In the drift-kinetic calculation performed by Wilsonet al.[4], the further assumption
ω > k

k
v
k

was made in order to isolate the contribution of the polarization current. The
aim of this section is to focus on the same calculationretaining the terms in k

k
v
k
, to

analyse their effect on the perturbed current.
In Ref.[4], solving the drift-kinetic equation, the lowest-order perturbed distribution

turned out to be (neglecting equilibrium gradients):
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where the bar over a function indicates that it is independent onθ . The subscriptsP and
T refer to to the passing and trapped region of phase space, respectively. Here,
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in ω > k
k
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limit [4], while we obtain
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retaining the terms ink
k
v
k
. The contribution of̄h(1;0)

T
will be discussed in the following

section. The main difference between these two different situations is that, retaining
terms ink

k
v
k
, the perturbed distribution gets a resonant denominator, which corresponds

of course to the caseω � k
k
v
k
.

The perturbed distribution is used to calculate the parallel current perturbation (which
is what influences island stability [1]) by means of quasi-neutrality equation (∇ �J = 0)



[4]. What can be found is that, after the integration in the velocity space, the effect
of the resonant denominator is small compared to the standard polarization current
contribution.As a matter of fact, one can see that expanding the resulting perpendicular
current in the quasi neutrality equation, the resonant denominator starts to contribute
from a higher-order term inε, whereε is the inverse aspect ratio, while the lowest-order
term does not show any difference with respect to theω > k

k
v
k

case. This physically
depends on the fact that the contribution of the resonant particles changes its sign with
the parallel velocity, so the current contribution of co-passing particles cancels the one
of counter-passing particles.

THE ω � ωD REGIME

We now assumeω to be of the same order as the toroidal precession frequency of
trapped particles due to the equilibrium magnetic drift,ωD:

ωD =
q

Rrωc

1
2θb

Z θb

�θb

h
µB+v2

k

i
cosθdθ (7)

whereθb is the bounce angle. For thermal particles,ωD < k
k
vth. Another equilibrium

toroidal precession effect for trapped particles, due to magnetic shear [7], is also present
in tokamaks. We define the corresponding frequency asωs, and we introduceωt p =

ωD +ωs.
The resulting ordering of the terms in Eq.(3) with this frequency scaling is

∆δ : 1 : ∆ : ∆δ : ∆δ : δ : ∆δ : ∆δ 2 : ∆2δ 2 : δ 2 : ∆δ 2
:

The resulting lowest-order solution can be approximated by:
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We name this contributionprecessional current. Here,ωE is the toroidal precession
frequency of trapped particles due to the presence of the island radial electric field [8].
This current is not divergence free, so it causes a closure parallel current which can affect
the island stability. No analytical evaluation of this contribution is available yet.

For positive values of the frequency no resonance is possible, since in this case the is-
land propagates in the direction opposite to the toroidal precession of trapped ions, so the
dependence of this current on the velocity is quite smooth. On the contrary, a resonance
occurs for negative frequencies, as shown in Fig.1a. The physical interpretation of this
effect is connected to the interaction of the island toroidal electric field with the toroidal
magnetic precession [9]. Whenω > 0, all particles are “faster” than the island. Where
the toroidal electric field is positive, they are accelerated and so they tend to disperse.
On the other hand, a negative electric field brakes them, so there they tend to accumu-
late. The situation is more complicated forω > 0, because there are particles which are
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FIGURE 1. HAGIS Results: Perpendicular current versus velocity forω = 300 rad=s (trian-
gles) and forω = �300rad=s (diamonds) for a very low value of collisionality (a). Schematic
draw of trapped particles’ interaction with the island toroidal electric field (b).
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FIGURE 2. HAGIS Results: Current on the X-point helical cell (triangles), on the O-point cell (stars),
on the intermediate cell (diamonds) and their sum (solid) forω =�300rad=s.

“slower” or “faster” than the island, sinceωt p depends on the particle’s velocity. Where
slow particles are accelerated,they actually decrease their relative speed with respect
to the island, and on the contrary they increase their relative speed as the electric field
brakes them. So their contribution has the opposite sign with respect to the fast particles’
one. This situation is summarized in Fig.1b.

The contribution ofωE is such to locally change the number of “faster” and “slower”
particles while moving from island’s X-point (where the radial electric field is minimum)
to O-point (where the radial electric field is maximum), so that the overall current along
the island comes out from a very complicated balance of these contributions, as shown
in Fig.2.
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FIGURE 3. HAGIS Results: Perpendicular current versus island propagation frequency in the non-
collisional regime (a). Comparison of the perpendicular current versus frequency in a standard banana
regime and in the non collisional regime (b).

SUMMARY

Fig.3a summarizes all our results. For high absolute values ofω, the polarization current,
which scales likeω2 in absence of gradients [4], prevails. For lower values ofω the
precessional current overcomes the standard polarization current. It changes sign in
ω = 0, because the electric field reverses there its sign (see Eq.(1)), and for a small
negative value ofω, when the contribution of “slower” particles starts to prevail on the
“faster”’s one.

Collisions can be shown to be very important, allowing the integral in the velocity
space of this precessional current to exist. A change in the collisional frequency can
affect the sign of the current integrated over velocity space, with important consequences
on the stabilizing power of the subsequent parallel current, see Fig.3b.
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