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Abstract. On the basis of the electromagnetic energy balance equation, a quasi-exact
analytical evaluation of the electron cyclotron (EC) absorption coefficient is performed
for arbitrary propagation (with respect to the magnetic field) in a (Maxwellian)
magneto-plasma for the temperature range of interest for fusion reactors (in which EC
radiation losses tend to be important in the plasma power balance). The calculation
makes use of Bateman’s expansion for the product of two Bessel functions, retaining the
lowest order contribution. The integration over electron momentum can then be carried
out analytically, fully accounting for finite Larmor radius effects in this approximation.
On the basis of the analytical expressions for the EC absorption coefficients of both
the extraordinary and ordinary mode thus obtained, (i) for the case of perpendicular
propagation simple formulae are derived for both modes and (ii) a numerical analysis
of the angular distribution of EC absorption is carried out. An assessment of the
accuracy of asymptotic expressions that have been given earlier is also performed,
showing that these approximations can be usefully applied for calculating EC power
losses from reactor-grade plasmas.

1. Introduction

It has been recognised that in the magneto-plasma regimes as anticipated for fusion

reactor operation electron cyclotron (EC) losses may play an important part in the power

balance of the hot plasma core (see, e.g., Albajar et al 2002). Therefore, an accurate and

fast procedure for solving the equation of radiative transfer for EC waves is needed that

can be used in the context of power (and particle) transport calculations. In this paper,

a quasi-exact analytical formula for the absorption coefficient of EC waves valid for

mildly relativistic Maxwellian magneto-plasmas is deduced which allows simplifying the
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calculation of the absorption coefficient and also can be used to determine the accuracy

of still simpler asymptotic expressions as available in literature.

As in the regimes considered the wave damping is weak, the (collisionless)

absorption coefficient α ≡ 2 Imk · S/|S| of a wave having a (real) frequency ω and

a (complex) wave vector k, that is the spatial damping rate of the electromagnetic

energy along the direction of the energy flux S(k, ω), is most conveniently evaluated

starting from the electromagnetic energy balance with the result that (Bornatici et al

1983, Bornatici and Engelmann 1994)

α =
ω

c
(e∗ · εa · e) (1)

where e ≡ E(k, ω)/(4π|S(k, ω)|/c)1/2 is the normalized wave electric field, εa ≡ εa(k, ω)

is the anti-Hermitian part of the (collisionless) dielectric tensor, and c is the speed of

light. On making use of the dielectric tensor expressed as an expansion in electron

cyclotron harmonics, for a magneto-plasma the EC absorption coefficient (1) takes the

form (Bornatici and Engelmann 1994)

α = −π
ω2

p

cω

∞∑
n=1

∫
d3u

γ
δ
(
γ −N‖u‖ − n

ω̄

)
|e ·V∗

n|2R̂nf, (2a)

the δ function accounting for the relativistic EC resonance condition

γ −N‖u‖ − n

ω̄
= 0. (2b)

Furthermore, adopting Cartesian coordinates such that wave propagation is in the x, z

plane,

Vn ≡ n

ω̄N⊥

(
Jn,

ib

n
J ′n,

ω̄N⊥
n

u‖Jn

)
, (2c)

R̂n ≡ n

ω̄

1

u⊥

∂

∂u⊥
+ N‖

∂

∂u‖
, (2d)

with Jn ≡ Jn(b) the Bessel function of the first kind of (integer) order n (n ≥ 1 is

the harmonic number) and argument b ≡ ω̄N⊥u⊥, and J ′n ≡ dJn/db. In (2), ωp is the

electron plasma frequency and ω̄ ≡ ω/ωc with ωc = eB0/mc (> 0) the nonrelativistic

EC frequency; γ ≡ (1 + u2)1/2 with u ≡ p/mc the (dimensionless) electron momentum;

N ≡ kc/ω is the refractive index with the subscript ‖ (⊥) denoting the component

parallel (perpendicular) to the equilibrium magnetic field B0(= B0ẑ); f ≡ f(u⊥, u‖) is

the (gyrotropic) electron distribution function (normalized to unity). In particular, for

an isotropic distribution f = f(γ), one has, cf.(2a), R̂nf = df/dγ upon using (2d) along

with the resonance condition (2b).

With reference to (2a), the factor

|e ·V∗
n|2 =

(
n

ω̄N⊥

)2 ∣∣∣∣
(

ex +
ω̄N⊥

n
u‖ez

)
Jn(b)− ib

n
J ′n(b)ey

∣∣∣∣
2

(3)

as follows from using (2c), accounts for the effects of both the wave polarization and

the finiteness of the (electron) Larmor radius, the latter being weighed by the argument
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b of the Bessel functions. For the evaluation of (3), one usually proceeds to a series

expansion of the Bessel functions in powers of b, retaining only the lowest significant

order terms (Bornatici et al 1983, Bornatici and Engelmann 1994). Here, instead, we

adopt a different procedure based on Bateman’s expansion for the product of two Bessel

functions (Watson 1944, Granata 1990), such an approach having been employed to

evaluate the EC absorption in the context of a (numerical) solution of the dispersion

relation (Granata and Fidone 1991, Albajar 2001). In this way a quasi-exact (QE)

analytical formula for the EC absorption coefficient of a plasma in thermodynamic

equilibrium can be deduced that remains applicable for mildly relativistic plasma

temperatures, except for very low frequencies (ω̄ . 2) which, however, are not important

for the evaluation of the EC power loss of such plasmas, as here most of the EC radiative

power tends to be concentrated in higher harmonics.

