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Abstract

Electromagnetic gyrokinetic turbulence simulations employing Cyclone Base Case parameters

are presented for β values up to and beyond the kinetic ballooning threshold. The β scaling of the

turbulent transport is found to be linked to a complex interplay of linear and nonlinear effects.

Linear investigation of the kinetic ballooning mode is performed in detail, while nonlinearly, it is

found to dominate the turbulence only in a fairly narrow range of β values just below the respective

ideal limit. The magnetic transport scales like β2 and is well described by a Rechester-Rosenbluth-

type ansatz.
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I. INTRODUCTION

The normalized plasma pressure β is one of the most essential dimensionless parameters

characterizing a fusion plasma. Since it governs both the reaction rates (∝ β2) and the

bootstrap fraction (∝ β), a large β value is highly desirable for future power plants. While

large-scale – magnetohydrodynamic (MHD) – instabilities of various types are known to im-

pose an upper β limit, small-scale – gyrokinetic – instabilities driving turbulent fluctuations

may also affect the plasma performance in the high β regime. This may happen in basically

two ways. First, various electrostatic microinstabilities like ion temperature gradient (ITG)

modes or trapped electron modes (TEMs) along with the respective kinds of turbulence are

altered in the presence of magnetic field fluctuations. The anomalous transport properties

may thus be changed significantly with respect to the low β limit, potentially affecting the

plasma confinement. Second, in the framework of a gyrokinetic description, kinetic bal-

looning modes (KBMs) may be destabilized below the MHD ballooning limit, causing very

large transport levels and effectively reducing the achievable plasma β. Consequently, it is

important to know exactly where the kinetic limit lies, and also how the transport behaves

close to that operational point.

Tokamak experiments have yielded widely differing results for the scaling of the energy

confinement time with β. While for some, very little or no dependence was reported [1, 2],

a strong degradation of the confinement with increasing β was found for others [3, 4]. One

possible explanation is that different experiments are operated in different instability regimes

with different β scalings, thus causing these apparently inconsistent results – but edge effects

may also play an important role. This clearly shows that it is highly desirable to gain a

more solid understanding of the underlying physical processes. While previous theoretical

research for core parameters, based on (gyro-)fluid (neglecting trapped electron effects) [5–

7] or gyrokinetic [8–11] simulations, consistently finds a significant decline of ITG-induced

transport with increasing β (holding all other dimensionless simulation parameters fixed),

the behavior of turbulent transport at high β remains poorly understood. Many important

questions are still unanswered. Among these are: What kind of transport levels should one

expect? Will there be regime transitions, e.g., from ITG to TEM turbulence, and if so,

what is their nature? What is the role of magnetic transport as one approaches the MHD

ballooning limit? By how much can the KBM threshold go below the respective MHD value,
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and how does the turbulence react to the presence of weakly unstable KBMs? It is the main

goal of the present paper to address these questions by means of gyrokinetic simulations

with the Gene [12, 13] code, using the so-called Cyclone Base Case [14] parameters.

The remainder of this work is structured in the following way. In Section II, we study

linear properties of ITG modes and TEMs as a function of β, leading to some expectations

concerning the resulting nonlinear behavior. This is followed by an in-depth discussion

of the KBM threshold in Section III, employing the possibility to use Gene as a linear

eigenvalue solver, providing access also to subdominant unstable modes. In this context,

the dependence of the critical KBM β on plasma parameters will be investigated. From this

linear basis, we then move on to nonlinear results in Section IV. Turbulence transport levels

all the way from the electrostatic limit well into the KBM regime are reported, confirming

and extending previous work. We will discuss the nature of regime transitions including, in

particular, the value of the nonlinear threshold for KBMs. Moreover, there will be a focus

on the resulting level of magnetic transport. In Section V, we will then try to understand

these nonlinear results with the help of further simulation diagnostics and two transport

models. Finally, some conclusions are given in Section VI.

II. GYROKINETIC SIMULATIONS: BACKGROUND AND LINEAR β DEPEN-

DENCE

A. Simulation details

The present work aims at studying – by means of linear and nonlinear gyrokinetic simula-

tions – the behavior of tokamak core turbulence for β ranging from zero (electrostatic limit)

to values larger than the kinetic ballooning threshold. From the various possible definitions

for β, we choose

β ≡ βe ≡
8πne0Tref

B2
ref

, (1)

with ne0 being the equilibrium electron density, Tref the reference temperature, and Bref the

reference magnetic field.

