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1. Introduction

It is known that the anomalous transport in fusion devices is governed by gradient-driven in-

stabilities and is characterised by an offset linear dependence of the heat and particle fluxes on

the corresponding gradients. The dependence is very strong so that a small increase in gradients

causes a huge enhancement of fluxes thus giving rise to the so called stiff transport. This feature

makes the standard numeric schemes that imply Fick’s law of diffusion strongly unstable and

leads to extremely small time steps in transport simulations. A modification of the standard finite

difference scheme was recently suggested [1] that eliminates this kind of numerical instability.

It has been shown that the time step for stiff transport models can be increased by several orders

of magnitude. Generalisation to more advanced numeric schemes and to a system of parabolic

equations is straightforward.

On the other hand, this scheme modification introduces an additional numerical error that dis-

appears at the steady state but can noticeably affect the run flow in transient processes. Although

the two requirements, the numerical stability and the numerical accuracy, are compulsory for

any numerical scheme they can be considered independently because they are well separated in

physical meaning and in numerical restrictions. Stability, as the most limiting of the two factors,

was in details considered in our previous paper [1]. In this presentation we concentrate on the

numerical accuracy, the issue that has not been properly addressed in [1].

2. Problem of stability and the numerical scheme

For a stiff transport there are two different limits on the simulation time stepτ imposed by

the stability and accuracy requirements. The two limits are essentially independent and a gap

between those is so large that lifting the stability restriction allows to increase the time step by

three or more orders of magnitude before the accuracy problem comes to the fore. Nevertheless,

at some point the accuracy restriction comes into play and it becomes necessary to evaluate all

possible negative consequences of the spoiled numerical accuracy. In [1], all practical calcula-

tions have been done for the realistic tokamak configuration with the GLF23 transport model [2]

and it was demonstrated that the numerical stability can be drastically improved when an addi-

tional small term is added to the standard numerical approach. The general consideration was

possible because the numerical instability cannot remain invisible. Once it appears it prevents

any kind of reasonable modelling and at the developed phase destroys the run. In opposite,

insufficient numerical accuracy is not that obvious therefore we will study the numerical errors

making use of a simplified model problem.
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Consider the simplified quasi-cylindrical diffusion equation for the functionu = u(x, t)
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∂
∂x

(
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∂u
∂x

)

+S, D = D0+Dan = D0+

{

D1u(η −ηcr) , if η ≥ ηcr,

0, if η < ηcr.
(1)

Here,u is a generic plasma parameter as density, temperature, etc.,D = D(x,u,ux) is the dif-

fusion coefficient andS= S(t,x,u) is a source term. The fluxq = −Dux = q0 + qan includes

the [neo]classical and anomalous parts. We introduced a logarithmic gradientη = −ux/u of the

quantityu so thatq = uDη . The anomalous fluxqan is related to a gradient driven instability

whereηcr an instability threshold. This model equation Eq.(1) possesses all characteristic prop-

erties of the stiff transport and will be used below to elucidate main numerical properties and

difficulties.

As a numerical scheme we employ a simple backward differencing in time and second order

central difference in space with the accuracyO(τ )+O(h2), τ andh being the time and space

grid sizes respectively. For a non-stiff transport the scheme gives reasonable results for the time

step of order 10−2a2/D ≈ 10−2 s. If the scheme is applied for a typical stiff problem then the

time steps drops to 10−5 s or lower making this way of simulation impracticable.

In [1], it was proposed to add an auxiliary flux in Eq.(1) so that

q = qcl +qan+qaux, qaux = Vauxu−Dauxux, Vaux = Daux
ux

u
. (2)

Difference representation of the fluxqaux is done in such a way that the two underlined terms

in are approximated implicitly and all other terms explicitly. The scheme modification means

that the same term is added as a diffusion and subtracted as an advection. Differentially, the net

flux qaux is identically equal to zero for arbitraryDaux. Its numerical implementation is nonzero

and produces strong stabilising effect that is explained in Fig. 1(b). The new scheme implies the

flux dependence that is shown by the dashed line. IfDaux is large enough then the slope of the

dashed line is higher than that of the physics dependenceq(η ) (solid line in Fig. 1(b)) and the

numerical process becomes stable.

There is an alternative way to get a similar stabilising effect. One can add the diffusion term

(Dauxux)x to Eq. (1) implicitly and subtract it as a source (explicitly). In order to distinguish

the both approaches we shall call them DA (diffusion–advection) and DS (diffusion–source)

schemes. As mentioned above the modified schemes allow to increase the time step by a factor

of up to 104 without any evidence of the instability. The time step enhancement grows rapidly

with increasingDaux. However, it is clear that a penalty for the improved stability is a loss of

accuracy.

3. Numerical accuracy

Making the Taylor expansion of the different numerical approximations of Eqs. (1),(2) one can

find numerical error introduced by the both schemes. The errors can be represented as fluxes

qerr
DA = −τDauxu(lnu)xt +O(h2)+O(τ 2), qerr

DS = −τDauxuxt +O(h2)+O(τ 2), (3)
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or as sourcesxSerr = (xqerr)x. The expressions (3) show that modification (2) is equivalent to

adding a higher order space-time derivative with a small factorτ in front of it. Having in mind

that the numerical instability manifests itself as short-wave oscillations with the opposite signs

in the adjacent grid cells one can understand that the additional terms suppress these parasitic

modes and thus produce a stabilising effect.