The derivation of the QE analytical formula for the EC absorption coefficient is

given in Section 2. In Section 3, for reference the asymptotic expressions for the EC

absorption coefficient for ω̄ À 1 (in which case strong overlap of different harmonic

contributions is present in a mildly relativistic plasma) derived by Robinson (1985) and

by Trubnikov (1979) are recalled for the particularly important case of wave propagation

perpendicular to the magnetic field. A numerical analysis of the analytical result derived

in Section 2 is performed in Section 4, along with an assessment of the accuracy of the

asymptotic expressions for the EC absorption coefficient obtained by Robinson and

Trubnikov. The conclusions are summarized in Section 5. The necessary mathematical

apparatus and details of calculation are described in Appendixes A and B.

2. Quasi-exact analytical evaluation of the EC absorption coefficient

With reference to the u-integration in (2a), let us adopt cylindrical coordinates, for

which d3u = 2πdu‖u⊥du⊥, and express the δ function in a form that makes the

integration over the u⊥-variable straightforward, i.e.,

δ
(
γ −N‖u‖ − n

ω̄

)
=

γ

u⊥
δ
(
u⊥ − u⊥(u‖)

)
(4a)

where

u⊥(u‖) ≡
[(

1−N2
‖
)
(u+ − u‖)(u‖ − u−)

]1/2
, N2

‖ < 1, u− ≤ u‖ ≤ u+, (4b)

with

u± ≡ 1√
1−N2

‖





n

n0

N‖ ±
[(

n

n0

)2

− 1

]1/2


 , n ≥ n0 ≡ ω̄

√
1−N2

‖ (4c)

(N‖ > 0 is considered). As for the u‖-integration, let us make the change of variable

u‖ =
1√

1−N2
‖





n

n0

N‖ +

[(
n

n0

)2

− 1

]1/2

t



 ≡ u‖(t), (5)
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such that the range of integration u− ≤ u‖ ≤ u+, cf. (4b), is mapped onto −1 ≤ t ≤ 1.

With (5) into (4b), one gets

u⊥(u‖) =

[(
n

n0

)2

− 1

]1/2√
1− t2 ≡ u⊥(t2) (6a)

the quantity b ≡ ω̄N⊥u⊥ taking the form

b = xn(N⊥)
√

1− t2 ≡ b(t2) with xn(N⊥) ≡ ω̄N⊥

[(
n

n0

)2

− 1

]1/2

.(6b)

As a result, one gets the absorption coefficient (2a), normalized to ω2
p/cωc, i.e.,

α/(ω2
p/cωc) ≡ ᾱ, in the form

ᾱ = −2π2

n0

∑
n≥n0

[(
n

n0

)2

− 1

]1/2 ∫ 1

−1

dt|e ·V∗
n|2R̂nf, (7)

the integrand being a function of t through u⊥ = u⊥(t2), b = b(t2) and u‖ = u‖(t), as

given, respectively, by (6a), (6b) and (5).

As for the “polarization factor” |e ·V∗
n|2, cf. (3), along with (5) and (6b), one has

|e ·V∗
n|2 =

(
n

ω̄N⊥

)2 {[
|Axz|2 + |ey|2 + Re(iAxze

∗
y)

xn

n

∂

∂xn

]
J2

n+

−
(

xn

√
1− t2

n

)2

|ey|2Jn−1Jn+1 +


 xn

n
√

1−N2
‖




2

|ez|2(tJn)2+

+
xn

n
√

1−N2
‖

[
2Re(Axze

∗
z) + Re(ie∗yez)

xn

n

∂

∂xn

]
(tJ2

n)

}
(8a)

where

Axz ≡ ex +
N⊥N‖
1−N2

‖
ez, (8b)

the argument of the Bessel functions in (8a) being (xn

√
1− t2), cf. (6b). To obtain

expression (8a) use has been made of the relation

[xJ ′n(x)]
2

= [nJn(x)]2 − x2Jn−1(x)Jn+1(x).

Regarding the integration in (7), it is worth noting that the last term of (8a),

proportional to t
[
Jn

(
xn

√
1− t2

)]2
, is odd in t, the rest of (8a), instead, being even

in t.

For reference later on, let us consider explicitly the case of propagation perpendicular

to the magnetic field B0 = B0ẑ, that is, propagation along the x̂-direction. In this case,

the two fundamental propagating modes are decoupled in the coordinates used, the

extraordinary (X) mode being elliptically polarized in the (x, y)-plane, i.e., ez = 0, and
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the ordinary (O) mode being linearly polarized along the ẑ-direction, i.e., ex = ey = 0.

Thus, the polarization factor (8) takes the form

|e ·V∗
n|2(N‖ = 0) =





(
n

ω̄N⊥

)2 {[
|ex|2 + |ey|2 + Re(iexe

∗
y)

xn

n

∂

∂xn

]
J2

n+

−
(

xn

√
1− t2

n

)2

|ey|2Jn−1Jn+1

}
, for the X-mode,

[(n

ω̄

)2

− 1

]
(tJn)2|ez|2, for the O-mode

(9)

with the harmonic number n ≥ ω̄. Note that the polarization factor for perpendicular

propagation according to (9) is an even function of t.

