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Abstract 

Sputtering of tungsten by simultaneous incidence of gaseous and non-volatile ions is an 

important field of research for nuclear fusion with magnetically confined plasmas. In order to 

investigate the underlying processes in detail, W layers deposited on graphite and Si 

substrates have been irradiated simultaneously with beams of 12 keV  and 9 keV  ions. 

The dynamics of W sputtering as well as the accumulation of implanted C and D was studied 

in-situ by ion beam analysis (IBA) using 2.5 MeV  ions. In this work, particularly the 

sputter yield of W and the implantation of C and D as a function of the C fraction in the 

incident flux is discussed. Comparison of experimental data to TRIDYN simulations reveal a 

strong contribution of surface roughness to W sputtering and C implantation. In comparison 

to the influence of roughness, the contribution of chemical effects appears negligible.  
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1 Introduction 

All major design studies of future fusion research and reactor devices employ several 

different plasma facing materials depending on the vessel location [1]. For regions subject to 

high particle fluxes such as divertor and baffle structures tungsten is envisaged as plasma-

facing material as reported e.g. in [2, 3, 4]. Therefore, bombardment of tungsten by 

simultaneous incidence of carbon and deuterium ions is an important field of research for 

nuclear fusion. 

Results from the ASDEX-Upgrade tungsten-divertor experiment show that the erosion 

of tungsten is dominated by impact of impurity ions where C, W and O are the most common 

species [5]. With simultaneous bombardment by ions of D and C projectiles the sputtering 

processes and target modification will depend on the ratio of the incident species and will for 

example lead to a competition between W erosion and growth of a protective layer containing 

carbon and deuterium [6]. In this respect, the balance point between the two behaviours will 

be of particular importance, since it separates two qualitatively different processes. The 

physics model for the description of the surface erosion becomes more complicate because 

the properties of the material mix (W and C with a minor fraction of D) will be generally 

different from those of the original target material.  

Laboratory weight-loss experiments on simultaneous bombardment of high-Z materials 

with hydrogen isotopes and carbon projectiles have been reported previously [7, 8]. The 

experimental results, particularly regarding total erosion yields, cannot be explained by the 

linear superposition of processes resulting from mutually independent irradiation of tungsten 

with carbon and hydrogen [7]. The understanding of the processes involved was further 

developed and reported in [8]. One observes that pure carbon bombardment leads to 

continuous tungsten erosion only at elevated temperatures of 1073 K, where diffusion causes 
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continuous depletion of carbon from the surface. This effect starts already at much lower 

temperature in presence of incident hydrogen ions. However, direct experiments with variable 

C fraction in the incident flux are not possible with installations producing single ion beam.  

A new Dual Beam Experiment (DBE) has been designed and implemented at IPP 

Garching, which allows a much wider parameter range and species selection, than accessible 

in previous experiments [9]. As an improvement over existing comparable devices [10], it 

allows for the first time in-situ ion beam analysis of irradiated samples. While in the previous 

experiments erosion and implantation processes were quantified by measuring the weight 

change of the sample, the new setup allows observing the evolution of the sample 

composition as a function of incident ion fluence. The present work discusses experimental 

results for W sputtering and C and D implantation as a function of the C fraction in the 

incident beams. The obtained experimental data are compared to simulations with the Monte-

Carlo code TRIDYN [11]. 

2 Experimental 

The experiments were performed with mass-separated 12 keV  and 9 keV  ions 

with energies choosen to obtain maximum beam flux densities. It is assumed that each species 

projectile atom has an incidence energy of 6 keV and 3 keV respectively. The C-Kr potential 

used in the TRIDYN code to describe the interaction between the projectiles/recoils and target 

atoms is a valid approximation for the choosen energies extending down to values of ≈ 50eV, 

where the binary-collision approximation ultimately breaks down. Therefore, validation of the 

TRIDYN model at these energies allows finally to draw conclusions also for the lower ion 

energy range expected in  fusion devices. Ion beam analysis (IBA) with 2.5 MeV 
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was performed in-situ between the bombardment sessions, allowing the acquisition of the 

evolution of surface composition with increasing fluence. The use of W layers as a 
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bombarded sample allows to use Rutherford back-scattering (RBS) for the measurement of 

the W areal density with an accuracy of 1%. The change of W areal density is calculated as a 

difference between the initial and the post-bombardment values. The main error source is the 

uncertainty of the stopping power, which cancels out since the decrease of the areal density is 

measured relatively to the initial value. The amount of implanted C and D was measured 

using the nuclear reaction 12C(3He,p)14N [12] and D(3He,p)α respectively. These 

measurements were evaluated using a reference a-C:D layer with known D and C areal 

densities with a resulting accuracy <10%. Further details of the experimental setup, as well as 

of the measurement technique are comprehensively described in [8]. 

