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Introduction: The competition between drift wave and interchange physics plays a central role

in the tokamak edge turbulence dynamics. They provide the mechanisms by which the thermal

free energy is transferred from the background thermal gradient to the turbulent fluctuations.

Whichever one dominates, for a given set a plasma parameters, will impose its character on the

turbulence. At moderate plasma β and drift wave collisionality, the drift wave character prevails

due to the effectiveness of the nonlinear vorticity advection, through which the self-sustained

drift wave turbulence is able to scatter the structure of the linear instabilities apart before they

can grow to become important [1]. As the collisionality is raised, the turbulence evolves into

larger ballooning structures, for which the vorticity scattering is less effective, leaving room for

the interchange effects to take over, and a gradual transition into resistive ballooning dynamics

occurs. We assess the impact of the proximity to an X-point on this threshold, by means of

turbulence computations, using both an S-α geometry and a simplified X-point geometry [2].

Model: The electromagnetic gyrofluid GEM [3] in its isothermal variation was used. The cor-

responding local (no zonal profile evolution) equations are, in gyro-Bohm normalised units [3]
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for the the guiding centre density and parallel velocity for each species z, connected through the

equations governing the induction (Ampère’s law) and the polarisation
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(for singly charged plasmas) in which Γ0(b) = I0(b)e−b and I0 = J0(ib) is a modified Bessel

function. The state variables are the electrostatic potentials (φ̃z = Γ
1/2
0 φ̃ ) and densities (ñz)

and the flux variables are the particle parallel velocities (ṽz‖), where τz = Tz/(ZTe) and µz =

Mz/(ZMi) (Z – charge number). The nonlinearities are represented by the square brackets which

correspond to Poisson brackets in this field aligned formulation, where {x,y,s} are the radial,

toroidal and poloidal directions, respectively. The curvature operator represents the only toroidal

35th EPS Conference on Plasma Phys. Hersonissos, 9 - 13 June 2008 ECA Vol.32D, P-5.039  (2008)



effect of the S-α geometry and is expressed by K = ωB(sins∂x +coss∂y) for shifted metric [4].

The cold-ions limit Ti → 0 is invoked within this work for the sake of simplicity to make the

X-point effects more transparent. In practice this makes for Γ0 → 1 and (Γ0−1)/τi → ∇2
⊥/B2.

Figure 1: Geometrical quantities needed for the flux tube turbulence model. Both S-α (thin line) and

X-point (dotted line) cases shown. Only s-coordinate dependence is kept. The X-point is at s ≈ −π/2,

where the local shear shows a distinct peak, and the outboard side at s ≈ 0.

Setup: Two different geometry models were used, namely, a standard S-α model, and an an-

alytical model which patches circular and hyperbolic magnetic flux surface contours together

to mock-up an X-point like singularity. It is noteworthy that, even though the local version of

the turbulence model has been used here, both geometrical models allow for a self-consistent

treatment of the MHD equilibrium that comes into play whenever the profiles of the dependent

variables are evolved in time [2, 5]. The relevant quantities are depicted in Fig. 1. The nominal

plasma parameter chosen are representative of a modern tokamak edge plasma,

ε̂ = 18350, µ̂ = 5.0, β̂ = 1, C = 2.55, ŝ = 1.0 (magnetic shear)

τi = Ti/Te = 0, L⊥ = LT = Ln and ωB = 2L⊥/R = 0.05

which correspond roughly to the physical quantities: T0 = 70eV, n0 = 1.6× 1013cm−3, Mi =

3670me, R = 165cm, a = 50cm, L⊥ = 4.1cm, B = 2.0T and q = 3.4. A scan in resistivity, which

amounts to changing the values of T0,n0 while keeping the remaining parameters fixed, was

made within the set ν ∈ {1,2,5,10,20,50,100,200} with C = 2.55ν . The grid count was 32×

128×16 in {x,y,s} for all the cases with S-α geometry and with double number of nodes in the

s-direction for the X-point geometry, to resolve the higher degree of structure in that case (see.

Fig. 1). The necessary sub-grid dissipation was yield by using a perpendicular hyperviscosity
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of 0.01 and parallel viscosity of 0.01 (0.005 for the X-point case).
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Figure 2: Volume averaged (left) electron particle flux and (right) amplitude ratio (φ̃ 2/2)/(ñ2
e/2) (for

ky 6= 0 only) averaged within the turbulent saturated phase, 1000 ≤ t/(L⊥/cs) ≤ 3000, vs. resistivity.