To carry out the t-integration in (7) explicitly, one needs to specify the distribution

function f , which now is assumed to be a relativistic isotropic Maxwellian, for which,

cf. (2d),

R̂nf =
df

dγ
= −µf = − a(µ)

(2π)3/2
µ5/2e−µ(γ−1), (10a)

µ ≡ mc2

Te

, a(µ) ≡
(

π

2µ

)1/2

e−µ/K2(µ), (10b)

Te being the electron temperature and K2(µ) being the Macdonald function. Along with

(10), the EC absorption coefficient (7) is

ᾱ(ω̄, N‖, N⊥) =

√
π

2

a(µ)µ5/2

n0

∑
n≥n0

[(
n

n0

)2

− 1

]1/2

Pn(ω̄, N‖, N⊥)e
−µ

(
n/n0√
1−N2

‖
−1

)

(11a)

where

Pn(ω̄, N‖, N⊥) ≡
∫ 1

−1

dt|e ·V∗
n|2e−yn(N‖)t (11b)

with

yn(N‖) ≡
µN‖√
1−N2

‖

[(
n

n0

)2

− 1

]1/2

. (11c)

The integral (11b) along with (8a) can be evaluated analytically with high accuracy

on making use of Bateman’s expansion for the product of two Bessel functions, cf.

Appendix A, retaining just low order contributions. One thus obtains (the details of

the evaluation of (11b) are given in Appendix B) for propagation at large enough angles
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with respect to the magnetic field,

Pn = πgn

(
n

ω̄N⊥

)2 {[
|Axz|2 + |ey|2 + Re(iAxze

∗
y)

xn

n

∂

∂xn

+

−
(xn

n

)2 n

n + 1
|ey|2

(
1− ∂2

∂y2
n

)
+


 xn

n
√

1−N2
‖




2

|ez|2 ∂2

∂y2
n

+

− xn

n
√

1−N2
‖

(
2Re(Axze

∗
z) + Re(ie∗yez)

xn

n

∂

∂xn

)
∂

∂yn

] |Jn+1/2(zn)|2
xn

+

+
(xn

n

)2 2n + 3

(n + 1)(n + 2)
|ey|2

(
1− ∂2

∂y2
n

) |Jn+3/2(zn)|2
xn

}
,

(12a)

with gn ≡ (2n + 1)!/(2nn!)2, Axz, xn(≡ xn(N⊥)) and yn(≡ yn(N‖)) being defined,

respectively, by (8b), (6b) and (11c); the (complex) argument of the Bessel functions

Jn+1/2 and Jn+3/2 is

zn

(≡ zn

(
xn(N⊥), yn(N‖)

)) ≡ 1

2

(√
4x2

n − y2
n + iyn

)
, (12b)

the angular range for which (12a) is useful in practice being

4x2
n − y2

n > 0, i.e., 2n0 > µN‖/N⊥. (12c)

In particular, for perpendicular propagation, for which yn = 0, cf. (11c), zn = xn =

N⊥
√

n2 − ω̄2 from (6b). For propagation at angles for which condition (12c) is reversed,

i.e., propagation at smaller angles to the magnetic field, it is convenient to replace both

the Bessel functions of the first kind occurring in (12a) by modified Bessel functions of

the first kind, of the same order and real arguments, i.e.,

|Jn+1/2(zn)|2 → In+1/2(z
+
n )In+1/2(z

−
n ) and |Jn+3/2(zn)|2 → In+3/2(z

+
n )In+3/2(z

−
n ), (12d)

the (real) arguments z±n being

z±n ≡
1

2

(
yn ±

√
y2

n − 4x2
n

)
, (12e)

with

y2
n − 4x2

n > 0, i.e., 2n0 < µN‖/N⊥. (12f)

The expressions (11)-(12), to be referred to as quasi-exact analytical formula for the EC

absorption coefficient, are the main result of this paper.

The mode polarization, entering into (12a) via the normalized electric field vector

e, is obtained from the wave equation in terms of the Hermitian part of the dielectric

tensor, which can be taken in the cold-plasma limit. As is well-known (Bornatici et

al , 1983), the cold-plasma approximation is adequate for the harmonics n ≥ 3, in the

practically relevant case ω2 (' (nωc)
2) > ω2

p, as well as for the second harmonic provided

that ω2
p ¿ ω2

c . Instead, the case of the first harmonic, as well as the case of the second

harmonic for ω2
p & ω2

c , must be dealt with differently from the higher (n ≥ 3) harmonics.