The sample W layers (thickness ≈280 nm±10%) were deposited by magnetron onto Si 

single crystal wafers and onto polished C surfaces with an intermediate Cu layer (thickness 

≈380 nm±10%) in the same process. The thickness of the W layer was always chosen to be 

large enough to prevent interaction of the projectiles with the other layers. The projectile 

ranges of 6 keV C and 3 keV D are RC = 10-15 nm and RD = 40-50 nm respectively, 

depending on surface composition. Further details on structure and properties of the W layers 

can be found in [13]. Figure 1 shows images of the surface of W layer deposited on C and Si 

substrate respectively, obtained by atomic force microscopy. The W layer on C substrate 

sample shows much higher roughness level with RMS (root mean square) roughness of 

Ra=32 nm. Since Ra ≈ RC, RD, the surface roughness must be taken into account. Samples 

with polished Si substrate are distinguished by much better smoothness with RMS roughness 

of Ra=3.7 nm. The surface of these samples can be assumed smooth, since Ra << RC, RD and 

surface effects can be neglected. The different surface roughness of the W layers is a direct 

result of the differences in the substrate material’s surface roughness as the used Si single 

crystal wafers are smooth on an atomic scale while graphite was only mechanically polished.  
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3 Results and discussions  

3.1 Bombardment with C ions 

Figure 2 shows the change of the surface composition of both smooth (Si substrate) and 

rough surfaces (graphite substrate) in comparison to the initial state with increasing irradiation 

fluence. Open symbols denote the smooth surface, while filled symbols represent 

experimental data for the rough surface. The squares show the evolution of the concentration 

of implanted C. At the same time, W concentration decreases by sputtering. In comparison to 

the smooth W surface on Si substrate, the W layer on the C substrate shows a higher W 

sputter yield, as well as a slower C implantation rate, while W is still sputtered at a fluence of 

2.2×1022 m-2. In contrast, the smooth surface sample shows a coverage with a protective C 

layer at fluences >7×1021 m-2. The corresponding suppression of W sputtering is indicated by 

the constant W areal density.  

Simulation with TRIDYN [11] shows that the evolution of the surface composition can 

be accurately reproduced for the smooth surface (on Si substrate), while experimental values 

for the rough surface (on graphite substrate) show a strong deviation. This behavior can be 

explained only by the presence of roughness, since other surface properties and bombardment 

parameters are identical. The approach suggested by M. Kuestner et.al. attributes a certain 

distribution of local incidence angles to each surface [14], [15]. However, in the present 

implementation of TRIDYN, this model cannot take into account the modification of surface 

composition and change of surface topography. The implementation of the effect of 

roughness in the current Monte-Carlo model will require a considerable research effort. 

Therefore, in a first attempt to understand this problem, the real angle distribution was 

approximated assuming an average incidence angle, which is not necessarily the same as the 

actual macroscopic value. The assumed angle can be interpreted as the most probable 

incidence angle in the angle distribution function. In our simulation shown in Figure 2 an  
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incidence angle of α = 38° had to be used to obtain the best fit to the experimental data.  

3.2 Simultaneous bombardment with D and C ions 

The results of the bombardment of rough W surfaces with D and C ions at beam 

incidence angles of α = 15° are shown in Figure 3. The surface of the W layer under D 

bombardment is always rough because of layer blistering [13]. Figure 3(a) and (b) show the 

dependence of the W sputter yield YW and of the equilibrium amount of C implanted, Cimpl , as 

a function of C fraction, fC , in the incident flux. Filled circles correspond to values measured 

after reaching equilibrium conditions, e.g. after the elemental composition does not change 

any more. Since after fC > 13%, surface is covered by protective C layer (infinite amount of 

implanted C at equilibrium), no W atoms can be sputtered any more, indicating the transition 

point from W sputtering to C layer growth. However, at fC = 15% continuous W sputtering 

was also observed, which can result from deviations in surface roughness conditions. Thus, 

the transition point is located to be between 13% and 16.5% at the given experimental 

conditions. Open circles represent the initial value of YW (Figure 3a), which correspond to 

extremely small fluences and can be obtained by extrapolation. At these conditions, a certain 

C amount is already implanted and the obtained YW values can be used for the understanding 

of W sputtering by multi-species bombardment. The experimental data clearly indicate that 

both steady-state values of YW and Cimpl increase with increasing fC, until the transition point is 

reached.  

