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Abstract

The validity of Shkarofsky’s dielectric tensor is extended by taking the strictly weakly relativistic

limit and removing, when possible, assumptions on the wavenumbers along and across the ambient

magnetic field, k|| and k⊥. An approximation of the time integral is retained, but is shown to

be valid under more benign assumptions than those of quasi-perpendicular incidence and small

Larmor radius. The increased generality with respect to k|| permits to handle cases of comparable

Doppler and relativistic widths of electron cyclotron resonances. The tensor also suits Bernstein

waves, as it captures both their natural large k⊥ and the finite k|| that is typical of some mode

conversions, or acquired as a consequence of the large k⊥ when propagating in curved magnetic

fields. Finally, relativistic corrections to the optimal angle for the ordinary-extraordinary-Bernstein

mode conversion are presented.

1



I. INTRODUCTION

The relativistic dielectric tensor ǫ was first obtained by Trubnikov by solving the rel-

ativistic Vlasov equation in terms of a small perturbation to a maxwellian distribution1.

A more treatable weakly relativistic approximation was then derived by Dnestrovskii for

propagation perpendicular to the magnetic field2. Later, this was extended by Shkarofsky

to quasi-perpendicular incidence, such that3

N|| ≪ βT ≪ 1, (1)

|N||(2δ − N2
||)| ≪ β2

T . (2)

Here N|| is the parallel refractive index, β2
T = kBT/mc2 the squared thermal velocity in

c units and δ = (ω − nωc)/ω indicates the distance from the n-th cyclotron harmonic in

dimensionless units.

In addition to making these hypotheses on N‖, Shkarofsky’s and most subsequent weakly

relativistic formulations also expand ǫ as a power series in the (small) Larmor radius

parameter3–11

λ =

(

N⊥βT

Y

)2

< 1 (3)

or take the opposite, asymptotic limit λ > 112,13. Here Y = ωc/ω is the dimensionless

magnetic field. These series are formally correct, in the sense that, if they converge, they do

so to an exact result. Convergence is ensured in one case by λ < 1 and in the other by λ > 1,

so that, for any λ, one can always choose a converging expansion of ǫ in cyclotron harmonics.

In practice, however, these series will be truncated and provide approximate results, valid

in the λ ≪ 1 or λ ≫ 1 limit, respectively. The fewer the terms retained in the sum, the

smaller is the range of validity in λ. Of course expressions, available in literature, which

are already truncated, have a reduced range of validity. All these series expansions and

truncated sums are summarized in Table I, and some of them were reviewed in14. In Table

I we also note that not the whole ǫ but only an electrostatic approximation is considered

in11–13. Apart from a very general but numerically expensive series in a 4D space multiplied

by a sum in a 2D space and a double combinatoric sum15, some approximations may not

be adequate for electron Bernstein waves, as these waves are characterised by λ >∼ 1 and

are excited/detected at finite N||16–19 or tend to develop finite N|| anyway, including values
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N|| ≥ 119,20. Finite values of N||, of the order of βT , are also encountered in ion Bernstein

waves, for which they were treated numerically with the aid of root finders21.

Electromagnetic electron cyclotron waves propagating at intermediate angles relative to

the magnetic field may also have N|| ≈ βT . In this case the two mechanisms resolving the

electron cyclotron emission/absorption line coexist and the fully relativistic ǫ, which embod-

ies both the Doppler broadening and relativistic mass gain, should be invoked. However,

because it is very complicated and not in a closed form, an analytic semi-relativistic form of

ǫ valid for arbitrary values of N|| and N⊥ is derived in the present work. Note that simplified

1D relativistic descriptions are available, for example for reflectometry22. However, mod-

elling in 3D requires either the fully1 or weakly3–8,8–13,15 relativistic dielectric tensor. Here a

compromise is proposed between the generality of the full tensor and the ease of calculation

of the weakly relativistic one.

Two well-known weakly relativistic approximations36 are compared in Sec.II and the most

rigorous is adopted. Only the strict weakly relativistic limit βT ≪ 1 is taken here. Unlike

other works, the treatment is not restricted to N|| ≪ βT , that would help isolating relativis-

tic effects from Doppler ones, but is not the most general assumption. A cyclotron harmonic

expansion is operated in Sec.III. The arbitrariness of N|| leads to a further generalization of

the generalized Shkarofsky functions and to new, N||-dependent terms in ǫ. In Sec.IV, this

new mildly relativistic expression is compared with earlier results. Both warm and Shkarof-

sky formulas, in particular, are reobtained as limiting cases. This implies the new tensor

to be valid for both oblique, Doppler-dominated injection and perpendicular, relativistically

broadened absorption.

Sec.IV also shows that the generalization introduced in Sec.III is equivalent to perturb

the arguments of the Bessel functions, which cannot be factored out of the integral any-

more. Numerical results in Sec.V illustrate the broader domain of applicability of the new

expression with respect to N|| and N⊥, at a modest computational extra cost. Finally, some

calculations pertinent to Sec.III are reported in Appendix.

3



II. WEAKLY RELATIVISTIC LIMIT

The steady-state solution of the linearized Vlasov-Maxwell problem for a uniformly mag-

netized plasma is1,8:

ǫij = δij +
iX

β2
T

∫ ∞

0
dτIij(τ) (4)

where X = ω2
p/ω

2 is the non-dimensional density and τ the time renormalized to the

wave period ω−1. Apart from a factor nY , τ coincides with the gyrophase and, for practical

uses, it is sufficient to integrate Eq.4 over a time τ long enough for the wave-particle inter-

action to take place, bearing in mind that correlation is destroyed after a certain number of

gyroperiods.

The function Iij(τ) is defined as an integral over the normalized momentum u = p/mc:

Iij = T
(1)
jk

∫ d3u

γ
uiukf(u) exp(iγτ − iN · u) (5)

where γ =
√

1 + u2 is the Lorentz factor and the convention of implicitly summing on

repeated indices is adopted. The tensor

T (1) =













cos Y τ − sin Y τ 0

sin Y τ cos Y τ 0

0 0 1













(6)

defines a rotation of the reference frame at an angular frequency equal to the (normalized)

gyrofrequency Y = ωc/ω around the field-aligned axis z. The remaining axes are chosen to

yield N = (N⊥, 0, N||). Finally,

Nx =
N⊥
Y

sin Y τ (7)

Ny =
N⊥
Y

(cos Y τ − 1) (8)

Nz = N||τ (9)

and, for a thermal relativistic plasma, the distribution function equals

f(u) =
exp(−γβ−2

T )

4πβ2
T K2(β

−2
T )

(10)

where K2 is the modified Bessel function of the second kind of order 2, also known as

MacDonald function23.
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All parameters and independent variables in integral Eq.5 are real, apart from the refrac-

tive index components which are complex, with ℜ(N⊥) ≥ 0.