However, being concerned with the evaluation of the EC losses from hot plasmas, for
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which the main contribution to the sum over harmonics in (11a) stems from the higher

harmonics, there is no need to treat the low harmonics, and, in particular, the first one,

accurately. In the cold-plasma limit, one has, cf. Eq.(3.1.61), p. 1198, of Bornatici et

al (1983),

ex = iω̄

[
1−

(
1− 1

ω̄2

)
f (i)(ϑ)

]
ey, (13a)

where, cf. Tab.VIII, p. 1196, of Bornatici et al (1983),

f (i)(ϑ) ≡ 2[1− (ωp/ω)2]

2[1− (ωp/ω)2]− sin2 ϑ∓ρ(ϑ)
ω̄2

(13b)

with

ρ2(ϑ) ≡ sin4 ϑ + 4ω̄2

[
1−

(ωp

ω

)2
]2

cos2 ϑ, ϑ ≡ ^(k,B0), (13c)

the minus and plus sign in (13b) referring, respectively, to the O-mode (i = O) and the

X-mode (i = X). Furthermore, cf. Eq.(3.1.62), p. 1198, of Bornatici et al (1983),

ez = − [N (i)]2 sin ϑ cos ϑ

1− (ωp

ω

)2 − [N (i)]2 sin2 ϑ
ex, (13d)

with, cf. Tab.VIII, p. 1196, of Bornatici et al (1983),

[
N (i)

]2
= 1−

(ωp

ω

)2

f (i)(ϑ) (13e)

the (cold) dispersion relation of the mode i.

On making use of (13), the effect of the “polarization” vector e in (12a) can

be expressed in terms of |ey|2
(≡ |Ey|2/

(
4π
c
|S|)). In the cold-plasma limit, the

electromagnetic energy flux S is well approximated by the Poynting vector

P = [a(ϑ)x̂ + b(ϑ)ẑ]Nc
|Ey|2
4π

, (14a)

so that

|ey|2 =
1

N [a2(ϑ) + b2(ϑ)]1/2
, N ≡ N (i), (14b)

with N = N (i) given by (13e), a(ϑ) and b(ϑ) being given, respectively, by Eqs.(3.1.78a)

and (3.1.78b), p. 1204, of Bornatici et al (1983), with n → ω̄.

For the case of propagation perpendicular to the magnetic field, i.e., along the

x̂-direction, for the X-mode for which ez = 0, (12a) reduces to

P (X)
n (N‖ = 0) = πgn

(
n

ω̄N
(X)
⊥

)2 {[
|ex|2 + |ey|2 + Re(iexe

∗
y)

xn

n

∂

∂xn

+

−
(xn

n

)2 n

n + 1
|ey|2

]
J2

n+1/2(xn)

xn

+
xn

n2

1

(n + 1)
|ey|2

[
2n + 3

n + 2
J2

n+3/2(xn)+

−n
∂2|Jn+1/2(zn)|2

∂y2
n

− 2n + 3

n + 2

∂2|Jn+3/2(zn)|2
∂y2

n

]}
;

(15a)
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the second derivatives with respect to yn, being evaluated for yn = 0, are given by (B.12)

and (B.13) of Appendix B. Furthermore (13a) and (14b) yield , for ϑ = π/2,

ex = −i
ω2

p

ω̄ω2

[
1−

(ωp

ω

)2

− 1

ω̄2

]−1

ey ≡ −iA⊥ey, |ey|2 =
1

N
(X)
⊥

, (15b)

and from (15a) one obtains

P (X)
n (N‖ = 0) =

πgn(
N

(X)
⊥

)3

xn

{
(1 + A⊥)2

(n

ω̄
Jn+1/2

)2

− xn

ω̄

[
2A⊥

n

ω̄
Jn+1/2Jn+3/2 +

+
1

2(n + 1)

xn

ω̄
Ln

]}
, (15c)

where

Ln ≡ n
(
J2

n+1/2 + Jn−1/2Jn+3/2

)− 2n + 3

n + 2

(
J2

n+3/2 + Jn+1/2Jn+5/2

)
. (15d)

For the O-mode, for which ex = ey = 0 in this case, (12a) yields

P (O)
n (N‖ = 0) = πgn

xn

(ω̄N
(O)
⊥ )2

∂2|Jn+1/2(zn)|2
∂y2

n

∣∣∣∣
yn=0

|ez|2

=
π

2
gn

xn

ω̄2
(
N

(O)
⊥

)3 (J2
n+1/2 − Jn−1/2Jn+3/2),

(16)

the second form of (16) following on making use of (B.12) of Appendix B and noting

that |ez|2 = [N
(O)
⊥ ]−1. In (15c,d) and (16), the argument of the Bessel functions is

xn = N
(i)
⊥ (n2 − ω̄2)1/2, cf. (6b), and N

(i)
⊥ is the perpendicular (cold) refractive index of

mode i (Bornatici et al 1983). The result (16) for the O-mode has been derived earlier

by solving the corresponding dispersion equation (Granata and Fidone 1991). In the

limit of small finite Larmor radius effects for which a lowest-order series expansion of

the Bessel functions is adequate, the absorption coefficients (11a), (15) and (16) reduce

to the well-known results (Bornatici et al 1983).