The following numerical investigations are performed employing the Gene [12, 13] code

which solves the nonlinear gyrokinetic equations [15] (in the local limit) for an arbitrary

number of (active or passive) particle species on a fixed grid in five-dimensional phase space.
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It includes electromagnetic effects as well as collisions (involving pitch angle and energy

scattering [16]) and real tokamak geometry (via an interface to MHD equilibrium codes

[17]). For the purposes of the present work, the latter effects shall be neglected, however,

focussing on collisionless situations and employing a simple ŝ-α model geometry with α = 0.

For linear computations, Gene can also be run as an eigenvalue solver, providing access

to subdominant unstable modes [18]. This feature will prove useful, in particular, in the

context of determining the linear KBM threshold.

In terms of physical parameters, we will work with the well-known Cyclone Base

Case parameters which have also been used in various previous publications (see, e.g.,

Refs. [10, 11]). This choice allows for easier code-code comparisons and may be expected

to represent rather typical core turbulence conditions. The respective parameter set reads:

ωTi ≡ R/LTi = 6.89 = R/LTe ≡ ωTe, ωn ≡ R/Ln = 2.22, Tref = Ti = Te, ŝ = 0.786, q = 1.4,

and ǫt ≡ r/R = 0.18. Here, R is the major radius, LTi, LTe, and Ln are the characteris-

tic gradient lengths, Ti and Te are the ion and electron temperature, respectively, ŝ is the

magnetic shear, q is the safety factor, and r is the relevant minor radius.

Let us now turn to the simulation parameters. We will use kinetic electrons with a mass of

me/mi = 5.669×10−4, corresponding to a hydrogen plasma. The simulation box is defined

as follows. For linear runs, we take Ly = 2π/ky and Lx = 1/(kyŝ), while for nonlinear

runs, we choose Ly = 125.66 and Lx = 101.78. In addition, we always have Lz = 2πqR,

where x is the radial, y is the binormal, and z is the parallel coordinate. The perpendicular

coordinates are normalized with respect to the ion gyroradius ρi, and consequently, wave

numbers are given in units of ρ−1
i . Concerning velocity space coordinates, we use the parallel

velocity v‖, which is given in units of (2Tj/mj)
1/2 for species j = i, e, and the magnetic

moment µ = mv2
⊥/(2B) which is normalized accordingly. Throughout this paper, we take

Lv‖ = v‖,max = 3 and Lµ = µmax = 9. The grid resolution is described below.

B. Linear β scan

To get an idea what kind of microinstabilities are likely to be responsible for driving

the turbulence for our nominal parameters in various β regimes, we first perform some

linear gyrokinetic simulations. Here, we focus on ky = 0.2 which corresponds roughly to

the position of the maximum of the nonlinear transport spectrum, as we will see later.
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Convergence studies in every instability regime lead us to use the following set of grid

parameters which guarantee good convergence across the entire β range: Nx = 24 (12

modes per sign), Nz = 24, Nv‖ = 96 (required for the TEMs), and Nµ = 16.

Fig. 1 shows the behavior of the linear growth rate and the frequency as β is varied.

For comparison, we have repeated these linear runs with the GS2 [19] code, demonstrating

very good agreement and thus the reliability of the displayed data. We find that at low β

values, the dominant microinstability is an ITG mode, as expected. With increasing β, the

growth rate of this mode is diminished, however, until a TEM takes over. As eigenvalue

calculations with Gene show, the latter mode is unstable across the entire β range, and

its linear growth rate is practically not influenced by changes in β – in contrast to the ITG

mode. It shall be pointed out for future reference that the TEM growth rate is roughly half

that of the ITG mode in the electrostatic limit. As is apparent in Fig. 1, at still higher β

values, a KBM starts to dominate. Its linear growth rate increases quite rapidly once the

respective β threshold is crossed. The real frequency exhibits a positive sign, which, in our

convention, corresponds to a drift in the ion diamagnetic direction; moreover, the amplitude

of this frequency clearly exceeds the ITG frequency, an effect which is discussed, e.g., in

Ref. [20]. Within any one regime, only small modifications of the frequencies are observed.

Linearly, one thus has two critical β values (at ky = 0.2): at β = 0.95%, a transition from

ITG modes to TEMs takes place, and at β = 1.27%, KBMs become dominant. We will

devote the entire next section to the properties of this latter critical value and its deviation

from the MHD prediction.

III. LINEAR KBM THRESHOLDS

It is well known that MHD ballooning modes only become linearly unstable when β

exceeds a certain (plasma parameter dependent) threshold. The same is true for their

gyrokinetic counterpart, the KBMs. These thresholds need not coincide, however. As has

been discussed in various previous publications (see, e.g., Refs. [21–24] for the local case;

for radially nonlocal investigations, see, e.g., Ref. [25]), the KBM onset can go significantly

below the respective MHD value under certain conditions. Actually, reductions by up to

about 50% have been reported in Refs. [23, 24], a claim that was disputed later [26]. At

present, it is not clear if those numbers can be confirmed in the context of a reasonably
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comprehensive gyrokinetic approach. The linear Gene simulations which will be presented

in this section are supposed to shed some light on this very issue.