Integration over momenta gives1:

Iij =
β−2

T

K2(β
−2
T )

[

T
(1)
ij

K2(R
1/2)

R
− T

(2)
ij

K3(R
1/2)

R3/2

]

(11)

where

R = b2 + N 2 =
1

β4
T

− 2i

β2
T

τ + 2
N2

⊥
Y 2

(1 − cos Y τ) + (N2
|| − 1)τ 2, (12)

b =
1

β2
T

− iτ (13)

and T
(2)
ij = (−)j+1NiNj = NiT

(1)
jk Nk is the tensor

T (2) =













N 2
x NxNy NxNz

−NxNy −N 2
y −NyNz

NxNz NyNz N 2
z













. (14)

A. Weakly relativistic limit of Eq.11

Eq.4 with Iij as in Eq.11, is known as the second of Turbnikov’s formulas. The essen-

tial step in its weakly relativistic approximations3,7,13 is to assume the argument R of the

modified Bessel functions to be large.

Clearly, from Eq.12, R is a function of the independent variables βT , N|| and N⊥ and at

this stage the βT → 0 limit can be taken without implications for the other (orthogonal)

directions N|| and N⊥. In particular, it is not necessary to assume small Larmor radii (Eq.3)

and/or quasi-perpendicular incidence (Eq.1). The strict mildly relativistic limit βT ≪ 1

is sufficient, although not necessary, for R ≫ 1. In turn, this justifies the asymptotic

expansion23

Kν(R
1/2) ≃

√

π

2

e−R1/2

R1/4

{

1 +
∞
∑

n=1

∏n
p=1[4ν

2 − (2p − 1)2]

n!(8R1/2)n

}

(15)

where, for the case of interest, ν = 2 or 3.

With this, Eq.11 becomes:

Iij =
eβ−2

T

β3
T + 15

8
β5

T + 105
128

β7
T

e−R1/2

Qij (16)

Qij =
T

(1)
ij

R5/4

(

1 +
15

8 R1/2
+

105

128 R

)

− T
(2)
ij

R7/4

(

1 +
35

8 R1/2
+

945

128 R

)

(17)
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The square root at exponent here, e−R1/2

, poses a major difficulty for the integration of

Eq.4. Factorizing e−R1/2 ≃ e−be−N 2/2b (see Eq.12) helps to avoid that difficulty. For this, it

must be N 2 ≪ |b2|, where | | denotes the modulus of a complex number.

Besides simplifying Eq.16, the N 2 ≪ |b2| limit also modifies Eq.17 as follows:

Qij = T
(1)
ij b−9/2

(

b2 +
15

8
b +

105

128
− 5

4
N 2

)

− T
(2)
ij b−11/2

(

b2 +
35

8
b +

945

128
− 7

4
N 2

)

(18)

The limit in question is a small βT limit which also interests N and thus the refractive

index components. However, here below it is shown to be less restrictive than Eq.1.

From the definitions 12-13, the inequality writes:

2
N2

⊥
Y 2

(1 − cos Y τ) + N2
||τ

2 ≪ 1

β4
T

+ τ 2 (19)

The smallness -at any time τ - of the first term on the left hand side requires
N2

⊥

Y 2 ≪ 1
β4

T

i.e. relatively small Larmor radii (λ ≪ 1
β2

T
<), although not as small as in the conventional

finite Larmor radius (FLR) limit (λ ≪ 1). For example, for electromagnetic waves of N⊥ ≤ 1,

it is sufficient to meet a requirement on the magnetic field, Y ≫ β2
T , which is fulfilled in most

magnetized laboratory plasmas. For Bernstein waves (reaching the highest perpendicular

refractive index, N⊥ ≈ Y
βT

, such that λ ≈ 1) the requirement is simply βT ≪ 1, which is

being assumed through this weakly relativistic treatment anyway.

The second term on the left hand side of Eq.19, N2
||τ

2, should in principle be much

smaller than the right hand side. This is always the case if N|| ≤ 1, at any time τ . If N|| > 1

the condition is violated from time τ1 = 1
β2

T

1
√

N2

||
−1

onwards. However, the wave-particle

interaction weakens as time progresses and the decay is particularly rapid in the N|| > 1 case.

This is because in that case, apart from an oscillation due to the finite N⊥, R is a growing

function of τ , and the integrand Iij of Eq.4 decays exponentially with R, as illustrated by

Eq.16. To fix the ideas, the wave-particle interaction can be considered negligible when e−R1/2

reaches a thousandth of its initial value e−β−2

T . This occurs at τ2 =
√

49+14/β2

T

N2

||
−1

. Therefore, it

is sufficient to require the wave-particle interaction to become negligible before the condition

19 is formally violated. This translates into the condition τ2 < τ1, which is equivalent to

βT < 0.24, or Te <30keV. In turn, this should already be guaranteed by βT ≪ 1. More

generally, the condition is β2
T <

√
2−1

ln D
. Here, to fix the ideas, strong damping was defined as

damping by a factor D=1000.
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Recapitulating, Eq.19 is valid for any N||, provided N⊥

Y
≪ 1

β2

T
and βT ≪ 1 or, equivalently,

βT ≪ min{1,
√

Y/N⊥}. Under these circumstances e−R1/2 ≃ e−be−N 2/2b, which simplifies the

integration of Eq.4. N⊥

Y
≪ 1

β2

T
is indeed a FLR condition, as it may be rewritten as λ ≪ 1

β2

T
,

but less stringent than Eq.3, as it includes higher order FLR corrections compared to λ ≪ 1.

Note that Eq.19 is an independent requirement not related to Eqs.1-2, which are not

invoked here. All these equations impose an upper limit to N components, although the

limit scales like powers of βT in Eqs.1-2 and like an inverse power in Eq.19. In this respect

Eq.19 is more similar to the small Larmor radius condition Eq.3, but is less restrictive for

N⊥, thank to the weakly relativistic limit.