3. Asymptotic expressions for the EC absorption coefficient

The EC absorption coefficient (11) contains an infinite sum over harmonics which, for

the case of high-temperature plasmas, has to be dealt with numerically retaining a large

number of terms. This complication is avoided in asymptotic expressions for the EC

absorption coefficient which have been derived using the assumption that both ω̄ À 1

and µ = mc2/Te À 1 (Trubnikov 1979, Bornatici et al 1983 and references therein,

Robinson 1985, Bertelli et al 2005) such that there is strong harmonic overlap. The

asymptotic expressions of the EC absorption coefficient for propagation at an arbitrary

angle to the magnetic field are listed in Bertelli et al (2005) [note that the right-

hand sides of Eqs.(1) and (8) of Bertelli et al (2005) must be multiplied by the factor

a(µ) ≡ (π/2µ)1/2e−µ/K2(µ), cf. (10b)].
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For reference, the asymptotic form of the EC absorption coefficient for perpendicular

propagation is reported, i.e.,

ᾱ(X,O)(ω̄, ϑ = π/2) =
√

π
a(µ)µ5/2

(2ω̄)2
(γ2

0 − 1)3/2

{
1,

γ2
0 − 1

2ω̄

}
eΦ(γ0) (17a)

where

Φ(γ0) ≡ −µ(γ0 − 1) + 2ω̄ − ω̄γ0 ln
γ0 + 1

γ0 − 1

= −µ(γ0 − 1)− 2ω̄
∞∑

k=2

1

(2k − 1)γ
2(k−1)
0

.
(17b)

The first (second) term within the curly brackets in (17a) refers to the X (O)-mode

and the second form of (17b) is obtained on noting that ln γ0+1
γ0−1

= 2
∑∞

k=1
1

(2k−1)γ2k−1
0

(Gradshteyn and Ryzhik 1994, Eq.(7.513), p.52). Upon introducing the parameter

χ ≡ 9ω̄

2µ
, (17c)

the effective Lorentz factor γ0 is solution of the equation

2γ0

γ2
0 − 1

− ln
γ0 + 1

γ0 − 1
=

9

2χ
, (18)

in Trubnikov’s approach (cf. Bornatici et al 1983, p. 1210), whereas

γ0(≡ γ0 (χ)) =

[
4

9

χ

(χ + 1)1/3
+ 1

]1/2

(19)

in Robinson’s treatment (Robinson 1985, Bertelli et al 2005). In particular, using (19)

in (17a), yields

ᾱ(X,O)(χ, ϑ = π/2) =
3
√

π

2

a(µ)µ1/2

[χ(χ + 1)]1/2

{
1,

1

µ(χ + 1)1/3

}
eΦ(γ0(χ)). (20)

For high frequencies and high enough electron temperatures such that χ À 1 is also

valid, in which case (19) yields

γ0(χ) ' 2

3
χ1/3 +

3

4χ1/3
, (21)

to lowest significant order in the factors multiplying exp Φ, (20) reduces to

ᾱ(X,O)(χ À 1, ϑ = π/2) =
3
√

π

2

a(µ)µ1/2

χ

{
1,

1

µχ1/3

}
eΦ(γ0(χ)) (22a)

where now

Φ (γ0(χ)) = −µ

(
χ1/3 − 1 +

9

20χ1/3

)
. (22b)

Note that the result (22) is identical with the one obtained for χ À 1 from Trubnikov’s

equation (18) (Bornatici et al 1983, Eq.(3.2.20), p.1210) which in this limit yields

γ0(χ) ' 2

3
χ1/3 +

3

5χ1/3

as the term of order χ−1/3 in the expressions for γ0(χ) does not contribute to Φ in that

order.
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4. Numerical analysis

The accuracy of the quasi-exact treatment of the EC absorption, cf. Eqs.(11)-(12),

(15)-(16), has been assessed numerically and the results of this analysis are presented

and discussed in the following. The parameters considered have been chosen to be

representative for those of interest for hot fusion plasmas, viz. temperatures in the

range of 30 to 50keV (effectively, temperatures between 10 and 100keV have been

explored) and modestly high frequency, ω̄ = 5 being used here as a typical example. In

addition, results obtained from the asymptotic formulae (see Section 3) are given, for

comparison, although it must be emphasized that the underlying approximations, at

best, are marginally valid in the parameter range under consideration.

Let us start with the case of perpendicular propagation for which the quasi-exact

(QE) absorption coefficient for the X-mode (cf. Eqs.(11a),(15) and (16)) is shown

in Fig.1a as a function of electron temperature Te for ω̄ = 5; the results obtained

from the asymptotic expressions by Robinson (1985), cf. Eqs.(17b), (19) and (20), and

by Trubnikov (1979), cf. Eqs.(17) and (18) (Bornatici et al 1983), as well as those

corresponding to the limit χ À 1 of both those approximations, cf. Eqs.(22), and the

exact result, cf. Eqs.(11) along with (9), see also Bornatici and Ruffina (1989) are

also given. The relative error of the different approximations with respect to the exact

value of the absorption coefficient is shown in Fig.1b. The analogous numerical analysis

for the O-mode is given by Figs.2. In particular, from Figs.1b and 2b it appears that

(i) the QE result is quite accurate for both modes, underestimating the exact result

by less than 1%; (ii) for Te between 25 and 90keV Robinson’s asympotic result (20)

underestimates the exact value of the absorption coefficient of the X-mode by less than

10%, whereas for the O-mode, it overestimates the exact value by less than about 20%

for Te between 15 and (more than) 100keV ; (iii) Trubnikov’s asymptotic result (17)

along with (18) is more (less) accurate than the Robinson’s for the O-mode (X-mode);