Since the KBM onset in a γ(β) plot of the dominant modes is often obscured by other

microinstabilities like ITG modes or TEMs (see, e.g., Fig. 1), it is useful to use Gene

in its eigenvalue solver mode [18]. Thus, an arbitrary number of coexisting linear modes

(both unstable and stable) can be detected. The (subdominant) behavior of the KBMs

calculated this way for our nominal physical parameters is shown in Fig. 2. Obviously,

the respective linear growth rate crosses into the negative range at βcrit = 1.14%. Two

things are noteworthy about this finding. Firstly, these particular KBMs (at ky = 0.2)

are subject to substantial linear damping below the β threshold, rendering it unlikely that

they play a role in respective nonlinear simulations. Secondly, the inferred value for βcrit

is about 14% below the MHD ballooning limit, which can be estimated to be βcrit,MHD =

0.6ŝ/[q2
0(2ωn + ωTi + ωTe)] = 1.32%.

This qualitative behavior is by no means universal, however. For other sets of physi-

cal parameters, one can find different scenarios. For example, the KBM can also become

marginally stable below the threshold. Such a case, using the nominal physical parameters

except for ωn = 3, ωTi = 4, and ωTe = 6, can be seen in Fig. 3. While an interesting effect

in itself, it is more than doubtful, however, that such marginally stable modes can play a

significant role in nonlinear simulations. At least for the present case (as will be shown

below), KBMs do not become nonlinearly dominant as long as γTEM > γKBM.

Depending on the physical parameters, the picture can change even more drastically. In

Fig. 4, an example (with ǫt = 0.16 and ωn = 6) is shown for which the KBM is continually

transformed into a TEM-like instability. While one may use various methods to determine a

critical β value (e.g., by taking the value where ω = 0), it is obvious that a precise definition

of the KBM threshold is not possible in this case. Similarly, KBM-ITG transformations

occur for yet different parameters. For a more in-depth discussion of these transformations,

occurring in the neighborhood of so-called exceptional points, see Ref. [18].

Determining the KBM stability threshold by following the mode through the subdomi-

nant range until arriving at negative growth rates requires significantly more computational

effort than finding the growth rates of dominant modes. If one aims to extract the KBM

thresholds for many different sets of physical parameters, this method might thus be some-

what cumbersome. Therefore, we shall show how to arrive at a good estimate for βcrit by
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looking at more accessible data.

The growth rates for the TEM and KBM regime can be fitted well by linear and quadratic

functions, respectively. By taking the intersection of these fit functions, the value βdom
crit can

be determined at which γKBM becomes larger than γTEM; analogously, βextrapol
crit is defined as

the value at which the KBM fit function becomes zero. One thus obtains βdom
crit = 1.26% and

βextrapol
crit = 1.21% for ky = 0.2. The corresponding results for other values of ky are shown

in Fig. 5. Note that for both the dominant and the extrapolated critical β, the respective

minimum lies at ky = 0.2.

At this point, it is worthwhile to make a brief remark concerning the effect of setting

αMHD to zero. While this was done in the simulations presented here for comparability

purposes, one can easily use values consistent with the respective β. The resulting critical

β values for ky = 0.2 are βdom
crit = 1.26% and βextrapol

crit = 1.22%, in excellent agreement with

the respective αMHD = 0 results.

One additional aspect of interest is how the KBM threshold depends on the density and

temperature gradients. We thus scan each gradient over a range, keeping the respective other

gradients fixed to their standard values. Since βMHD
crit is a function of these gradients, it is

instructive to look at αcrit, as well, for which MHD predicts a constant value. The results of

this investigation are shown in Fig. 6. Note that here, only values for ky = 0.2 are included.

Obviously, most values of αextrap
crit deviate only mildly from αMHD

crit = 0.472, especially as far as

changes in ωTe and ωn are concerned. However, for large values of ωTi, αcrit is up to about 15%

lower than αMHD
crit . This leads to the conclusion that while, in principle, all profile gradients

play a role in determining the kinetic value of βcrit, the biggest effect comes from the ion

temperature gradient, which is in line with previous studies [22, 23]. As expected, in almost

all cases, αextrap
crit lies below αMHD

crit ; however, as ωTi is decreased, the KBM stability threshold

eventually extends beyond the MHD prediction. While in this regime, no marginally stable

low-β behavior was found for ky = 0.2 (as one might have expected taking into consideration

the similarly low ωTi that was used in Fig. 3), the ky = 0.1 counterpart shows indeed such

a marginally stable tail. In this case, βcrit = 1.87% (corresponding to αcrit = 0.526) which

is again closer to the MHD value. This is consistent with the requirement that as ky → 0,

βcrit → βMHD
crit .

