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Experimental results suggest that the particle transport in tokamaks, which is usually domi-

nated by ITG and TEM driven turbulence, depends on the collisionality [1]. In the collisionless

limit, numerical simulations of ITG-mode driven turbulence give an inward particle flux, both

in fluid, gyrofluid and gyrokinetic descriptions. The inward flow is mainly caused by magnetic

curvature and thermodiffusion. However, nonlinear gyrokinetic calculations show that even a

amount of finite collisionality strongly affects the magnitude and sign of the particle flux [2].

The inward particle flow obtained in the collisionless limit is rapidly converted to outward flow

as electron-ion collisions are included. The present paper addresses the collisionality depen-

dence of the quasilinear flux due to ITG and TE-modes.

Perturbed electron density response

We consider an axisymmetric, large aspect ratio torus with circular magnetic surfaces. The

nonadiabatic part of the perturbed distribution function of speciesa is given by the linearized

gyrokinetic equation, [3]

v‖
qR

∂ga

∂θ
− i(ω−ωDa)ga−Ca(ga) = −i

ea fa0

Ta

(

ω−ωT
∗a

)

φJ0(za), (1)

whereθ is the extended poloidal angle,φ is the perturbed electrostatic potential,fa0 is the equi-

librium Maxwellian distribution function,ωDa = −kθ

(
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(cosθ +sθ sinθ)/ωcaR is

the magnetic drift frequency,ωT
∗a = ω∗a [1+(w/Ta−3/2)ηa], ηa is the ratio of the density

and temperature scale lengths,w = mav2/2 is the kinetic energy,ω∗a is the diamagnetic fre-

quency,ωca = eaB/ma is the cyclotron frequency,J0 is the Bessel function of order zero and

za = k⊥v⊥/ωca, and the rest of the notation is standard.

The collisions are modeled by a pitch-angle scattering operatorCe = νe(v)2ξ /B∂λ ξλ∂λ ,

whereνe(v) = νT/x3, x = v/vTe, ξ = v‖/v andλ = µ/w with µ = mav2
⊥/2B. If the electron

distribution is expanded asge = ge0+ge1+ ... in the smallness of the normalized collisionality

ν∗e = νe/εωb ≪ 1 andω/ωb ≪ 1, whereωb is the bounce frequency, then in lowest order we

have∂θge0 = 0. The circulating electrons can assumed to be adiabatic, while in the trapped
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regionge0 is given by the constraint obtained from the next-order equation
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iνe
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= −e〈φ〉

Te
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where〈. . .〉 is the orbit average,〈ωDe〉 = ωD0 [E/K−1/2+(2rq′/q)(E/K +κ −1)], with

ωD0 =−kθv2/ωceR,Ĵ = E(κ )+(κ −1)K(κ ), τ̂B = K(κ ), andE andK are the complete elliptic

integrals with the argumentκ = (1−λ B0(1− ε))/(2ελ B0).

We introduce a parameterν̂ ≡ νe/(ω0ε), whereω0 = ω/y, y = σ + iγ̂, σ = sign(ℜ{ ω})
denotes the sign of the real part of the eigenfrequency andγ̂ = γ/ω0 is the normalized growth

rate. The equation forge0 is
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whereS= −e〈φ〉
Te
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∗e
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fe0. The perturbed electrostatic potential is approximated by

φ(θ) = φ0(1+ cosθ)/2[H(θ +π)−H(θ −π)], whereH is the Heaviside function and then

〈φ〉 = φ0E(κ )/K(κ ).

In the limit of weak collisionality,ν̂ ≪ 1, the WKB solution of the homogeneous part of

the equation can be derived. To make further progress analytically we need to approximate the

elliptic functions with their asymptotic limits for small arguments, as was done in Ref. [4, 5].

Having calculated the inhomogeneous solution by means of variation of parameters, using the

weak collisionality assumption for further simplification, taking the boundary conditions from

regularity and continuity properties we can obtain an approximate solution for the perturbed

distribution [5]. The above analysis is not valid in a small boundary layer atκ ≃ 1. The effect

of the boundary layer reduces the collisional term, with a factorπ/2
√

logν̂−1/2, which is less

than 20% in practice, and in the following analysis this will be neglected.

Quasilinear particle fluxes

The non-adiabatic part of the perturbed trapped electron density can be obtained by taking

an integral in velocity space that can be evaluated in terms of2F0 hypergeometric functions. In

order to derive simple expressions for the quasilinear particle fluxes, it is instructive to expand

in the limit of smallω̂D = ωD0/ω0 and smallγ̂, keeping terms to the first order. Introducing

ω̂Dt = ω̂D/x2, ω̂∗e = ω∗e/ω0 andν̂t = ν̂x3, we obtain the quasilinear particle flux due to ITG
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In the absence of collisions, the flux is inwards if the curvature and thermodiffusive fluxes

dominate over diffusion. If collisions are included, the particle flux may be reversed, if the part

of the flux that is dependent on the collisionality is positive. This reversal happens for instance

for ω̂Dt = 0.6 andηe = 3, see Fig. 1/a (red, dotted curve).

However, if the ITG-instability growth rate is weak (γ̂ ≪ 1) andηe is large enough, the

situation is completely different. Figure 1/c shows the normalized quasilinear electron flux for

the same parameters as in Fig. 1/a, but forγ̂ = 0.1, representing a case close to marginal stability.

The term proportional to the
√

ν̂t will change sign and now this will also lead to an inward flux.

If the magnetic drift is high enough to give an inward flux for zero collisionality, then collisions

will enhance this and the flux will therefore never be reversed. If the magnetic drift is very

small, the flux is outwards for̂νt = 0. Then collisions may reverse the sign of the flux, but now

from outwards to inwards.

The quasilinear flux driven by TEM modes is
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There are two main differences compared with the ITG driven flux. First, the part of the flux that

is driven by the curvature has opposite sign compared with ITG, and therefore contributes to

the outward flux instead of driving an inward pinch. Second, the part of the flux that arises due

to collisions is different and may have opposite sign compared with the ITG case, depending

on parameters. Figure 1/b shows the normalized quasilinear flux for three differentω̂D if the

plasma is far from marginal stability (γ̂ = 0.7) and Fig. 1/d shows the same forγ̂ = 0.1.

Starting from the gyrokinetic equation for the electrons but instead modeling the collisions

by an energy-dependent Krook operator givesge0 = −eφ0

Te

ω−ωT
∗e

ω−〈ωDe〉+ iνeff
fe0, whereνeff =

νT/εx3.
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The velocity-space integral of the perturbed electron distribution can be used to determine

the quasilinear flux. If the plasma is far from marginal stability, the results for the pitch-angle

scattering and Krook operator are qualitatively same, as shown in the upper figures of Fig. 1.

However, as the lower figures in Fig. 1 show, as we approach marginal stability, the form of the

collision operator matters more and more (mainly for ITG), and both the sign and the magnitude

of the flux may be very different.

Figure 1: Normalized quasilinear electron flux as function ofnormalized collisionality forω̂∗e=

1, ηe = 3. ITG (a, c), TEM (b, d). Red curves: pitch-angle scattering operator, black curves:

Krook operator.ω̂Dt is 0 (solid), 0.2 (dashed), 0.6 (dotted).γ̂ is 0.7 (a, b), 0.1 (c, d)
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