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Introduction and experimental features

In many ICRF heated discharges (hydrogen minority heating) at ASDEX-Upgrade a vari-
ety of fast particle driven modes can be observed. In order to determine their nature and their
possible impact on fast particle transport, a broad set of diagnostics is employed: the Mirnov
coils show clearly the footprints of all electromagnetic modes with finite perturbation at the
plasma edge and allow for a reliable mode number identification. The soft x-ray cameras de-
liver valuable information about the radial mode position. Finally, the energy and the pitch angle
of expelled particles can be directly measured by the fast-ion-loss detector (FILD) diagnostic
allowing to reconstruct possible resonance conditions and the mode amplitude evolution.
During an IRCF power ramp, the toroidal Alfvén Eigenmodes (TAE) with typical mode num-
bersn = 4...7 at typically 200- 280 kHz appear first, indicating that they are the least damped
modes under these experimental conditions. At higher heating power another electromagnetic
mode at about 76 110kHz is observed, a so-called '‘BAE’ [1, 2] or ’sierpes’ [3] mode. At
ASDEX-Upgrade this mode seems to be closely connected with the appearange-df sur-
face and therefore with sawtooth oscillations (see Fig. 2). Its mode numbens=adewith a
dominantm = 4 component and it is located radiallypgol ~ 0.2— 0.4 (SXR reconstruction
with the MHD-IC code [4]). It has been demonstrated that this mode is non-Alfvenic since
neither B-field ramps nor density changes influence the mode frequency. Furthermore, the ap-
pearance of the 'BAE’ mode enhances the FILD-losses induced by the TAE mode [3] suggesting
a possible 'channelling’ effect between the 'BAE’ and the TAE.
As in earlier publications [2], no clear scaling witimly the ion sound speed anly the dia-
magnetic frequencyp. = win+ w1 = m/(eB)ky(On/n)(1+4n) with n = DT—T/% or onlythe
energetic particle drive can be found. Therefore, it was concluded [2] that this mode is a hybrid
mode. This hypothesis is investigated in this paper employing a linear gyrokinetic analysis. In
order to identify the fast-particle-drive mechanism and to interpret the FILD signal non-linear

simulations are also carried out [11].
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Figure 1: g-profile variation|, = 0.9...0.97 and corresponding spectra, BAE eigenfunction
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Figure 2: Mirnov coil spectrogram for the ICRF power ramp up phase of #20488. In the begin-
ning, for low power (1.3 to 1.5s), the mode frequency follows roughly formula (1)

Theoretical Model - linear properties

Employing the compressible MHD model implemented in CASTOR [5] shows (Fig. 1) the
BAE- gap structure and the BAE eigenfunctiona@ftw, = 0.126. Assuming typical plasma
rotation values of- 4kHz translates to this to the experimentally observe@DkHz. Since the
mode peaks close to thee= 1 surface, it'sg-dependence is very weak, as shown in Fig. 1:
for three different equilibia that allow for a changecqpfdue to a sawtooth cycle, but keep the
g = 1 surface radially fixed, almost no change of the gap structure clqsgolt& 0.3..0.4 and
therefore also no change in the mode frequency is found. As a consequence, the varigtion of
cannot explain the mode’s frequency evolution during a sawtooth cycle.

The simplest kinetic dispersion relation for BAE modes [6] is

2
Q’BAE—E%'[Z'FT(“‘ Z—qz)] 1)
whereR; is major radiusy,,, is the thermal speed of the background ions apdTe/T;. It pre-
dicts a mode frequency, that scales wgﬁ', Fig. 2 shows this dispersion relation, where Tpr
the experimental values of an ECE channel close tajthel surface were chosefl (= Te as-

sumed). Reasonable agreement is found only bef&®where the heating power is relatively
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low. Furthermore, even in this early phase, the 'dip’ (that ba up to 40kHz!) of the mode
signal roughly in the middle of a sawtooth cycle cannot be explained with this simple model.