In summary, one finds that – at least for physical parameters which are relatively close

to the Cyclone Base Case set – the reduction of the linear KBM threshold relative to its
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MHD counterpart tends to remain below about 20%. Generally, the disappearance of the

KBM can occur in (at least) three different ways: it can turn into a damped mode; it can

become marginally stable; or it can transition directly into a different mode (like a TEM or

an ITG mode). While these investigations help confine the region of influence of KBMs, they

merely represent estimates. In order to assess the role of KBMs in fully turbulent systems,

nonlinear simulations are called for. This will be the topic of the next section.

IV. TURBULENCE SIMULATIONS: REGIMES AND NONLINEAR KBM ON-

SET

A. Simulation details and code-code comparison

The most important difference between linear and nonlinear resolution requirements is

caused by the magnetic field line flutter. The electrons are prone to react violently to

perpendicular disturbances in the magnetic field, and therefore a high parallel resolution is

required for somewhat higher β. In consequence, all nonlinear simulations at β ≥ 0.7% are

done with Nz = 48. The perpendicular grid is Nx = 192 (positive and negative modes each

96) and Nky
= 24. Convergence was tested in the ITG dominant regime at β = 0.8%.

An important exercise in numerical simulations is testing the agreement of different codes.

Fig. 7 shows that the transport levels obtained with Gene in the ITG regime agree well

both qualitatively and quantitatively with results from Gyro reported in Ref. [11]. How-

ever, it remains to be seen whether the difference in the linear critical βdom
crit between these

codes carries over to nonlinear simulations. In Ref. [10], the decrease of the ion transport

with increasing β is smaller, but the transport levels are similar. These comparisons lend

reliability to the present simulations. We shall use them as a basis to now explore the high-β

regime.

B. Turbulence regimes and nonlinear KBM onset

The nonlinear transport levels over an extended β range are shown in Fig. 8. One finds

first a pronounced decrease, followed by a flat region, and then a sudden and steep increase.

As becomes apparent, even from this plot, there exist at least two distinct turbulence regimes
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(dominated, respectively, by ITG modes or TEMs, and KBMs), separated by a transitional

point at about β = 1.26%. Additionally, one finds qualitative changes at β = 0.8% and

β = 1.1%. The critical KBM value is actually very close to the linearly determined value

(for ky = 0.2) at which the KBM growth rate starts to exceed that of the TEM.

Interpreting the other two thresholds represents a greater difficulty. Looking at phase

shifts (see Fig. 9) and changes in the transport spectra (see Fig. 10), one might be led to

believe that the nonlinear behavior follows the linear one, including an ITG-TEM transition

at roughly the same β. While this picture is supported by a phase-based frequency analysis

that includes all radial connections of the extended ballooning structure (without weighing

by amplitude), using Fourier transforms (including only the first radial connections) to

determine the nonlinear frequencies yields different results. As can be seen in Fig. 11, no

negative frequencies occur over the entire β range. Additionally, there is a frequency shift

at β = 0.8%, and another at β = 1.2%. The second value corresponds to the linear onset

of KBMs which dominate the frequency signature while not dominating the transport for

β ≤ βdom
crit . The intermediate range at ω ≈ 1.5 cannot be motivated by the linear physics,

however; also, ion electrostatic heat transport exceeds its electron counterpart throughout

the range corresponding to TEMs linearly, whereas looking at the ratio of the ion and electron

transport in linear simulations, one would expect a much higher electron contribution. This

intermediate range might be due to nonlinear interaction of the ITG modes with the TEMs;

and possibly, magnetic flutter contributes to the change, as well. Consequently, we label the

regime at smaller and moderate β an ITG-TEM regime. Note that for β < 0.8%, one finds

pure ITG turbulence.

In this context, it should be noted that for a few β values in this scan, the simulations are

quite challenging numerically. While all simulations find saturation, the ones for β = 1.0%

and 1.1% (in the ITG-TEM coexistence regime) and for β = 1.3% and 1.325% (in the KBM

regime) display – for the numerical parameters used here – what appears to be a numerical

instability in the long-time limit. In these cases, the transport levels would first saturate,

and then take off to much larger values after roughly (200−300)R/cs. On the other hand, β

values between those regions seem not to be affected. E.g., the β = 1.25% simulation shows

no sign of a numerical instability during its full duration of > 500R/cs. These difficulties

might be related, respectively, to the nonlinear interplay of ITG modes and TEMs (see the

discussion below) and to the linear low-ky behavior of KBMs, but a more detailed analysis
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(which turns out to be quite involved and is done in collaboration with other groups) is

underway and will be published elsewhere.