(iv) both Trubnikov’s and Robinson’s asymptotic treatment tend to overestimate the

absorption by more than 25% for temperature Te . 15keV , i.e., for temperatures for

which the absorption is weak and harmonic overlap tends to be reduced, cf. Figs.1a

and 2a; (v) for the X-mode, the results obtained adopting Eqs.(22) as valid in the

limit χ À 1 are accurate to within about 10% for Te & 60keV and tend to be more

accurate than Trubnikov’s result for Te & 50keV and Robinson’s result for Te & 80keV ,

cf. Fig.1b; for the O-mode, instead, Eqs.(22) are less accurate than Robinson’s and

Trubnikov’s result for Te & 50keV , cf. Fig.2b. It is to be noted that the differences

between the results given by the asymptotic formulae, are mainly due to using different

values of γ0 in the factor γ2
0 − 1 of Eq.(17a).

As for the propagation at an arbitrary angle with respect to the magnetic field,

cf. Eqs.(11)-(12), the QE result for the angular distribution of the absorption at

ω̄ = 5 is shown in Fig.3a for the X-mode, for electron temperatures Te = 30keV and

40keV , along with the corresponding results obtained from the asymptotic formulae

by Robinson (1985) and by Trubnikov (1979); see also Bertelli et al (2005). The
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curves labelled “QE” refer to the absorption coefficient 2 Imk (normalized to ω2
p/cωc) as

obtained from the numerical solution of the (quasi-exact) dispersion relation (Granata

and Fidone 1991, Albajar 2001). The relative deviation of both the QE result and the

asymptotic results with respect to the “QE” result is shown in Fig.3b. The analogous

numerical analysis for the O-mode is given in Figs.4 . In particular, for the X-mode,

from Fig.3b it appears that (i) the QE analytical absorption coefficient obtained from

the electromagnetic energy balance is practically identical to the one obtained by solving

numerically the dispersion relation; (ii) for almost perpendicular propagation, i.e., for

the angular range 75◦ . ϑ ≤ 90◦ where absorption is strongest, the accuracy of

Robinson’s asymptotic result is better than 10% for Te ≈ 30 to 40keV and better

than Trubnikov’s approximation for ϑ & 83◦ (see also Fig.1b); (iii) over most of the

angular range, namely, for 10◦ . ϑ . 75◦, Trubnikov’s asymptotic result is better

than Robinson’s, the accuracy of the former being better than 10%, whereas Robinson’s

result becomes quite inaccurate specifically for propagation at small angles, typically, for

ϑ . 20◦. Turning now to the O-mode, from Fig.4a it appears that the characteristic non-

monotonous angular distribution of the O-mode absorption is accounted for by both the

QE and “QE” evaluation, as well as by Robinson’s asymptotic treatment. Trubnikov’s

asymptotic result, instead, underestimates the O-mode absorption significantly, with the

only exception of perpendicular propagation, cf. Fig.2b, and fails to reproduce the non-

monotonous behaviour of the angular distribution (Bertelli et al 2005). As it appears

from Fig.4b, (i) the QE absorption coefficient again agrees very well with the “QE” value

obtained from solving the (quasi-exact) dispersion relation numerically (Granata and

Fidone 1991, Albajar 2001); (ii) Robinson’s asymptotic evaluation is accurate by better

than about 20% over most of the angular range, with the exception of the propagation

at small angles (ϑ . 25◦), for which it overestimates the O-mode absorption by more

than 30%.

5. Concluding remarks

In conclusion, the quasi-exact (QE) analytical result presented here provides an

excellent approximation to the EC absorption coefficient of a Maxwellian plasma.

Notwithstanding the lower accuracy of both Robinson’s and Trubnikov’s asymptotic

results compared to the QE treatment, the noticeable practical advantage of these

asymptotic expressions for the absorption coefficient is that they are free from the sum

over harmonics (Bertelli et al 2005), as present in the QE absorption coefficient. Since,

overall, Robinson’s asymptotic form is a quite reasonable approximation to the EC

absorption coefficient in most of the relevant parameter range (effectively, a better one

than Trubnikov’s form), this form can be expected to be a useful starting point for

calculating the effective EC wave power loss from a large hot plasma (cf. Albajar et al

2002). This fact has been confirmed by solving the radiative transfer equation for fusion

plasma parameters, showing in particular that using this approach calculation times are

reduced typically by two orders of magnitude with respect to using the QE form (and
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to the “QE” approach) (Albajar et al 2006).

Figure captions

Figure 1a. The (normalized) quasi-exact (QE) absorption coefficient of the X-mode,

for perpendicular propagation, Eqs.(11),(15) and (16), as a function of the electron

temperature Te, for (ωp/ωc)
2 = 0.1 and ω̄(≡ ω/ωc) = 5. Also shown are the exact

result (Eqs.(11) along with (9), E-curves) and the asymptotic results of both Robinson

(Eq.(20), R-curve) and Trubnikov (Eqs.(17) and (18), T-curve), as well as the χ À 1-

result, Eq.(22).

Figure 1b. Relative error ∆ ≡ (αA − αE)/αE of the absorption coefficient of the

X-mode (the subscripts A(= QE, R, T and χ À 1) and E are the same as the labels in

Fig.1a).

Figure 2a. The same as Fig.1a for the O-mode.