B. Weakly relativistic limit of the integrand in Eq.5

For an alternative derivation of Eqs.16-18, γ can be Taylor-expanded up to the second

order in u in Eq.5, which takes the form:

Iij =
eiτ

(2πβ2
T )3/2(1 + 15

8
β2

T )
T

(1)
jk

∫

d3u uiuk(2 − u2
x − u2

y − u2
z)ExEyEz/2 (20)

where

Ex = exp

[

−iNxux +
u2

x

2
(iτ − β−2

T )

]

(21)

and equivalent definitions apply to Ey and Ez.

After substituting Eq.9, one can recognize in Ez the term −iN||u||τ responsible for Doppler

broadening. The source of weakly relativistic broadening iu2τ/2 dominates over it if N|| ≪ u,

but for the sake of generality and to cope with N|| ≈ u, both terms are retained here.

The main advantage of Eq.20 over Eq.5 is that the parallel and perpendicular degree of

freedom, which were previously coupled by γ, are now decoupled. The approximation of γ−1

with a sum and of the exponent with a product of functions of ux, uy or uz only, ease the

integration over u. In fact, this reduces to a sum of products of integrals of type:

∫ ∞

−∞
duxe

−iNxux−bu2
x/2 =

√

2π

b
e−N 2

x /2b (22)

and its derivatives up to the 4th order in Nx. Similar integrals in uy and uz, as well

as their derivatives, are also involved. Note that in the integrals above the real part of b

is positive. After some algebra, the same result as in Eq.16 is obtained, but with different
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coefficients for Eq.18:

Qij = T
(1)
ji b−9/2

(

b2 − 5

2
b +

N 2

2

)

− T
(2)
ji b−11/2

(

b2 − 7

2
b +

N 2

2

)

(23)

This is because, although physically more explicit, the second method is based on the

exact integration of an approximated integrand (Eq.20). Therefore, it is only valid in the

limit in which the approximated distribution and wave-particle interaction are plausible.

Although not maxwellian, neither classically nor relativistically, the distribution f used in

Eq.20 is correct in a semi-relativistic sense and is correctly normalized, i.e. the approximation

conserves the number of particles. However, the description of the wave-particle interaction

in Eq.20 is correct only at the leading orders in b. For these reasons, we will adopt for the

remainder the more rigorous Eq.18, resulted from the Taylor approximation of the exact

integral, Eq.11.

III. EXPANSION IN CYCLOTRON HARMONICS

First of all, it is convenient to change variables and absorb the thermal velocity in the

definitions of time and cyclotron frequency:

t = β2
T τ y = Y/β2

T . (24)

The contributions of individual cyclotron harmonics to Eq.16 can be separated from each

other by rewriting as follows a term involved in e−R1/2

:

exp

[

λ cos yt

1 − it

]

=
∞
∑

p=0

1

p!

[

λ

1 − it

eiyt + e−iyt

2

]p

(25)

with the double series restricted to even values of m + n.

The binomial theorem transforms Eq.25 in

exp

[

λ cos yt

1 − it

]

=
∞
∑

p=0

∞
∑

q=0

[

λ

2(1 − it)

]p+q
ei(p−q)yt

p!q!
(26)

Finally, considerations about how to fill the first quadrant p >0, q >0, with sums over

m = p + q and n = p − q, lead to:

exp

[

λ cos yt

1 − it

]

=
∞
∑

n=−∞

∞
∑

m=|n|

[

λ

2(1 − it)

]m
einyt

(

m+n
2

)

!
(

m−n
2

)

!
(27)
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With this substitution, Eqs.4 and 16 yield:

ǫij = δij +
iX

β5
T + 15

8
β7

T

∞
∑

n=−∞

∞
∑

m=|n|

(λ/2)mQmn,ij
(

m+n
2

)

!
(

m−n
2

)

!
(28)

Qmn,ij =
∫ ∞

0

dt

β2
T

Qij

(1 − it)m
exp

[

it

β2
T

(1 − nY ) −
λ + N2

|| t
2/2β2

T

1 − it

]

, (29)

where, as above, the summation is restricted to even values of m + n. All integrals of

type 29 can be reconducted to generalized Shkarofsky functions24–26

Fq,r(z, a) = −i
∫ ∞

0

(it)r

(1 − it)q
exp

[

izt − at2

1 − it

]

dt. (30)

but of shifted arguments that will be omitted for brevity:

Fq,r = Fq,r(n) = Fq,r

(

1 − nY

β2
T

− λ,
N2

||
2β2

T

− λ

)

, (31)

Unless necessary for disambiguation, also the harmonic number will be dropped. In fact,

most Fq,r hereafter refer to the n-th harmonic, except for some sums and differences on

side-harmonics, coincisely referred to as:

F±,p
q,r = Fq,r(n + p) ±Fq,r(n − p) (32)

Further, generalized Shkarofsky functions of r 6= 0 are related to standard Shkarofsky

functions of r = 0 by derivatives or integration by parts24,

F ′
q =

∂Fq

∂z
= Fq,1 = Fq −Fq−1 (33)

F ′′
q =

∂2Fq

∂z2
= Fq,2 = Fq − 2Fq−1 + Fq−2. (34)

With these substitutions and after lengthy but straightforward calculations partly re-

ported in appendix, one finds:

Qmn,11 = iG+
mn + ia+Fm+ 9

2

− i

4

N2
⊥

Y 2

[

2blFm+ l
2

+ b+F+,1

m+ 11

2

]

(35)

Qmn,22 = iG+
mn + ia+Fm+ 9

2

− i
N2

⊥
Y 2

[

bl

(

F+,1

m+ l
2

− 3

2
Fm+ l

2

)

+ b+

(

F+,2

m+ 11

2

− 7

4
F+,1

m+ 11

2

+ 2Fm+ 11

2

)]

(36)

Qmn,12 = G−
mn − 1

4

N2
⊥

Y 2

[

2blF−,1

m+ 9

2

+ b+

(

2F−,2

m+ 11

2

−F−,1

m+ 11

2

)]

(37)

Qmn,13 = − i

2

N⊥
Y

N||
β2

T

(

blF−,1

m+ l
2

+ b+F−,2

m+ 11

2

)′
(38)

Qmn,23 =
1

2

N⊥
Y

N||
β2

T

[

bl

(

F+,1

m+ l
2

− 2Fm+ l
2

)′
+ b+

(

F+,2

m+ 11

2

− 2F+,1

m+ 11

2

+ 2Fm+ 11

2

)′]
(39)

Qmn,33 = i
(

alFm+ l
2

+ a+F+,1

m+ 9

2

)

+ i
N2

||
β4

T

(

blFm+ l
2

+ b+F+,1

m+ 11

2

)′′
(40)
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where

G±
mn =

1

2

(

alF±,1

m+ l
2

+ a+F±,2

m+ 9

2

)

+
1

4

N2
⊥

Y 2

(

blF±,2

m+ l
2

+ b+F±,3

m+ 11

2

)

, (41)

and Qmn,21 = −Qmn,12, Qmn,31 = Qmn,13, Qmn,32 = −Qmn,23. It is worth reminding that

here Shkarofsky functions Fq,r have shifted arguments like in Eq.31.

