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Gyrokinetic computation with particle-in-cell [1, 2, 3, 4] and phase space grid [5, 6, 7, 8]

models has been very current for tokamak core turbulence, following developments in the mod-

ern version of the theory from late 1980s [9, 10] to present [11]. The theory is for “total-f” (or

“full-f”) models carrying the entire distribution function as a dependent variable, while most of

the applications are for “delta-f” models studying small-amplitude microturbulence on a pre-

scribed background. Recently, total-f models are also emerging [12, 13]. The delta-f version

with collisions and non-ballooning coordinates is also being used with edge turbulence [14].

Various efforts for total-f computation of edge turbulence are still in development. One of the

major hurdles is the necessity found by electromagnetic gyrofluid global models to carry the

entire MHD equilibrium including neoclassical flows as part of the dependent variables [15].

An essential part of this is the demonstration of the global geodesic Alfvén oscillation as part

of the dynamics. In an artificial initial state, a perfectly one-dimensional (radial) dependence of

all dependent variables (the “zonal” components) results in a diamagnetic current with a finite

divergence caused by geodesic curvature. In the absence of a parallel current, the polarisation

current provides divergence balance. This represents a temporal rise in the initially absent ExB

vorticity. The resulting parallel electric field then drives a parallel current, in turn whose di-

vergence acts as a restoring force. These pieces combine in an Alfvén oscillation between the

sinθ electrostatic potential and cosθ parallel current. Dissipation of the oscillation leaves the

parallel current in its equilibrium state: the Pfirsch-Schlüter current. Ampere’s law gives the

parallel cosθ magnetic potential representing the Shafranov shift. All of the aforementioned

components are axisymmetric. Ordinarily, this would be a neglected component, but the turbu-

lence drives “zonal flows” (the ExB flows resulting from the zonal potential) through Reynolds

and Maxwell stresses which also knock the currents slightly out of equilibrium. Dissipation of

these forms a significant dissipation channel for zonal flow energy, and even local delta-f mod-

els have to treat these processes [16]. The added difficulty for any total-f model is that the zonal

diamagnetic current now results from the dependent variable, which includes the pressure pro-

file. Changes in the profile lead to changes in the current balances, which must include the total

Pfirsch-Schlüter current. Even if large amplitude oscillations are avoided by slowly increasing

the pressure gradient to its prescribed level during an initialisation, the physics of the global

geodesic Alfvén oscillation remains, and the numerics must be able to treat it.
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The total-f gyrokinetic equation results from a Lagrangian which describes the particles and

also the self consistent field potentials [17, 18]. The polarisation and induction equations for

these potentials also result from the same Lagrangian, as does the global energy which is con-

served. The Lagrangian is derived using Lie transform techniques; we follow the version used

by Hahm [9] but with the parallel magnetic potential also present [10]. The polarisation is some-

what simplified, retaining the dominant ExB energy contribution. In this work the emphasis is

on the equilibrium, so gyroaveraging is neglected and long-wavelength forms are used in the

polarisation terms. The Lagrangian is

L = ∑
sp

∫
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[(e
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)
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where the Hamiltonian, generalised potential, and squared ExB velocity are
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and the parallel velocity functional and perturbed magnetic field strength are given by
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with dV anddW the space and velocity space volume elements, anddΛ = dV dW is the phase

space volume element. The sum is over species andm ande are the mass and charge of each

species. The resulting gyrokinetic equation is
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whereF = (∇A) −(∇A) T andB∗ = B− pz(c/e)∇ ·(F/B) andB∗
‖ = b ·B∗. Here we approximate

F ≈ (RB/I)F0 with I = R0B0 a constant and∇ ·F0 = 0, so thatB∗
‖ = B. We assume arbitrarily

weak collisionality so that the collision operatorC consists of hyperdiffusion inpz ands (actual

collisions are to be implemented later). The spatial coordinates{x,y,s} describe a unit-Jacobian

Hamada global field-aligned system [19], so thatdV = dxdyds. The velocity space grid is

on {pz,µ} so thatdW = 2πm−2Bd pz dµ. The self consistent field equations resulting from

variation ofL with respect toφ andA‖ are

∑
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∫

dW

[

e f + ∇ ·
f mc2

B2 ∇ ⊥φ
]

= 0 ∇ 2
⊥A‖ +

4π
c ∑
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∫

dW eU f = 0 (5)

giving quasineutral polarisation and shear-Alfvén induction, respectively (note here thatU in

the integral also involvesA‖). Eqs. (4–5) are solved using 4th-order Arakawa Jacobians [20]

and a Karniadakis time step [21], and standard tri-diagonal methods for the field potentials.
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Figure 1:(left) Evolution of the magnetic energyEB during the initial phases of the global geodesic

Alfvén oscillation. (center) On a longer time scale, the Alfvén oscillation decays through electron Landau

damping. (right) The ExB energyEE exhibits the geodesic acoustic oscillation, which decays through ion

Landau damping. The field energies grow following changes in the ion pressure profile.

In the computations described here only the axisymmetric dynamics is considered hence

∂/∂y = 0, with x ands representing enclosed flux surface volume and unit-cycle poloidal an-

gle. The domain is 0.85< ra < 0.99 with ra = (x/xmax)
1/2. The coordinate geometry is cir-

cular concentric, with the Shafranov shift occurring in the dependent variables, and|∇ ⊥φ|2 is

approximated bygxx(∂φ/∂x)2. The standard case is initialised using a Maxwellianf0(n,T )

and profile functionp f = (1/6)sin[π(r0 − ra)/0.14], with n = 3× 1013cm−3exp[p f (x)] and

T = 200eVexp[3p f (x)] set equally with both species, withr0 = 0.92 and massesme for elec-

trons andMD = 3670me for deuterium ions. The major radius wasR = R0 + raa0cosθ with

R0 = 165cm and minor radiusa0 = 50cm, and the magnetic field was set such thatBR = B0R0

with B0 = 2.5T andq = 1.5+2.5r2
a. The global geodesic Alfvén oscillation proceeds naturally,

with time evolution of the magnetic energy given in Fig. 1. On a slower time scale, the ExB

energy exhibits geodesic acoustic oscillations, which damp quickest for lowerra hence lower

q, with the oscillations at the outer boundary lasting about twice as long. The energy pieces are

respectively given by
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The collisionless Landau damping dissipates all the oscillations, and the equilibrium into

which fe and fi fall has the expected neoclassical structure, as shown in Fig. 2. The zonal

profile φ(r) follows the expected force balance relation, withnee∇ rφ + ∇ r pi approximately

vanishing. In addition (not shown), the parallel current is in its expected state with the Pfirsch-

Schlüter cosθ piece dominant. This state stops evolving when the ion distribution function stops

readjusting (quantitative analysis of this requires collisions). Further development of this model

will add collisions and turbulence, for a comprehensive description of the tokamak edge. One
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Figure 2:After all the oscillations have decayed away the zonal potential profile is in equilibrium with

the ion pressure, given by the density and temperature

outstanding issue is the need to dynamically align the grid to the flux surfaces [15]. It is not yet

clear how to do this in a total-f setting whereA‖ appears nonlinearly in the trapping dynamics.
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