Interestingly, the β value for which the turbulence acquires a clear KBM character is very

close to the linear quantity βdom
crit (taking its minimum at ky = 0.2) that describes the point at

which the KBM growth rate exceeds that of the TEM. In other words, while KBMs already

contribute within part of the ITG-TEM regime (where they are already linearly unstable),

they only become dominant once the linear KBM dominance threshold is crossed. This

means, in turn, that the exact onset point for linear KBMs seems to be of limited practical

relevance if other modes are clearly dominant there. Although deviations from this rule of

thumb can be envisioned, one is led to think that KBMs are likely to dominate nonlinearly

wherever they dominate linearly (in the low-ky part of the spectrum where the transport

usually peaks) and vice versa. This finding further narrows the window of KBM activity

below the MHD threshold. In the present case, the effective onset point is decreased only

by less than 5%. How generic this finding is remains to be investigated, but the basic trend

(a moderate linear reduction which is not extended by nonlinear effects) may be expected

to hold.

Having discussed the existence and properties of regime transitions, we would now like

to turn to an explanation of the qualitative form of the transport curves. The next section

will be devoted to this topic.

V. β SCALING OF TRANSPORT LEVELS

There are some features in Fig. 8 that cannot be explained by the linear physics. Most

prominently, the high-β end of the TEM-ITG regime has a saturation level that is lower than

the electrostatic ITG level by a factor of about 20, which exceeds the respective decrease of

the linear growth rate by an order of magnitude. Also, the knee in the electron magnetic

transport at β = 0.8% – which to a lesser extent can also be found in the electron electrostatic

transport – does not exist in any form in the linear simulations. These issues will be discussed

in more detail now.
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A. ITG-TEM transport levels

It is known that the nonlinear transport levels often tend to follow the linear growth rates.

While here, such a model would correctly predict some general tendencies (declining ITG

transport, constant TEM transport, KBM threshold), it can not explain the steep decline

of the ion electrostatic transport at moderate β values. In the following, we seek to provide

an explanation for this feature.

In a first step, we focus on the regime around β ∼ 1.2%, in which TEMs dominate

linearly. TEM-induced transport has been estimated successfully before by means of a

transport model which is described in detail in Refs. [27, 28]. While applying this model to

turbulence simulations requires a nonlinear reference value, one can infer many interesting

transport properties from linear simulations alone.

In Fig. 12, an ωTe scan is presented which is based on this transport model. One can

distinguish two regions, one with slowly and one with more strongly increasing transport.

Clearly, the value used for the simulations shown in Fig. 8 is on the low transport region.

While there is no absolute meaning to that transport value, it serves as an indication that

one might indeed find a low saturation level at β ∼ 1.2%. In addition, a comparison between

the qualitative behavior of the transport model and the growth rate at ky = 0.2, γ0.2, hints

at an overestimation of the transport when making predictions from the linear behavior

in Fig. 1: at ωTe = 6.89, the ratio of the transport model value to γ0.2 is especially low.

Consequently, at this gradient, the nonlinear transport can be expected to drop to levels

significantly lower than one might predict from the linear growth rate alone.

Another contributing factor could be the nonlinear interaction of the TEM turbulence

with ITG modes, and possibly KBMs. Linear modes can compete nonlinearly and thus cancel

each other out to a significant degree, reducing the transport levels (see, e.g., Ref. [16]). In

Fig. 9, coexistence of phase relations at the regime transitions can be seen; and in Fig. 10, the

regime signature transport peaks become blurred at β values close to the linear ITG-TEM

transition. This coexistence implies interaction and competition, likely contributing to the

reduction of the transport levels observed at moderate and high β. Yet another important

effect is due to the presence of zonal flows which shall be discussed next.
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B. Zonal flows and zonal fields

It is well known that in suppressing heat and particle transport, zonal flows can play

a significant role (see Ref. [29] for a review on zonal flows). For the entire β range, an

inspection of contour plots shows that zonal flows are strongly excited, becoming even more

pronounced as β is increased. A quantitative measure of the impact of zonal flows is the

shearing rate,

ωs =
d2Φzon

dx2
, (2)

where Φzon is the zonal component of the electrostatic potential. Due to finite-frequency

corrections [30], the shearing rate needs to be much larger than the linear growth rate,

ωs ≫ γ, for zonal flows to be able to act as the dominant nonlinear saturation mechanism,

controlling the transport levels. As can be seen in Fig. 13, this necessary condition seems to

be (marginally) fulfilled across the entire β range, with ωs/γ ∼ 10. Moreover, for β ≤ 1.0%,

ωs/γ is steadily increasing. This finding suggests that zonal flows may contribute to the

strong decrease of the transport level with increasing β.