TRIDYN simulation with an actual incidence angle of α = 15° results in a strong 

underestimation of YW and an overestimation of Cimpl. It also underestimates the transition 

point by a factor of 2. This deviation indicates significant contribution of those effects, which 

are presently ignored by the model. Among the relevant process, only chemical interactions 

and/or the effect of roughness may lead to the observed deviations. In order to approximate 
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the roughness effect, TRIDYN simulations with α = 38°, taken from preliminary pure C 

bombardment experiment (see subsection 3.1), were performed. Although, the simulation 

cannot reproduce correctly the transition point, which is in the model found at fC > 20%, it 

approximates reasonably the experimental values of of YW and Cimpl. From this observations it 

can be concluded that the contribution of roughness is significant and should be studied more 

accurately, while the chemical interactions will play only a minor role in case of continuous 

W sputtering. One should take into account that chemical sputtering of implanted C by D 

shifts the transition point towards higher fC values, because of extra removal of C from grown 

C layer.  

The different masses of projectiles and W target atoms strongly reduce the energy 

transferred to the W atoms. W atoms may escape from the material only, if they gain 

sufficient momentum towards the surface and are close enough to the surface (<10nm), to 

reach it before being completely stopped. Therefore, the bulk composition, as well as 

collisional cascades in the depth of the material can be neglected and YW can be well 

approximated by the linear contribution of the W sputter yields due to C projectiles 

YC = 0.417 (taken from the pure C bombardment experiment) and D projectiles YD = 0.0098 

[13]: 

D
D

C
CW YfYfY ×+×=  

where fC and fD are the C and D fractions in the incident flux. This approximation is further 

justified by the similar surface binding energies of C and W. However, the model cannot 

describe the target evolution from pure tungsten to the steady state mixed C/W surface and 

also cannot predict the transition point. It can only predict the value of YW for W sputtering at 

steady state conditions. For C-fractions beyond the transition point to continous C-layer 

growth, the model is only valid for the initial pure W surface as long as the amount of 

implanted carbon is negligible. Furthermore the model breaks down at projectile energies 
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where also W atoms from recoil cascades in the bulk have sufficient energy to escape the 

target. 

Figure 3(c) shows the D retention in the W layer as a function of the C fraction in the 

total incident flux (D+C) after a total fluence of 4×1022 m-2±30%. Apart from fC = 18%, the D 

retention is approximately equal for all fC values. The scattering of the data is attributed to 

different surface roughness conditions, which may slightly vary between the samples. This 

similarity in D retention can be explained, taking into account the limited depth of the W 

layer, and the presence of Cu as a diffusion barrier. These factors lead to limited number of 

traps, depending only on the thickness of the W layer (since structure of all layers is the 

same). Since D atoms cannot diffuse into the substrate, all D is trapped within the depth range 

of the analysing technique. In addition to voids and displacement traps in W, the fast growth 

of the C layer provides chemical bonding of D in grown C-D films, which increases strongly 

the amount of D retained at fC = 18%. 

4 Conclusions 

Sputtering of W and implantation of C and D were studied as a function of the C 

fraction in the incident flux of C and D ions. Preliminary experiments with pure C 

bombardment show that surface roughness can increase the sputter yield of W and decrease 

the C implantation rate. With respect to the latter, the roughness produces a similar effect than 

chemical sputtering resulting in elevated sputtering of implanted C, so that these processes 

cannot be easily separated [9]. Increased sputtering of C is the main reason of the shift of the 

transition point from ≈7% predicted for smooth surfaces to ≈15% for experimental rough 

surfaces, because the enhanced erosion at the resulting higher incidence angles inhibits the 

growth of a protective C layer. TRIDYN simulations provide a reasonable approximation of 

the experimental results with the assumption of an effective mean incidence angle, which 
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indicates that the roughness effect is the most significant contribution to the observed 

phenomena. At the same time, chemical erosion of implanted C plays only a minor role at 

steady-state W erosion. For steady state conditions, the sputtering of W surfaces by incident 

D+C can also be approximated by the linear contribution of the incident species to the total 

sputter yield. At the same time D retention is limited by the number of available traps, so no 

significant differences in retention can be observed in experiments with W layers. 
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List of figure captions 

Figure 1. Surface topography taken by AFM of (a) rough surface (W on C) and (b) smooth 

surface (W on Si). Axis units are microns. View angle is parallel to the horizontal plane of 

the surface. 

Figure 2. Change of surface layer composition under bombardment with C ions at normal 

incidence angle. The graph shows the areal densities of C and W as a function of incident 

C fluence. Points denote experimental data, while solid and dotted curves represent 

TRIDYN calculations for normal incidence angle and 38° incidence angle respectively. 

Figure 3. Sputter yield of tungsten, YW, (a), amount of implanted carbon, Cimpl, (b) and 

amount of retained D (c) as a function of the C fraction in the total incident flux of D and C 

ions. The results were obtained using samples with W layers on graphite substrate. 
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