Results: The two integral quantities shown in Fig. 2, namely, the electron particle flux and the

ratio of the squared amplitudes of φ̃ and ñe are of particular relevance to assess the competi-

tion between drift wave and interchange physics. The plot on the right side shows the typical

behaviour for the S-α case, namely, the energy contained in φ̃ and ñe is similar for moderate

resistivity 1 < ν < 10, a typical signature for drift wave turbulence. For higher resistivities, φ̃

gets stronger as the resistive coupling to the density mediated by the parallel currents (nonadi-

abadicity) weakens (J̃‖ = C−1∇‖(ñe − φ̃)), leaving only the interchange effects, via curvature,

to transfer energy between them. This accounts for the increased transport (Fig. 2-left) as the

phase shift between ñe and φ̃ increases towards the ideal interchange value π/2 (diagnostic

measured by not shown here), for which transport is maximal. The X-point case shows also a

similar trend in transport based on similar grounds, but it further shows an overall lower trans-

port level, which can be attributed to the enhancement effect on nonlinear breaking of vortical

structures due to the sharp increase in the local shear [6] associated with the X-point (Fig. 1).

Nevertheless, the picture gets more involved in this case, as also the variation of B2 amplitude

along the field lines (Fig. 1) plays an important role by affecting the polarisation drift dynamics

since a stronger vorticity is allowed (Ω̃ = ∇2
⊥φ̃/B2). One would then expect this to contribute

also to an higher degree of coupling between φ̃ and ñe, mediated by the currents (J̃‖), based on

the fact an higher vorticity yields higher nonlinear polarisation drift, which then leads to higher

parallel currents available to balance it and maintain quasi-neutrality. The values for the squared

amplitudes ratio (Fig. 2-right) for the X-point case support this picture. The curve starts to rise

significantly only for ν > 50, whereas this happens earlier (ν > 20) in the S-α case. Still to be

investigated in detail is the role of the remaining geometrical quantitities using control tests, by

selected ones are reverted back to the S-α values to infer on their isolated effect.

More detailed assessment of the energy transfer paths between the background density gra-

dient and the turbulence via drift wave and interchange processes is possible by diagnosing the
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E ×B energy theorem for each toroidal mode number l, given by
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where the sums are over the all the Nx and Ny grid nodes in (x,s) directions, and the cold-ions

approximation was used (vorticity is Ω̃ = ñe − ñi). Fig. 3 shows the results. The left most plot

Figure 3: E ×B transfer spectra for S-α geometry (left) ν = 5, (centre) ν = 20 and (right) X-point

geometry and ν = 20, all averaged over the interval 1000 ≤ t/(L⊥/cs) ≤ 3000, for (e) vE ·∇Ω̃; (j) ∇‖J̃‖
and (k) K(ñe). The modulus of each transfer term has been is taken because one is not interested in the

direction (direct or inverse) of the energy transfer, but rather on the total amount transferred.

(ν = 5) shows a typical drift wave regime, where the nonlinear polarisation drift (vE ·∇Ω̃) is

the largest term, followed closely by the nonadiabadicity (∇‖J̃‖), indicating that the drift wave

physics provide the main channel for energy transfer in this case. The interchange forcing term

(K(ñe)) is subdominant and can not account for the level of nonadiabadicity measured. As ν

increases, the picture starts to change and the interchange forcing becomes more important

(centre plot). Then, also the spectra shifts to lower ky’s as larger ballooning structures due to the

interchange physics becoming more important. The last plot shows the ν = 20 case with X-point

geometry, where one sees 1) the interchange forcing is less important than for corresponding

S-α case (it is actually closer to the S-α case with ν = 5) and 2) that less energy content is

available for the lower ky’s, due to the local shear decorrelating effect. The main ideas presented

are also supported by other mode structure diagnostics not shown here due to space constraints.

In sum, it has been shown that the X-point has a stabilising geometrical effect on turbulence,

by limiting the size that the turbulent vortices can reach. This, together with the changes in the

nonlinear polarisation drift, seems to has an effect of delaying the transition from drift wave

into interchange turbulence. Extension of this work with the control test cases on the geometry

and inclusion of warm-ions is foreseen.
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