By approaching a steady state, the errors (3) vanish although the numeric scheme remains

stable. This property is very useful for parametric studies and for scenario assessment when only

a steady state solution is of interest. On the other hand, all transient processes can be appreciably

affected by the error. Therefore, control of the instant error is necessary for evaluating the quality

of the computation. For a simple and straightforward evaluation of the error one can compare

Serr with the actual source termS in Eq. (1). This gives a rough estimate of the disturbance

introduced due to the numerical error.
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Fig. 1. Time evolution of the functions u(t,x) (a), diffusion coefficient D(t,x) (b). The local error

in the source form Serr is shown in (c), (e) and (g). The same quantity in the form of flux (i.e.

integrated over x is shown in (d), (f), and (h), respectively. Radial profiles are shown for the times

t = τc/3 (blue), t= τc (red), t= 5τc (black). Green curves show the function S and its integral q.

Fig. 1 illustrates the discussed behaviour. It shows profiles ofu(t,x), D(t,x) and numerically

introduced errors calculated with Eq.(1). HereD0 = 0.1, D1 = 1, ηcr = 1, S(x) = 4exp(−x2).

In order to simulate the internal transport barrier (ITB) the anomalous transportDan was set to

zero in the range 0.6 < x < 0.7. In all calculations the spatial grid of 100 cells was used and

the time stepτ was fixed atτ = 10−2. The quantityDaux was taken in the formDaux= Cu(t,x).

The greater is the multiplierC, the stronger is the stabilising effect and the larger time step

is possible. Moreover, above a certain value ofC the computations become unconditionally

stable [1]. On the other hand, Eq.(3) shows that the error grows with bothC andτ . Therefore,

minimisation of the error requires to minimise the productτDaux. In our example, the constant

multiplier C = 0.5 has been selected as the minimum value that provides a stable solution of

Eq.(1) with the given time stepτ = 10−2. For comparison: atDaux = 0, the stability condition

limits the time step to a much smaller valueτ = 5×10−5.

The time evolution is shown starting at the timet = τc/3 whereτc is the confinement time

calculated at steady state. At this time the numerical errors reach maximum value and then
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drop to zero at steady state (Fig. 1(c-h)). Figures 1 (a), (b),(c) and (d) show the DA algorithm,

(e) and (f) the DS algorithm. As mentioned, in both cases the same value ofDaux = 0.5u was

applied. For the model (1), the DA algorithm (c-d) produces noticeably smaller errors then the

DS algorithm (e-f). However, it does not mean that the latter is of no use. Indeed, it is seen that

in the rangex < 0.6 the quantitySerr has different signs for different algorithms. This suggests

an idea to use a linear combination of the both in order to minimise the error.

The next remark is that the error is especially large in the ITB domain. This observation

is of no surprise because no correction is needed in the range whereDan = 0. The combined

algorithm has been constructed where DA and DS corrections are used in the proportion 3:2 and

both are suppressed in the interval 0.6< x< 0.7. The results are shown in Fig. 1 (g-h). It is seen

that for this particular case the numerical error can be reduced to a negligible level. However, in

Fig. 1 (g) one can see an oscillatory behaviour ofSerr at x = 0.6. This is typical for a boundary

layer where a strong variation ofD (or Daux) takes place.

It should be noted that a realistic case, where the stiffness depends on the gradient,D1 =

D1(η ), may be much more complicated. Sometimes one can see intermittent bursts of this

instability or it exists continuously but stays local. An unstable feedback can develop when the

boundary point jumps to the next grid node and back. When the instability threshold is exceeded

by a larger margin the local short-wave perturbation can expand and affect a wider zone. All

types of this unstable behaviour affect the accuracy of the solution and can distort formation or

evolution of ITBs. In this situation usage of stepwiseDaux as in Fig. 1 (g-h) does not help. In

practical modelling, most reliable results have been always obtained with a constant or weakly

varyingDaux. IncreasingDaux suppresses the oscillations but increases the error.

As discussed the choice ofDaux andτ depends on the two contrary conditions: stability and

accuracy. However, there is a practically significant case when the second condition does not

play a decisive role. If the final goal of computation is the steady state then the numerical error

during the transient phase can be ignored and it is only needed to check if the error (3) drops to

the acceptable level at the end of the run.

Working at the stability threshold is potentially dangerous because this type of numerical

instability has some unusual features. Specific aspect of it is that once the instability arises it

can be seen first on the gradientux. Only at a high enough amplitude it affects also the function

u. If an automated time step control is based on the behaviour ofu it can interactively sustain

the instability near (above) the threshold whenu seems to be unaffected butux exhibits a low

level noise. As a matter of fact, this visibly smooth and unspoiledu can be wrong becauseDan

amplifies all uncertainties inux. Even if a noise inux has zero mean deviation it can be not the

case for the averageDan. An influence onu is then unpredictable. This and some other open

issues related to the stiff transport require a thorough study of the numerical schemes in relation

with particular transport models.
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