It was pointed out in reference [6] that far ~ w,; ~ wp, the BAE and the kinetic ballooning
branches couple. Furthermore, finfecan lead to unstable continua. Introducing finite Lar-
mor radius and finite orbit width effects discretise these continua leading to unstable so-called
Alfven-ion-temperature-gradient-driven (AITG) modes. At long wavelengths{ ~ 1) and

low frequencies, this branch can be easily excited by energetic ions [7]. The relevant dispersion
relation, originally derived in the ballooning formulation [6] is rederived here for the gyrokinetic
model [8] underlying the eigenvalue code LIGKA [9]. Applying a Fourier-ansatz in the poloidal
coordinate, keeping the+ 1-sidebands, retaining the geodesic curvature and the sound wave

coupling by an appropriate expansion of the propagator integrals, leads to:

Vit N(m_1)? | N(x

w2:2—<—[H(x )+ H(x )}H[ n m+1>2]> @)
R% m-—1 m-+1 D(mel) D(X

m+1)

With Xon = -4 D (Xn) = [1+ I5(xe7m)] YT [1+ I5(xi7m)] N () = Ri(%_ ) — N(xem), B(X) =
(1—2)xZ(x) — Ln <x2+xZ(x)(x2 —1)), 2R(x) = (1— 2) [x2+xz(x)(x2+ %)} —@p [x4+
)+ x20X) (3454 H () = F0y7) + TH (me), () = [ (2= 2)F (xim) = 15 G 0xm)]
2F (%) = XZ(X) (3 432 +3%) + 3 134, 26 (X) = XxZ(X) (3 +X2+ 5 +38) + 2x+x* 48 andZ(x)

the plasma dispersion function. Although obtained in a completely different way, eqn 2 is very

N—

similar (same coefficients) to the ballooning formulation result. However, this derivation serves
as a straightforward way for benchmark purposes and the investigation of geometrical effects.
Solving this equation without expansion by employing a local version of the LIGKA code
allows to map the influence o, , on the mode frequency and the damping rate. The following
parameters are chosen for the time poirg4s: k, ~ nq/ppola ~ 23/m, with a = 0.5m and

Ppol = 0-35, Bigcal < 0.015,wp = 6.7 10°. Fig 3 shows that for growing,p (@ < 0.05w,)

the mode frequency passes through a minimum - regardless if one Rekepesd and varies

W, Or one keepsw,, fixed and varies). This behaviour can explain the frequency 'dip’ (by
about 15%) during a sawtooth cycle where experimentally~ 0.035 andj changes from @

to 3. Also the deviation from formula 1 at later timesl.5s (higher heating power - stronger
gradients - lower frequency) can be explained. However, for very high heating power the mode
character is dominated by the fast particles - as seen in Fig 2 where multiple modes appear just

before the sawtooth crash.
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_ Figure 4: Graphical respresentation of the
Figure 3: mode frequency of the BAE/KBM  resonance conditions for tie= 4 TAE and
branch:w,p andn dependence the BAE mode [11]

Mode Drive

In order to understand the mode drive, the resonance condition), — pw, for the trapped
ICRH ions is mapped by employing an extended version (including the vacuum region and
gyroradius effects on the loss orbits) of the HAGIS code[10, 11]. Fig 4 shows the resonances in
energy and-space for then = 4-TAE and the BAE mode. He&labels the vertical position of
the banana tips & = Rynag Even at low amplitudes the TAE can expell particles viaphe O
and p = 1 resonances at 0.25 and~ 0.9—- 1.0 MeV - in agreement with the FILD signal
[3]: just a small radial displacement can move resonant particles onto loss-orbits (indicated by
circles in fig 4). Furthermore, the BAE mode moves patrticles via=al resonance radially
outwards, enhancing the population of {he- 0 resonance for the TAE and thus increasing its
amplitude. Fig 4 also shows thai80- 0.9MeV ions can be expelled by the BAE itself. Further

guantitative calculations are on the way.
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