The convention of summing over repeated indices is adopted; scalar products involve the

coefficients:

(a5, a7, a9) =
5

2
e−λβ3

T

[(

2

5
+

N2
||

2

)

,
(

3

4
β2

T − N2
||

)

,

(

N2
||

2
− λβ2

T

)]

(42)

(b7, b9, b11) =
7

2
e−λβ5

T

[(

2

7
+

N2
||

2

)

,
(

5

4
β2

T − N2
||

)

,

(

N2
||

2
− λβ2

T

)]

, (43)

a+ =
5

4
λe−λβ5

T (44)

b+ =
7

4
λe−λβ7

T (45)

Components of order β4
T were removed from the square brackets in Eqs.42-43, but those

of order β2
T and, for consistency, of order β2

T λ, were retained. The latter are formally of order

β4
T . Nevertheless, they also involve N⊥, and neglecting them indirectly implies a restriction

on the Larmor radius parameter that actually, for Bernstein waves, can evaluate λ <∼ 1 even

when βT ≪ 1. For the sake of generality, N2
|| has also been retained in all the components,

both when it appears along with a number of order 1, as well as with β2
T or λβ2

T .

The λ-dependence of the revised generalized Shkarofsky functions is the sign that disper-

sion depends on the Larmor radius, in agreement with fully relativistic Eqs.4-5. The shift

of Fq,r arguments z and a by an amount λ can be interpreted as a linear finite-Larmor-

radius correction to the resonance condition (through z = 2(nY + 1)/β2
T ) and to its width

in inhomogenoeus plasmas, through the ratio of Doppler to relativistic width, a = N||/βT .

The physical meaning of z → z − λ is the well-known relativistic downshift of the peak

z of emission/absorption, which also becomes manifest in a change of width of the emit-

ting/absorbing layer, through a → a−λ. Note that fully and weakly relativistic treatments

slightly disagreed on the peak power deposition in some recent ITER modelling27 and that

the present z shift goes in the right direction to reconcile this disagreement.
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IV. COMPARISON WITH OTHER DISPERSION FUNCTIONS

Table II clarifies under which conditions Fq,r(n) reduces to other semi-relativistic and

classical plasma dispersion functions.

The λ/(1 − it) ≃ λ approximation of Eq.29 quoted in the table is equivalent to zeroing

the λ shifts in Eq.31. The limit is justified under very weakly relativistic conditions, such

that t = β2
T τ ≪ 1 for any “reasonable” τ , in the sense of Subsec.II.A.

We also note that double sums over the Shkarofsky function index m (sometimes called q

or q + 1/2 or p + n + 3/2 in literature) and over the harmonic number n were already found

by Airoldi15, Shkarofsky7 and Swanson10,28.

A. Shkarofsky’s Tensor

Eqs.28 and 35-40 generalize the well-known Shkarofsky’s weakly relativistic tensor3 by

linearly combining, by means of N||-dependent coefficients, Shkarofsky functions corrected

for FLR effects. Higher βT orders are also retained, compared to Shkarofsky’s treatment.

The original tensor3 can be obtained as follows. In the a and b coefficients (Eqs.42-45) one

has to a) keep only the lowest order in βT , b) set e−λ = 1 and c) N|| = 0. Approximations

b) and c) are equivalent to neglect finite Larmor radius and oblique incidence corrections,

respectively. As a result, the only non-vanishing coefficients are a5 = β3
T and b7 = β5

T .

Correspondingly, only the Fn+ 5

2

and Fn+ 7

2

functions remain in use and Eqs.35-40 simplify

as follows:

Qmn,11 = Qmn,22 =
iβ3

T

2
F+,1

m+ 5

2

(46)

Qmn,12 =
β3

T

2
F−,1

m+ 5

2

(47)

Qmn,13 = −iN||
N⊥
Y

β3
T

2
F−,1

m+ 7

2

′ (48)

Qmn,23 = N||
N⊥
Y

β3
T

2

(

F+,1

m+ 7

2

′ − 2F ′
m+ 7

2

)

(49)

Qmn,33 = iβ3
TFm+ 5

2

+ iN2
||βTFm+ 7

2

′′ (50)

Moreover, d) the FLR parameter λ has to be zeroed in Eq.31, e) the second sum in Eq.28

has to be truncated to m = |n|,

ǫij = δij +
iX

β5
T

[

Q00,ij +
∞
∑

n=1

λn

2nn!
(Qnn,ij + Qn −n,ij)

]

, (51)
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which is equivalent to truncate the Taylor expansion of Bessel functions In to their leading

order, λn. Additionally, f) only the leading βT order has to be retained at denominator in

Eq.28.

Substituting Eqs.46-50 in Eq.51 returns Eqs.4a-4c of Shkarofsky3. Note that the 11 and 22

components are identical, while they differ from each other in the fully relativistic tensor1, in

the present weakly relativistic treatment (Eqs.35 and 36) and in the warm dielectric tensor29,

as they should in presence of finite but relativistically distorted Larmor orbits, due to the

different nature of the Doppler shift (transverse or longitudinal) that breaks the cylindrical

symmetry of the plasma response around the magnetic field direction.

B. Warm Tensor

It is well-known6 that Shkarofsky functions can be expressed in terms of the classical

dispersion function Z. Under proper limits (Tab.I) they actually coincide with it, apart

from a factor: at low βT , both arguments z = 1−nY
β2

T
− λ and a =

N2

||

2β2

T
− λ diverge, the −λ

corrections introduced in Eq.31 become negligible and the asymptotic limit24,30

Fq(z, a) ≃ − Z(Ψ)√
4a + 2q

≃ − βT√
2N||

Z(Ψ) (52)

applies. Here

Ψ =
z + q√
4a + 2q

≃ 1√
2

1 − nY

N||βT

. (53)

On the other hand, it is easy to identify the sum over m in Eq.27 as the generating

function for the modified Bessel function of the first kind:

exp

[

λ cos yt

1 − it

]

=
∞
∑

n=−∞
In

(

λ

1 − it

)

einyt (54)

that, for λ/(1− it) ≃ λ yields a familiar portion of the warm dielectric tensor components

ǫ11, ǫ22, ǫ33, ǫ13:

exp

[

λ cos yt

1 − it

]

≃
∞
∑

n=−∞
In(λ)einyt (55)

To recover the other components it is useful to remember the recursive relation for the

Bessel function derivative23:

I ′
n = In+1 + nIn/λ (56)

After these simple steps the warm dielectric tensor (Eqs.10.40, 57, 58 of29) is obtained.