Figure 2b. The same as Fig.1b for the O-mode.

Figure 3a. Quasi-exact (QE) absorption coefficient of the X-mode as a function

of the angle of propagation with respect to the magnetic field, for (ωp/ωc)
2 = 0.1,

ω̄(≡ ω/ωc) = 5 and electron temperatures Te = 30keV (dashed curve) and 40keV

(full curve). Also shown is the absorption coefficient 2 Imk (normalized to ω2
p/cωc),

“QE”-curve, as given by the numerical solution of the (quasi-exact) dispersion relation

(Granata and Fidone 1991, Albajar 2001), as well as the asymptotic results of both

Robinson (R-curve) and Trubnikov (T-curve) (Bertelli et al 2005).

Figure 3b. Relative deviation of both the QE results and Robinson’s and Trubnikov’s

asymptotic results for the absorption coefficient of the X-mode with respect to the “QE”

result, for the same parameters as Fig.3a .

Figure 4a. The same as Fig.3a for the O-mode.

Figure 4b. The same as Fig.3b for the O-mode (Trubnikov’s asymptotic result being

omitted).
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Appendix A. Bateman’s expansion of Bessel functions

Here we collect the two forms of Bateman’s expansion of Bessel functions which we

have used in the evaluation of the integral (11b). Bateman’s expansion (cf. Watson

(1944), Eq.(1) on p. 370) concerns the product of two Bessel functions of argument

x and (non-negative integer) order µ and ν which typically is expressed in terms of a

series of Bessel functions of argument 2x and order µ + ν + 1 + 2m, the sum being over

m = 0, 1, 2, . . ..

For the specific case of the square of a Bessel function of (non-negative) integer

order one has (Granata 1990)

xJ2
n(x) =

∞∑
m=0

gn,mJ2n+4m+1(2x), gn,m =
(2n + 4m + 1)(2n + 2m)!(2m)!

[2n+2m(n + m)!(m)!]2

= gn

[
J2n+1(2x) +

2n + 5

4(n + 1)
J2n+5(2x) + . . .

]
, gn(≡ gn,0) =

(2n + 1)!

(2nn!)2
, (A.1)

to be referred to as the first form of Bateman’s expansion. One should note that here

the general term of the series contains a Bessel function the (odd) integer order of which

is even higher by 4 than the order of the Bessel function in the preceding term which

guarantees a rapid convergence of the series (A.1). More quantitatively, retaining the

lowest order term of the expansion is accurate to better than 1% for x . 6 and n ≥ 4

as one can see from Fig.(A1) where the ratio rn(x) ≡ J2n+5(x)/J2n+1(x) of the Bessel

functions present in the first two terms of the series is shown. In particular, if finite

Larmor radius (FLR) effects are small, i.e., for x ¿ 1, one has rn(x) ∝ x4, that is, FLR

effects are fully accounted for to first and second order by just retaining the lowest order

term in the expansion (A.1).

For the product of two Bessel functions of (positive) integer order different by 2,

one has (Granata 1990)

xJn−1(x)Jn+1(x) =
gn

n + 1

{
nJ2n+1(2x)

[
1 +

n(2n + 5)

4(n + 2)(n + 3)
rn(2x)

]
+

−2n + 3

n + 2
J2n+3(2x)

[
1 +

3(n + 2)(2n + 7)

4(n + 3)(n + 4)
rn+1(2x)

]
+ . . .

} (A.2)
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Figure A1. The ratio rn(x) ≡ J2n+5(x)/J2n+1(x) as a function of x for different
values of n.

(second form of Bateman’s expansion). It appears that in this case the order of the

Bessel functions in the expansion progresses by 2 and, if the two lowest-order terms

containing the Bessel functions of order (2n + 1) and (2n + 3) are retained in (A.2), the

accuracy of this approximation is again given by the quantity rn(x).

Appendix B. The evaluation of the integral (11b)

The integral (11b) comprises two terms related to the even (in t) and odd (in t) parts

of the polarization factor (8a),

Pn = 2

∫ 1

0

dt
[|e ·V∗

n|2even cosh
(
yn(N‖)t

)− |e ·V∗
n|2odd sinh

(
yn(N‖)t

)]

= 2

∫ 1

0

dt

[
|e ·V∗

n|2even − |e ·V∗
n|2odd

1

t

∂

∂yn(N‖)

]
cosh

(
yn(N‖)t

)
. (B.1)

Hence, using (8a) explicitly, the calculation of the expression (B.1) amounts to the

evaluation of the integrals




i1
i2
i3


 ≡

∫ 1

0

dt




[
Jn

(
x
√

1− t2
)]2

√
1− t2

[
x
√

1− t2Jn−1

(
x
√

1− t2
)
Jn+1

(
x
√

1− t2
)]

[
tJn

(
x
√

1− t2
)]2




cosh(yt), (B.2)

related to the even (in t) part of (8a), and

i4 ≡
∫ 1

0

dt t
[
Jn

(
x
√

1− t2
)]2

sinh(yt), (B.3)

for the odd part of (8a), with ip ≡ ip(x, y) and p = 1, 2, 3, 4. Both i3 and i4 can be

expressed in terms of i1, i.e.,

i3 =
∂2i1
∂y2

, i4 =
∂i1
∂y

, (B.4)
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while the evaluation of both i1 and i2 can be carried out on making use of Bateman’s

expansion of the product of two Bessel functions. With the first form of Bateman’s

expansion, to lowest order, i.e. with

xJ2
n(x) = gnJ2n+1(2x), gn ≡ (2n + 1)!