In order to test this conjecture, we have repeated some simulations, removing the zonal

component of the electrostatic potential and looking at the impact on the transport levels.

Such modified simulations at β = 0.1% and β = 0.6% yielded no significant increase in

the electrostatic heat flux (while effectively suppressing the electromagnetic contribution),

indicating that for the lower-β range of the ITG-TEM regime, zonal flows contribute little

to the drop in turbulent transport with increasing β. However, at β = 1.25%, removing the

zonal potential results in an increase especially of the ion but also the electron electrostatic

transport levels by factors of ∼ 3 and ∼ 2 respectively. The electron electromagnetic level

drops to very low levels, much like in the low β cases. This indicates that at higher β

in the ITG-TEM regime, zonal flows become a major contributor in suppressing turbulent

transport. In consequence, the low levels of high-β ITG-TEM transport can in part be

explained by the effect of zonal flows.

Additionally, one can measure the effective shear due to magnetic field fluctuations (see,

e.g., Ref. [31]). Following Ref. [32], we compute the magnetic shear fluctuation due to zonal

fields,

s̃ = q0

R

Bref

dBy

dx
. (3)

The results can be found in Fig. 14. At its maximum at β = 0.8%, s̃/ŝ ≈ 15%, making
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s̃ a non-negligible quantity. Since the maximum coincides with a qualitative change in the

nonlinear transport, it might follow that the nonlinear frequency shift at that value is in

part due to the magnetic shear fluctuations. However, if this is to hold, the new frequency

would still be purely nonlinear, for linear simulations with ŝ = 0.786± 0.15 show only small

modifications in their frequencies (ω = 0.627 for ŝ = 0.636, and ω = 0.694 for ŝ = 0.936)

compared with ŝ = 0.786 (ω = 0.656). Again, these results were obtained for ky = 0.2.

They indicate that in the present simulations, zonal fields are relatively strong, but still too

weak to act as the dominant saturation mechanism.

C. Magnetic transport

One important question in the context of electromagnetic turbulence simulations which

we have not yet discussed is the role of magnetic transport. By this expression, we refer

to the contributions to the overall cross-field transport induced by (radial) magnetic field

fluctuations. As is well known, the transport channel which is most affected by this process

is the electron heat flux, Qe. Its electromagnetic part Qem
e , due to efficient parallel heat

conduction along radially perturbed field lines, is plotted for the ITG regime – as a function of

β – in Fig. 15. Surprisingly, the (quasi-)linear and nonlinear curves deviate substantially from

one another. To good approximation, they scale like Qem
e ∝ β and Qem

e ∝ β2, respectively.

The same applies to the transport values reported in Ref. [11].

In order to understand these simulation results, we make use of a simple model describing

test particle transport along perturbed field lines. The latter has been used before in Ref. [8]

and goes back to work by Rechester and Rosenbluth [33] in 1978. It is based on the ansatz

Qem
e =

〈q̃e‖B̃x〉

Bref

, (4)

q̃e‖ = −ne0χe‖

(

dT̃e‖

dz
+

B̃x

Bref

dT̃e‖

dx
+

B̃x

Bref

dTe0

dx

)

. (5)

Here, B̃x is the radial component of the magnetic field fluctuations, while T̃e‖ corresponds to

parallel electron temperature fluctuations. The three terms in the large brackets describe,

collectively, the parallel temperature gradient along perturbed field lines. For the following

discussion, they shall be labeled T1, T2, and T3, respectively.

As it turns out, one can interpret the findings shown in Fig. 15 by analyzing the Gene
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data concerning phase relations between pairs of fluctuating quantities entering in the above

model. For linear simulations, the nonlinear term T2 vanishes. At the same time, T̃e‖ and q̃e‖

have a phase relation of ∼ π/4, whereas B̃x and q̃e‖ are out of phase. Consequently, T1 ≫ T3.

Assuming that B̃x/Bref ∝ β, one thus obtains the prediction Qem
e /Qes

i ∝ β which is in line

with the linear result shown in Fig. 15. Nonlinearly, however, one finds Qem
e /Qes

i ∝ β2

(see Fig. 15). This change can also be explained by the model. Due to random phases

between T̃e‖ and q̃e‖, T1 is small. The same is true for T2, since B̃x and T̃e‖ have a phase

of ∼ 0. Moreover, B̃x and q̃e‖ have a phase of ∼ −π/4, resulting in T3 ∝ β2 becoming

the dominant term. Consequently, for the magnetic component of the (nonlinear) electron

thermal diffusivity, the equation

χem
e = χe‖〈(B̃x/Bref)

2〉 (6)

can be used. This leaves one to determine the parallel diffusivity, χe‖. For a sheared slab

magnetic field geometry, this quantity was calculated (see Ref. [34]) to be

χe‖ ≈
1

k‖

(

Te

me

)1/2

∼ q0R

(

Te

me

)1/2

(7)

in the adiabatic limit. While technically, there is no quantity k‖ for radially extended modes

in a sheared magnetic field (due to the quasi-periodic boundary conditions), one can still

use this expression as an approximation.