12



C. Bessel Functions of complex time-dependent Larmor radius parameter

Yet another semi-relativistic formulation can be derived by inserting Eq.54, instead of

Eq.27, in Eqs.4 and 16. Eq.54 generalizes a standard Bessel function identity utilized in

deriving the warm non-relativistic dielectric tensor31. However, it does so by replacing λ

with λ/(1− it), i.e. by introducing a time dependence for In that cannot be factored out of

the time integral anymore. The resulting expression,

ǫij = δij +
iX

β5
T + 15

8
β7

T

∞
∑

n=−∞

∫ ∞

0

dt

β2
T

Qij exp

[

it

β2
T

(1 − nY ) −
λ + N2

|| t
2/2β2

T

1 − it

]

In

(

λ

1 − it

)

(57)

avoids the nuisance of the double sum over m and n but involves integrals more compli-

cated than Eq.29 and is not convenient from a numerical standpoint. Actually it exceeds

in complexity the initial fully relativistic Trubnikov’s tensor of Eqs.4 and 11. Nevertheless,

it is useful as it links the present weakly relativistic treatment to others. For example, an

equation similar to Eq.57 was the starting point for the original Shkarofsky’s derivation of

19663 and for a revised, more general result of 19867. While the Bessel functions were ap-

proximated to their leading order in λ in the initial derivation, the whole series of powers

of λ was retained in the later work, yielding a double sum similar to Eq.28, the other sum

being on the harmonic number. Also Eqs.2.3.53 and 78 of14 share interesting analogies with

Eq.57 of the present article, in spite of the different method. There are also distinct differ-

ences, though, including the argument of the Bessel function, which was λ in those previous

works3,7,14, or the more drastic simplification of Qij, on the ground that the exponent has a

bigger effect on the integral in Eq.57.

At this point it should be remembered that it is customary to treat as a constant the

Lorentz factor γ in the denominator in the integrand of Eq.5 and to Taylor-expand only the

factor γ in the exponent, the reason being that relativistic corrections in the denominator

have a comparatively small effect on the integral. This is equivalent to approximating Qij ≃
(T

(1)
ij 2b − T

(2)
ij )8b2, which in turn leads to the loss of N|| corrections in Eqs.35-45. Probably

this was oversighted in the past due to the quasi-perpendicular hypothesis N|| ≪ βT , which

tended to neglect small-N|| corrections when summed to or divided by (comparativley larger)

βT corrections.
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V. NUMERICAL RESULTS

The double sum in Eq.28 may seem computationally expensive, but only four functions

Fm+ l
2

, with l =5, 7, 9 and 11, are used at each step m and only two of them need to be

calculated. The other two can be recursively generated by6,24:

N2
||

β2
T

Fm+ 5

2

(n) = 1 +
2

β2
T

(N2
|| − 1 + mY )Fm+ 1

2

(n) − (m +
1

2
)Fm+ 3

2

(n) (58)

The same relation also provides the functions for the following step, m + 1, and so on.

Hence, multiple values of m in the sum of Eq.28 do not require significant extra calculations

compared to the single value, m = |n| case of Shkarofsky3.

The sum over n doesn’t introduce significant calculations either, because the generic step

n involves functions that are either known from steps n − 1 and n − 2, or will be reutilized

for the n+1- and n+2-th harmonic. Furthermore, unless βT and/or N‖ are high enough to

cause significant harmonic overlap, i.e. if the electron cyclotron lines, although broadened,

are still well-resolved, the double sum can be restricted to few values of n or just to the

dominant harmonic.

The index m can also be kept small, similar to k ≤ 3 of Swanson’s moderately relativistic

dielectric tensor28: m=2 is typically a good compromise between accuracy and rapidity of

calculation.

Two applications are considered in the following Subsections, to illustrate the advantages

of Eq.28 over the cold and warm dielectric tensor29 as well as the semi-relativistic formula-

tions by Shkarofsky3 and Airoldi-Orefice15. To author’s knowledge, the latter is computed

for the first time in its generality: even the original article, despite the generality of the

analytical derivation, treated numerically only a simplified case, virtually coincident with

Shkarofsky’s tensor. The models are compared with each other and with Trubnikov’s tensor1

(from which they all descend, after various approximations), which is taken as a reference.

A. OXB Mode Conversion

An interesting application for the new tensor is represented by the dispersion relation

det(NiNj − N2δij + ǫij) = 0 for an optimal value of the parallel refractive index, N|| =
√

Y/(Y + 1), enabling the ordinary (O)-extraordinary (X)-Bernstein (B) mode conversion32.
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For heating or emission measurements at a low harmonic (ω = nωc, with n=1-5), the

optimal parallel component for the mode conversion takes values N|| ≃0.4-0.7. These are

incompatible with quasi-perpendicular incidence (N|| ≪ βT , Eq.1) and thus not adequately

modelled by Shkarofsky’s and other mild relativistic formulas, and constitute a good testbed

for the new results. A slab geometry is considered for simplicity. Note, however, that in more

realistic geometries N‖ tends to grow even larger than the initial N|| ≃0.4-0.7, as a result

of the large N⊥ being projected in a curved magnetic field. This represents an additional

argumentation in favor of weakly relativistic formulas valid for arbitrary N‖.

The dispersion relation was calculated for optimal launch in a uniformly magnetized

plasma (Y =0.9) of inhomogeneous density X. The contours corresponding to det(NiNj −
N2δij +ǫij) = 0 are plotted in Figs.1-5, for different temperature regimes. Although the root

finder searched for N2
⊥ roots, is plotted on the vertical axis, to magnify the mode conversion

region at relatively low N⊥.

The models examined in Figs.1-5 offer the advantage, over electrostatic

approximations11–13, of dealing simultaneously with the electromagnetic O- and X-mode as

well as with the electrostatic Bernstein (B) mode.