(2nn!)2
,

cf. (A.1) of the Appendix A, the integral i1 of (B.2) can be conveniently written

i1(x, y) =
gn

x

∫ 1

0

dt√
1− t2

J2n+1

(
2x
√

1− t2
)

cosh(yt) (B.5)

=
π

2

gn

x
×





|Jn+1/2(z)|2, z ≡ 1

2
(
√

4x2 − y2 + iy),

for 4x2 − y2 > 0, i.e., (cf.(6b) and (11c)), 2n0 > µN‖/N⊥;

In+1/2(z
+)In+1/2(z

−), z± ≡ 1

2
(y ±

√
y2 − 4x2),

for y2 − 4x2 > 0, i.e., 2n0 < µN‖/N⊥.

(B.6)

The inequalities occurring in (B.6), respectively, characterize propagation at large

(upper entry) and small (lower entry) angles to the magnetic field.

The result of the upper entry of (B.6) is obtained on applying Eq.(6.739) of

Gradshteyn and Ryzhik (1994), along with the property that Jν(z
∗) = [Jν(z)]∗, cf.

Eq.(9.1.40), p. 361 of Abramowitz and Stegun (1970), the argument of the Bessel

function being complex. The result of the lower entry of (B.6), on the other hand,

follows from (B.5) with z → iz+ and z∗ → −iz− = (iz)∗, so that Jn+1/2(z)Jn+1/2(z
∗) →

Jn+1/2(iz
+)[Jn+1/2(iz

−)]∗ = In+1/2(z
+)In+1/2(z

−), the equality following on expressing

the Bessel function of imaginary argument in term of the modified Bessel function of

the first kind of real argument, i.e., Jn+1/2(iz) = ei(n+ 1
2
)π
2 In+1/2(z), cf. Eq.(9.6.3), p.

375 of Abramowitz and Stegun (1970). It is worth noting that, whereas Bateman’s

expansion is such that a bilinear form of Bessel functions is reduced to a linear form,

the integration (B.5) again produces a bilinear form of Bessel functions.

As for the integral i2 in (B.2), on making use of the second form of Bateman’s

expansion to second order, cf. Eq.(A.2) of the Appendix A, i.e.,

xJn−1(x)Jn+1(x) =
gn

n + 1

[
nJ2n+1(2x)− 2n + 3

n + 2
J2n+3(2x)

]
,

one has

i2 =
gn

n + 1

[
n i

(1)
2 − 2n + 3

n + 2
i
(2)
2

]
, (B.7)

where


i
(1)
2

i
(2)
2


 ≡

∫ 1

0

dt
√

1− t2




J2n+1(2x
√

1− t2)

J2n+3(2x
√

1− t2)


 cosh(yt)
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=

(
1− ∂2

∂y2

) ∫ 1

0

dt
1√

1− t2




J2n+1(2x
√

1− t2)

J2n+3(2x
√

1− t2)


 cosh(yt). (B.8)

The two integrals (B.8) are of the same type as the integral occurring in (B.5); thus

i
(1)
2 =

x

gn

(
1− ∂2

∂y2

)
i1(x, y) (B.9)

and

i
(2)
2 =

(
1− ∂2

∂y2

)(
x

gn

i1(x, y)

)

n→n+1

=
π

2

(
1− ∂2

∂y2

)
×





|Jn+3/2(z)|2

In+3/2(z
+)In+3/2(z

−)

(B.10)

the upper and lower entry of (B.10) corresponding, respectively, to the conditions

indicated in (B.6). With (B.9) and (B.10), (B.7) yields

i2 =
π

2

gn

n + 1

(
1− ∂2

∂y2

)
×





[
n|Jn+1/2(z)|2 − 2n + 3

n + 2
|Jn+3/2(z)|2

]

for upper entry conditions of (B.6);

[
nIn+1/2(z

+)In+1/2(z
−)− 2n + 3

n + 2
In+3/2(z

+)In+3/2(z
−)

]

for lower entry conditions of (B.6).

(B.11)

For the case of perpendicular (N‖ = 0) propagation, for which yn = 0, cf. (11c), the

second derivatives with respect to y occurring in both i3, cf. (B.4), and i2, cf. (B.11),

are to be evaluated for y = 0, with the result that

∂2

∂y2
|Jn+1/2(z)|2

∣∣∣
y=0

=
1

2

[
J2

n+1/2(x)− Jn−1/2(x)Jn+3/2(x)
]
, (B.12)

and

∂2

∂y2
|Jn+3/2(z)|2

∣∣∣
y=0

=
1

2

[
J2

n+1/2(x) + J2
n+3/2(x)− 2n + 3

x
Jn+1/2(x)Jn+3/2(x)

]
, (B.13)

(B.13) following from (B.12) with n → n + 1 along with the recurrence relation

Jn+1(x) = 2n
x

Jn(x) − Jn−1(x). Note also that i4, defined in (B.3), is identically zero

for y = 0.
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