In Fig. 16, the predictions due to these equations are compared with the simulation

results. Very good agreement between the model and the real magnetic transport is obtained

when multiplying χe‖ by a scalar quantity η of order unity. η depends on the shape of

the extended ballooning mode structure and will therefore not necessarily be identical for

different turbulence regimes. In fact, we found that ηITG = 0.625 ± 0.026 in the range from

β = 0.3% to β = 1.0% (as expected, the model breaks down as β → 0). For the high-β end of

the ITG-TEM regime as well as the KBM regime, there is little statistics; the corresponding

values are ηITG−TEM = 0.37 and ηKBM = 0.46. Note that all these values are rather similar,

and that within a single regime, there is no significant β dependence of η. Also note that

this transport model seems to distinguish nonlinear regimes along the lines of the linear

regimes, not changing η at β = 0.8%.
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VI. CONCLUSIONS

In the present paper, we have shown results of both linear and nonlinear gyrokinetic

simulations with the Gene code for Cyclone Base Case parameters and β values ranging

from zero up to above the KBM threshold. The β scaling of the turbulent transport is found

to be linked to a rather complex interplay of linear and nonlinear effects. While the rough

trend (stabilization with increasing β up to the KBM onset) could be expected on the basis

of linear growth rates, the strength of this effect (decrease by a factor of about 20) could

not. Likely, the latter is mainly due to a combination of zonal flow effects and destructive

interference between co-existing modes. The change of the dominating linear mode from

ITG to TEM at moderate β values was reflected in the simulation results, but no pure TEM

regime was found.

Using Gene as an eigenvalue solver and varying the nominal temperature and density

gradients, we found that the reduction of the linear KBM threshold relative to its MHD

counterpart tends to remain below about 20%. Moreover, the disappearance of the KBM

can occur in (at least) three different ways: it can turn into a damped mode; it can become

marginally stable; or it can transition directly into a different mode (like a TEM or an

ITG mode). Nonlinearly, however, the β value for which the turbulence acquires a clear

KBM character is very close to the point at which the KBM growth rate exceeds that of

a TEM. This finding suggests that KBMs are only likely to dominate nonlinearly wherever

they dominate linearly. In the present case, the effective KBM onset point is decreased with

respect to the MHD threshold by less than 5%.

The role of magnetic electron heat transport (due to efficient parallel heat conduction

along radially perturbed field lines) has also been studied. Here, the nonlinear simulations

yield Qem
e ∝ β2 which cannot be explained (quasi-)linearly. However, employing a test

particle transport model in the spirit of Rechester and Rosenbluth, and analyzing the Gene

data with respect to phase relations between pairs of fluctuating quantities entering in

this model, one finds very good agreement with the simulation results. Here, a scalar

prefactor had to be introduced, but it turned out to always be around unity and practically

independent of β within any single regime.

In terms of comparing simulation results with experimental measurements, it is interest-

ing to note the following feature. Electrostatic (two-species) gyrokinetic simulations of core
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turbulence using Cyclone Base Case parameters are known to yield transport levels which

are almost two orders of magnitude higher than the respective experimental values. How-

ever, taking into account finite-β effects and employing the realistic value of βCBC ∼ 1.0%,

the (dominant) electrostatic ion heat flux decreases by a factor of 5-10. Consequently,

electromagnetic effects may account for a significant share of the discrepancy between the

simulations and the experiment. Additionally, other effects may contribute to closing the

gap, most prominently edge transport (for electromagnetic edge turbulence investigations

by means of a fluid model, see Ref. [35]); another factor would be switching from the ŝ-α

model to a more realistic magnetic geometry. First investigations have been reported in

Ref. [36], but further research will be required to understand the role of realistic geometry

for electromagnetic simulations in more detail.
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FIG. 1: (Color online) Dependence of growth rate γ (a) and real frequency ω (b) on the plasma β

for ky = 0.2. Gene results are shown as black triangles, GS2 results as red squares. There is very

good agreement between the two codes. Clearly, three instability regimes can be discerned: ITG,

TEM, and KBM.

19



FIG. 2: Subdominant growth rates of the kinetic ballooning mode (KBM). At β = 1.14%, the

mode becomes linearly unstable. No marginal stability is observed below this value.