Apart from the cold dispersion, which does not account for the Bernstein mode and for

its generation at the upper hybrid resonance (UHR), and the Shkarofsky tensor, which tends

to overestimate N⊥ for the B-mode, all the tensors considered are all also very general with

respect to N⊥, at least at non-relativistic temperatures: in Fig.1, N⊥ ranges from N⊥ = 0

at the OX mode conversion, for which the cold dielectric tensor would be sufficient, to

N⊥ > 1 at the XB mode conversion, where FLR effects play a fundamental role and the

warm dielectric tensor becomes necessary, up to N⊥ ≈ 1/βT ≫ 1, for the Bernstein mode.

Most models, including the new one, agree with the fully relativistic reference up to fairly

large N⊥, but the warm plasma tensor shows good agreement over the broadest domain and

yet it is the most economical in terms of computational resources. This confirms the ap-

propriatenes of adopting the warm tensor to trace OXB mode-converted Electron Bernstein

Waves (EBWs) in plasmas of 1keV or less18.

At higher temperatures (βT =0.1) relativistic effects start to become important and only

two tensors (the warm one, and the new one presented here) show good agreement with the

fully relativistic curve (Fig.2).

Relativistic corrections clearly become important at βT =0.2, corresponding to
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Te =20.5keV, as it is evident from the difference between the fully relativistic and the clas-

sical ’warm’ curve in Fig.3. The new tensor best approximates Trubnikov’s results (Fig.3)

and it remains the best approximation at up to βT =0.5 (Te=128keV, Fig.4). The first sig-

nificant discrepancies are encountered at βT =0.6 (Fig.5), and can be explained with both

the βT ≪ 1 and N⊥

Y
≪ 1

β2

T
limits being violated. The latter translates in N⊥ ≪2.5 in the

case of interest, and is responsible for the change of slope at N⊥ ≃1.2.

It is evident from the vertical axes of Figs.1-5 that for EBWs N⊥ scales as 1/βT
33. In the

light of this, the inequality N⊥

Y
≪ 1

β2

T
rewrites βT ≪ Y , which in fact is violated in Fig.5.

Finally, note that relativistic effects act in the correct direction, of reducing the perpen-

dicular phase velocity c/N⊥ with respect to warm plasma calculations. This is in agreement

with the relativistically increased mass and the consequent reduced thermal velocity of elec-

trons, compared to a classical calculation for the same temperature.

Fig.6a shows a detail of Fig.3 -although with N2
⊥, rather than N⊥, on the vertical axis- in

the vicinity of the OX mode conversion: the O-mode branch comes from low densities and

connects to the SX-mode branch at the cutoff density. Two main conclusions can be drawn

from this plot.

First of all, the weakly and fully relativistic O-mode penetrates deeper than the cold

and warm one. This is in agreement with the mass increase and consequent reduction

of the effective plasma frequency, so that the condition ω = ωp,rel, where ω is the wave

frequency and ωp,rel the relativistically corrected plasma frequency is achieved at slightly

higher (normalized) density X = ωp/ω, i.e. deeper in the plasma34.

Secondly, although all drawn for the nominal optimal N||, some curves access the evanes-

cent, N2
⊥ < 0 half-plane, indicating an incomplete mode conversion, subject to losses.

Slightly different N|| settings are necessary for these curves to fully develop in the N2
⊥ ≥ 0

half-plane, without accessing the evanescent region (Fig.6b). In other words, different ten-

sors predict different optimal angles for the OX mode conversion, with variations as large

as ±2o for βT =0.2. The fully relativistic calculation, which is the most reliable, confirms

the cold estimate N|| =
√

Y/(Y + 1) to be optimal. This is not surprising because the cold

tensor contains the basic physical ingredients for the mode conversion, and relativistic cor-

rections displace both the O- and the X-mode cutoff density by the same amount: although

for the same N‖, for βT =0.2 the conversion takes place at X=1.05 rather than at X=1.

The new tensor exhibits the best agreement with Trubnikov’s reference curve, both with
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respect to the optimal N|| and to the cutoff density X.

B. Power absorption for oblique incidence

Here the absorption of electromagnetic waves polarized in the O-mode is studied for vari-

ous angles of incidence on the fundamental cyclotron resonance, in a moderately relativistic

regime (βT = 0.15).

The absorption coefficient α, defined as the fractional power loss dP/P per unit length

ds along the ray (dP/P = α ds), is given by14:

α = 2
E∗

i ǫ
a
ijEj

∣

∣

∣

∣

E∗
i

∂Λh
ij

∂k
Ej

∣

∣

∣

∣

(59)

where the superscripts h and a denote respectively the hermitian and anti-hermitian part,

E∗ is the complex conjugate of the electric field E (polarized in the O-mode, in this case)

and

Λij = ǫij + NiNj − N2δij. (60)

The absorption coefficient is plotted in Figs.7-9a for a mildly relativistic case (βT = 0.15),

for three values of N||, ranging from quasi-perpendicular incidence (dominated by relativistic

broadening) to oblique incidence (with significant Doppler broadening). The coefficient α is

expressed in units of vacuum wavelength λ0.

The optical depth τ =
∫ s
0 α(s′)ds′ is also presented in dimensionless units, in Figs.7-9b, in

terms of λ0 and of the lengthscale R0 for the inhomogeneity of the magnetic field, Y = R0/R,

where R is a spatial distance.

The third plot in Figs.7-9 shows the absorption shape factor αe−τ , giving the shape

of the deposition profile. It should be emphasized that Figs.7-9 refer to a single ray in

a slab, hence the deposition width might be underestimated compared to experiments or

to more sophisticated modelling of a beam or bundle of rays in a realistic geometry. The

main purpose of these plots is to compare various absorption models under the assumptions

R0=1m and λ0=2mm.

The absorption curves obtained with the new tensor agree with other weakly relativistic

approximations, in particular with Shkarofsky’s, at small-to-intermediate parallel refractive

indices, N‖ ≤ βT and show the best agreement with Trubnikov’s fully relativistic absorption
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profiles for large angles of propagation relative to the magnetic field, such that N|| > βT .

This is best exemplified by the optical depth τ in Fig.9b. Potential applications include

problems requiring the power localization to be so accurate that small differences between

the weakly and fully relativistic predictions do matter, as in the stabilization of neoclassical

tearing modes in ITER27.

C. Computational time

Table III summarizes the time necessary for calculating the curves in Fig.3 for the choice

of parameter shown.

