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Introduction and experimental features

In many ICRF heated discharges (hydrogen minority heating) at ASDEX-Upgrade a vari-

ety of fast particle driven modes can be observed. In order to determine their nature and their

possible impact on fast particle transport, a broad set of diagnostics is employed: the Mirnov

coils show clearly the footprints of all electromagnetic modes with finite perturbation at the

plasma edge and allow for a reliable mode number identification. The soft x-ray cameras de-

liver valuable information about the radial mode position. Finally, the energy and the pitch angle

of expelled particles can be directly measured by the fast-ion-loss detector (FILD) diagnostic

allowing to reconstruct possible resonance conditions and the mode amplitude evolution.

During an IRCF power ramp, the toroidal Alfvén Eigenmodes (TAE) with typical mode num-

bersn = 4...7 at typically 200−280 kHz appear first, indicating that they are the least damped

modes under these experimental conditions. At higher heating power another electromagnetic

mode at about 70− 110kHz is observed, a so-called ’BAE’ [1, 2] or ’sierpes’ [3] mode. At

ASDEX-Upgrade this mode seems to be closely connected with the appearance of aq = 1 sur-

face and therefore with sawtooth oscillations (see Fig. 2). Its mode numbers aren = 4 with a

dominantm= 4 component and it is located radially atρpol ≈ 0.2−0.4 (SXR reconstruction

with the MHD-IC code [4]). It has been demonstrated that this mode is non-Alfvenic since

neither B-field ramps nor density changes influence the mode frequency. Furthermore, the ap-

pearance of the ’BAE’ mode enhances the FILD-losses induced by the TAE mode [3] suggesting

a possible ’channelling’ effect between the ’BAE’ and the TAE.

As in earlier publications [2], no clear scaling withonly the ion sound speed oronly the dia-

magnetic frequencyωp∗ = ω∗n+ω
∗T = mi/(eB)kθ (∇n/n)(1+η) with η = ∇T

T /∇n
n or only the

energetic particle drive can be found. Therefore, it was concluded [2] that this mode is a hybrid

mode. This hypothesis is investigated in this paper employing a linear gyrokinetic analysis. In

order to identify the fast-particle-drive mechanism and to interpret the FILD signal non-linear

simulations are also carried out [11].
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Figure 1: q-profile variationq0 = 0.9...0.97 and corresponding spectra, BAE eigenfunction
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Figure 2: Mirnov coil spectrogram for the ICRF power ramp up phase of #20488. In the begin-
ning, for low power (1.3 to 1.5s), the mode frequency follows roughly formula (1)

Theoretical Model - linear properties

Employing the compressible MHD model implemented in CASTOR [5] shows (Fig. 1) the

BAE- gap structure and the BAE eigenfunction atω/ωA = 0.126. Assuming typical plasma

rotation values of∼ 4kHz translates to this to the experimentally observed∼ 90kHz. Since the

mode peaks close to theq = 1 surface, it’sq-dependence is very weak, as shown in Fig. 1:

for three different equilibia that allow for a change ofq0 due to a sawtooth cycle, but keep the

q = 1 surface radially fixed, almost no change of the gap structure close toρpol = 0.3..0.4 and

therefore also no change in the mode frequency is found. As a consequence, the variation ofq

cannot explain the mode’s frequency evolution during a sawtooth cycle.

The simplest kinetic dispersion relation for BAE modes [6] is

ω2
BAE =

v2
thi

R2
0

[7
4

+ τ(1+
1

2q2)
]

(1)

whereR0 is major radius,vthi is the thermal speed of the background ions andτ = Te/Ti. It pre-

dicts a mode frequency, that scales with
√

Ti. Fig. 2 shows this dispersion relation, where forTi

the experimental values of an ECE channel close to theq = 1 surface were chosen (Ti = Te as-

sumed). Reasonable agreement is found only before 1.5s where the heating power is relatively
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low. Furthermore, even in this early phase, the ’dip’ (that can be up to 40kHz!) of the mode

signal roughly in the middle of a sawtooth cycle cannot be explained with this simple model.