FIG. 3: Subdominant growth rates of the kinetic ballooning mode (KBM) for a set of physical

parameters differing from the standard set used in this work (as given in the text). Here, one

observes a knee below the zero line. For smaller β values, the mode remains marginally stable.
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FIG. 4: (Color online) Transformation of a KBM into a TEM-like mode. As β is decreased,

the KBM frequency ω0 (red squares) continuously drops to negative levels. Correspondingly, the

growth rate γ0 (black diamonds) stops its descent and becomes constant. This behavior can be

understood by looking at another mode, characterized by γ1 (blue triangles) and ω1 (pink stars):

originally (i.e., for a smaller density gradient ωn), the left branch of γ0 was connected to the right

branch of γ1, and conversely, the KBM-like right branch of γ0 used to be connected to the left

branch of γ1. The same goes for the frequencies.
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FIG. 5: (Color online) Critical values of β for the onset of KBMs and their dominance over TEMs,

respectively, for a range of toroidal mode numbers. Black triangles mark the values where the

KBMs become dominant, whereas the extrapolated critical β for subdominant instability of the

KBMs is marked by red diamonds. For comparison, the MHD prediction is shown as a blue dashed

line.
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FIG. 6: (Color online) Dependence of critical β (a) and α (b) values for the onset of KBMs on

the gradients on the density gradient (black squares), the ion temperature gradient (red triangles),

and the electron temperature gradient (pink diamonds). For comparison, the MHD predictions are

shown in blue. For this data, ky = 0.2.
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FIG. 7: (Color online) Comparison of Gene and Gyro (as reported in Ref. [11]; dotted lines)

transport levels (black triangles for the ion electrostatic heat flux, blue stars for the electron

electrostatic heat flux, and pink squares for the electron electromagnetic heat flux). For GENE,

both the reference values (solid lines) and additional simulation results (with lower resolution, more

comparable to that in Ref. [11]; dashed lines) are shown.

FIG. 8: (Color online) Heat and particle transport as a function of β. The values for the ion

electromagnetic heat flux and the electromagnetic particle flux are very small and therefore were

not included in this figure. The ion electrostatic heat flux reflects the behavior of the linear growth

rates. However, while a KBM dominant regime can be distinguished, a pure TEM regime is not

found.
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FIG. 9: (Color online) Cross phase changes with increasing β. Solid black lines represent the dom-

inant phases between the electrostatic potential and the parallel ion temperature, whereas dotted

red lines represent the dominant phases between the electrostatic potential and the perpendicular

ion temperature. Within every regime, phases change only very little and continuously (diamonds

and triangles), but at two of the characteristic β values, a phase splitting occurs (stars).

FIG. 10: (Color online) Changes in the electrostatic electron transport spectra with increasing β;

the ion counterpart shows a very similar behavior. At β = 1.25%, the peak shifts slightly to lower

ky while retaining strong transport contributions at ky = 0.2.
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FIG. 11: (Color online) Nonlinear frequencies at ky = 0.2 (solid black curves), extracted via Fourier

transform of the electrostatic potential, Φ. The linear frequencies are included for comparison

(dotted red curves). Note that the KBM frequencies take over before the transport is dominated

by these modes. Nonlinearly, there is a frequency regime between the ITG and the KBM level

(stars) which exists roughly but not exactly at β values that correspond to the TEMs linearly

(triangles).
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FIG. 12: (Color online) Linear TEM transport model. Shown is the predicted scaling of the thermal

diffusivity χestimate = (γ/〈k2
⊥〉)max with the electron temperature gradient. At ωTe = 8.0 (black

dotted line), one observes a knee where the scaling changes. The value ωTe = 6.89 (red dashed

line) used in the nonlinear simulations lies on the low transport branch. γ0.2 is the linear growth

rate at ky = 0.2 rescaled to arbitrary units.

FIG. 13: (Color online) Comparison of the shearing rate ωs (red squares; rescaled) and the linear

growth rate γ (black stars). The requirement for zonal flow based transport suppression, ωs ≫ γ,

is fulfilled at every point in the ITG-TEM regime.
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FIG. 14: Magnetic shear fluctuations as a function of β. Note that while s̃ always remains smaller

than the global shear, ŝ = 0.786, it still makes for a significant modification.

FIG. 15: (Color online) Linear and nonlinear scaling of the electron magnetic transport with β:

the linear values (black triangles) can be fitted excellently by a straight line, the nonlinear values

(red diamonds) by a quadratic function, as shown here.
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FIG. 16: (Color online) Electron magnetic transport as seen in the simulation (red curve) and as

predicted by a simple model (black curve). One free scalar prefactor was found to be of order

unity.
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