Evaluating the new tensor was slightly slower than computing Shkarofsky’s tensor, but

orders of magnitude faster than the fully relativistic treatment. This may be convenient for

massive repetitive calculations: the curves in question feature only 10000 points each, but the

dielectric tensor may need to be evaluated up to 108 times in tracing 1-10 bundles of 10-100

rays, modelled by up to 10000 points each (their spacing being smaller than the plasma size

and the plasma inhomogeneity length-scale, but large compared to the wavelength, which

for large refractive indices can become very small). Such an estimate also takes into account

that the tensor may need to be evaluated ∼10 times for each spatial step, for example if

a 4-5th order Runge-Kutta time-advance scheme is adopted, and derivatives are needed,

which in turn require the tensor to be evaluated in displaced points.

The scaling of the computational time with the parameters is also reported in Table

III, allowing extrapolations to different parameter settings. The accuracy of the results

depends in a more complicated manner upon the parameter settings. However, although

the considered expressions formally involve infinite sums, it was empirically found that small

truncation indices are generally sufficient. On the other hand modest improvements, and

at higher and higher computational costs, are registered if the parameters are set to values

larger or much larger than those in Table III.

The original notations have been preserved throughout the table. Most parameters, like

kmax and m, are truncation indices for power series (finite Larmor radius expansions) or, like

qmax and n, for sums over Shkarofsky or Bessel functions (cyclotron harmonic expansions). In

the slightly more complicated expression of Ref.15, σ and its combinatorics decompositions

control the approximation of the exponent; m is an index for a generalized Shkarofsky
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function of q=0 and r 6=0, expanded in Gamma-functions and binomials; k is a truncating

index for the expansion of the Bessel functions in the FLR parameter; n is the harmonic

number; j and L are relevant to two binomial expansions operated in the referenced article.

The integral in the second formula by Trubnikov1, reported for convenience in Eqs.4, 11,

was numerically integrated. In principle the domain of integration extends from τ=0 to

τ=∞, but 400 gyroperiods were retained for the numerical integration and discretized in

nτ=20000 intervals to study the dispersion (Subsec.V A), while 800 gyroperiods discretized

in nτ=80000 steps were used to study the absorption (Subsec.V B). The finer resolution was

necessary to avoid unphysically multi-peaked deposition profiles.

Finally, high Shkarofsky function indices q are needed, in general, in order to accurately

model the dispersion and absorption at large N⊥, but the new tensor converges more rapidly

in m. Yet, with m=2, it reproduces Trubnikov’s results better than Shkarofsky does for

q = 7/2, which corresponds to m=3.

VI. SUMMARY AND CONCLUSIONS

In summary a novel formulation of the semi-relativistic dielectric tensor, Eq.28, was de-

rived in the present article in the form of a power series in the Larmor radius parameter λ,

converging for any perpendicular refractive index N⊥ ≪ Y/β2
T , of a strictly weakly relativis-

tic approximation (βT ≪ 1).

Its generality and complexity are intermediate between Trubnikov’s fully relativistic ten-

sor and Shkarofsky’s weakly relativistic tensor, in that it is also weakly relativistic, but does

not contain approximations on a = N||/βT nor on the Larmor radius parameter λ, except

for those which indirectly follow from βT ≪ 1 and from the factorization of an exponent in

the time integral, based on the relatively benign request of Eq.19.

The new tensor describes the propagation (including electrostatic propagation based on

finite Larmor radius effects) and damping (corrected for relativistic effects and Doppler

broadening) of modes of arbitrary wavenumbers and orientation relative to the magnetic

field, including the Bernstein mode. The new tensor was tested in and applied to calculations

of Doppler and relativistic broadening as well as in the dispersion relation for the OXB mode

conversion.
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APPENDIX: DERIVATION OF EQS.35-40

In order to identify Fq,r functions in Eq.29, it is useful to define two operators in analogy

with T (1) and T (2) of Eqs.6, 14:

T (1) =













C −S 0

S C 0

0 0 I













(A.1)

T (2) = 1
Y 2













N2
⊥S2 N2

⊥S(C − 1) N⊥N||SL

−N2
⊥S(C − 1) −N2

⊥(C − 1)2 −N⊥N||(C − 1)L

N⊥N||SL N⊥N||(C − 1)L N2
||L

2













(A.2)

These are indeed matrices of operators. The individual operators are C, S, L and I.

They act on an integral by multiplying its integrand by, respectively, cos yt, sin yt, yt or 1.

Their effect on generalized Shkarofsky functions is simply to change the harmonic number

n or the index r:

CFq,r = [Fq,r(n + 1) + Fq,r(n − 1)]/2 = F+,1
q,r /2 (A.3)

SFq,r = [−Fq,r(n + 1) + Fq,r(n − 1)]/2i = −F−,1
q,r /2i (A.4)

LFq,r = −iyFq,r+1 (A.5)

IFq,r = Fq,r (A.6)

Here, when the argument n is dropped, it is understood that Fq,r refers to the n-th

harmonic. The apices in Eqs.A.3-A.4 denote a sum or difference of Shkarofsky functions,

according to Eq.32. Finally, the r = 0 case of Eq.A.5 is, according to Eq.33,

LFq = −iyFq,1 = −iy(Fq −Fq−1) = −iyF ′
q (A.7)

The new operators allow to handle the numerous integrals of type 29 and to obtain

or recognize a new integral by applying an operator (i.e., changing the indices) to an old
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one. With this approach, all integrals descend from one. This initial integral, i e−λ

β2

T
Fm,0, is

obtained from Eq.29 for Qij = 1. Following the scheme of Eqs.18 it is easy to combine the

above operators into another one, that multiplies integrands by Qij. Then Eq.29 becomes:

Qmn,ij = ie−λ β3
TT (1)

ij

[

Fm+ 5

2

+
15

8
β2

TFm+ 7

2

+
5

4
N2

||Fm+ 9

2
,2 −

5

4
β2

T λ
(

2Fm+ 9

2

−F+,1

m+ 9

2

)]

(A.8)

−ie−λ β5
TT (2)

ij

[

Fm+ 7

2

+
35

8
β2

TFm+ 9

2

+
7

4
N2

||Fm+ 11

2
,2 −

7

4
β2

T λ
(

2Fm+ 11

2

−F+,1

m+ 11

2

)]

,(A.9)

This contains some generalized functions, Fm+ 9

2
,2 and Fm+ 11

2
,2, that can be reconducted

to simple Shkarofsky functions of r = 0 by integrating by parts (Eq.34):

Qmn,ij = iT (1)
ij

(

alFm+ l
2

+ a+F+,1

m+ 9

2

)

− iT (2)
ij

(

blFm+ l
2

+ b+F+,1

m+ 11

2

)

(A.10)

where the convention of summing over repeated indices is adopted and the coefficients a

and b were given in Eqs.42-45.