It was pointed out in reference [6] that forω ∼ ωti ∼ ωp∗ the BAE and the kinetic ballooning

branches couple. Furthermore, finiteη can lead to unstable continua. Introducing finite Lar-

mor radius and finite orbit width effects discretise these continua leading to unstable so-called

Alfven-ion-temperature-gradient-driven (AITG) modes. At long wavelengths (kθ ρE ∼ 1) and

low frequencies, this branch can be easily excited by energetic ions [7]. The relevant dispersion

relation, originally derived in the ballooning formulation [6] is rederived here for the gyrokinetic

model [8] underlying the eigenvalue code LIGKA [9]. Applying a Fourier-ansatz in the poloidal

coordinate, keeping them±1-sidebands, retaining the geodesic curvature and the sound wave

coupling by an appropriate expansion of the propagator integrals, leads to:

ω2 = 2
v2

thi

R2
0

(

−

[

H(xm−1)+H(xm+1)
]

+ τ
[N(xm−1)

2

D(xm−1)
+

N(xm+1)
2

D(xm+1)

]

)

(2)

with xm = ω
k‖,mvth

, D(xm) =
[

1+ D̃(xe,m)
]

+τ
[

1+ D̃(xi,m)
]

, N(xm) = Ñ(xi,m)− Ñ(xe,m), D̃(x) =

(1− ω∗
ω )xZ(x)− ω∗

ω η
(

x2+xZ(x)(x2
−

1
2)
)

, 2Ñ(x) = (1− ω∗
ω )
[

x2+xZ(x)(x2 + 1
2)
]

−
ω∗
ω η
[

x4+

x2

2 )+xZ(x)(1
4 +x4)

]

, H(xm) = H̃(xm,i)+ τH̃(xm,e), H̃(xm) = 1
2

[

(1− ω∗

ω )F̃(xm)−η ω∗

ω G̃(xm)
]

,

2F̃(x) = xZ(x)(1
2 +x2+x4)+ 3x2

2 +x4, 2G̃(x) = xZ(x)(3
4 +x2+ x4

2 +x6)+2x+x4+x6 andZ(x)

the plasma dispersion function. Although obtained in a completely different way, eqn 2 is very

similar (same coefficients) to the ballooning formulation result. However, this derivation serves

as a straightforward way for benchmark purposes and the investigation of geometrical effects.

Solving this equation without expansion by employing a local version of the LIGKA code

allows to map the influence ofω∗p on the mode frequency and the damping rate. The following

parameters are chosen for the time point 1.34s: kθ ≈ nq/ρpola ≈ 23/m, with a = 0.5m and

ρpol = 0.35,βlocal ≈ 0.015,ωA0 = 6.7 ·105. Fig 3 shows that for growingω∗p (ω∗n < 0.05ωA)

the mode frequency passes through a minimum - regardless if one keepsη fixed and varies

ω∗n or one keepsω∗n fixed and variesη. This behaviour can explain the frequency ’dip’ (by

about 15%) during a sawtooth cycle where experimentallyω∗n ∼ 0.035 andη changes from 0.2

to 3. Also the deviation from formula 1 at later times> 1.5s (higher heating power - stronger

gradients - lower frequency) can be explained. However, for very high heating power the mode

character is dominated by the fast particles - as seen in Fig 2 where multiple modes appear just

before the sawtooth crash.
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Figure 3: mode frequency of the BAE/KBM
branch:ω∗p andη dependence
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Figure 4: Graphical respresentation of the
resonance conditions for then = 4 TAE and
the BAE mode [11]

Mode Drive

In order to understand the mode drive, the resonance conditionω −ωD− pωb for the trapped

ICRH ions is mapped by employing an extended version (including the vacuum region and

gyroradius effects on the loss orbits) of the HAGIS code[10, 11]. Fig 4 shows the resonances in

energy andZ-space for then= 4-TAE and the BAE mode. HereZ labels the vertical position of

the banana tips atR= Rmag. Even at low amplitudes the TAE can expell particles via thep = 0

and p = 1 resonances at∼ 0.25 and∼ 0.9− 1.0 MeV - in agreement with the FILD signal

[3]: just a small radial displacement can move resonant particles onto loss-orbits (indicated by

circles in fig 4). Furthermore, the BAE mode moves particles via ap = 1 resonance radially

outwards, enhancing the population of thep = 0 resonance for the TAE and thus increasing its

amplitude. Fig 4 also shows that 0.8−0.9MeV ions can be expelled by the BAE itself. Further

quantitative calculations are on the way.
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