Applying T (1) and T (2) does not rise the index r = 0 of the Fq,r functions in Eq.A.10,

because neither of the operators that they contain acts on r (see Eqs.A.3, A.4 and A.7)37.

Also, they don’t introduce any new explicit dependence on βT .

At this point T (1)
ij and T (2)

ij should be detailed according to Eqs.A.1-A.2. For instance,

for the first component,

Qmn,11 = iC
(

alFm+ l
2

+ a+F+,1

m+ 9

2

)

− i
N2

⊥
Y 2

S2
(

blFm+ l
2

+ b+F+,1

m+ 11

2

)

(A.11)

Following the rules for C (Eq.A.3) and S (Eq.A.4), the result Eq.35 is found. The same

procedure can be used for the other components, leading to Eqs.36-40.
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32 J. Preinhaelter and V. Kopecký, J. Plasma Phys. 10, 1 (1973).

33 F. Volpe, Ph.D. thesis, EMAU University Greifswald (2003).
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TABLES

TABLE I: Summary of approximations on N‖ and λ in available weakly relativistic dielectric

tensors. Some power series are truncated (trunc.). Some N|| approximations and asymptotic

developments for λ ≫ 1 are accompanied by an electrostatic (e.s.) approximation.

λ ≪ 1 λ ≪ 1 λ ≫ 1 λ ≫ 1

trunc. trunc.

N‖ = 0 4,5

N‖ ≪ βT
3,6 7–10,28 12(e.s.),8 13(e.s.)

arbitr. N‖ 15 11(e.s.)
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TABLE II: Classical and weakly relativistic plasma dispersion functions

Approximations Function Ref.

none Fq,r(n) Eq.31

λ/(1 − it) ≃ λ generaliz. Shkarofsky Fq,r(z, a) 24

λ/(1 − it) ≃ λ , r = 0 Shkarofsky functions Fq(z) 3

λ/(1 − it) ≃ λ , r = 0, a = 0 Dnestrovskii functions Fq
2

λ/(1 − it) ≃ λ , r = 0 z = 0 plasma disp. function Z(ζ) 35
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TABLE III: Time required for computing the dielectric tensor 10000 times on a 1.6GHz AMD

Sempron processor, for various relativistic, weakly relativistic and classical models (see Fig.1)

Model Parameters CPU time t(s) scaling

cold29 0.304

warm29 nr. Bessel functions n=2 0.447 t ∝ n

Shkarofsky3 qmax = 7
2 2.020 t ∝ (qmax − 1

2)

Airoldi-Orefice15 kmax = 3, Lmax = 3, σmax = 3, n = 2 227.520 t ∝ kmaxLmaxσmaxn

Volpe m = 3, n = 2 2.181 t ∝ mn

2nd Trubnikov1 nr. steps in integral, nτ = 20000 3689.200 t ∝ nτ
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FIGURE CAPTIONS

FIG.1 (color online) (a) Dispersion relation for OXB mode conversion for Y = ωc/ω=0.9,

optimal N|| =
√

Y/(Y + 1) and a moderate electron thermal velocity βT = vT /c=0.05,

according to various relativistic, weakly relativistic and classical dielectric tensors.

X = ωp/ω is the normalized density. (b) Detail of Fig.1.a for low N⊥, showing the fast

eXtraordinary (FX) branch of the dispersion relation, the Ordinary (O) one converting

into the slow eXtraordinary (SX) which is attracted by the Upper Hybrid Resonance

(UHR) and eventually (Fig.1a) converts into the Bernstein (B) mode.

FIG.2 (color online) Like Fig.1a, for βT =0.1.

FIG.3 (color online) Like Fig.1a, for βT =0.2.

FIG.4 (color online) Like Fig.1a, for βT =0.5.

FIG.5 (color online) Like Fig.1a, for βT =0.6.

FIG.6 (color online) Detail of the dispersion relation for Y =0.9 and βT =0.2 showing the OX

mode conversion for (a) N|| =
√

Y/(Y + 1)=0.688 and (b) N|| individually optimized

for each dielectric tensor.

FIG.7 (color online) (a) Absorption coefficient and (b) optical depth in dimensionless

units and (c) absorption shape factor for βT =0.15 and quasi-perpendicular incidence

(N||=0.05) of O-mode on fundamental electron cyclotron harmonic. R0=1m, λ0=2mm,

X=0.5.

FIG.8 (color online) Like Fig.7, except N||=0.15.

FIG.9 (color online) Like Fig.7, but for N||=0.45, making Doppler broadening important.

Note the expanded horizontal scale in Fig.c.
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FIG. 1: (color online) (a) Dispersion relation for OXB mode conversion for Y = ωc/ω=0.9, optimal

N|| =
√

Y/(Y + 1) and a moderate electron thermal velocity βT = vT /c=0.05, according to various

relativistic, weakly relativistic and classical dielectric tensors. X = ωp/ω is the normalized density.

(b) Detail of Fig.1.a for low N⊥, showing the fast eXtraordinary (FX) branch of the dispersion

relation, the Ordinary (O) one converting into the slow eXtraordinary (SX) which is attracted by

the Upper Hybrid Resonance (UHR) and eventually (Fig.1a) converts into the Bernstein (B) mode.
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FIG. 2: (color online) Like Fig.1a, for βT =0.1.
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FIG. 3: (color online) Like Fig.1a, for βT =0.2.
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FIG. 5: (color online) Like Fig.1a, for βT =0.6.
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FIG. 6: (color online) Detail of the dispersion relation for Y =0.9 and βT =0.2 showing the OX mode

conversion for (a) N|| =
√

Y/(Y + 1)=0.688 and (b) N|| individually optimized for each dielectric

tensor.
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FIG. 7: (color online) (a) Absorption coefficient and (b) optical depth in dimensionless units and

(c) absorption shape factor for βT =0.15 and quasi-perpendicular incidence (N||=0.05) of O-mode

on fundamental electron cyclotron harmonic. R0=1m, λ0=2mm, X=0.5.
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FIG. 8: (color online) Like Fig.7, except N||=0.15.
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FIG. 9: (color online) Like Fig.7, but for N||=0.45, making Doppler broadening important. Note

the expanded horizontal scale in Fig.c.
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