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Abstract
Bayesian probability theory is employed to derive robust, outlier tolerant methods for the
estimation of a quantity and the determination of the uncertainty associated with this es-
timation given a set of data. The procedure is applied to the estimate of the Newtonian

constant of gravitation GG yielding
G = 6.67414(24) - 107 Mm3kg s 2

This value is in good agreement with the recently published value of the 2002 CODATA
adjustment but offers a four fold reduced, rigorously calculated uncertainty. The uncertainty
reflects - unlike results from the conventional least squares analysis - the quoted uncertainties

of the data as well as the data scatter.



I. INTRODUCTION

The adjustment of physical constants and conversion factors is an important task relevant
for the whole physics community. It is repeatedly carried out by the international CODATA
committee. Among all physical constants the estimate of the Newtonian constant of gravi-
tation is a particularly simple problem since this constant does not correlate with any other
fundamental constant. Given a set of data {d;} with associated uncertainties {o;} (hereafter
also abbreviated by d and &) the Newtonian constant G is - under certain assumptions -

estimated by the weighted arithmetic mean well known to every physicist.
G=u’(G)-Y difo; , W(G)=1/) 1/} . (1)

This result has quite a startling property. If the data {d;} is stretched with respect to G by

an arbitrary factor ~y

~

di = di+(d; — G) , (2)

the estimate G remains the same (which is acceptable) but the uncertainty u(G) remains
unchanged under such a transformation (which is odd). In other words, the uncertainty u(G)
associated with the estimate G (2) depends only on the set of data uncertainties but not on
the scatter of the data. This is an important deficiency in practice. It will be shown below
that (1) rests on the strong assumption that {d;} are samples from Gaussian distributions
with mean G and exactly known variances o2. This assumption is justified only in very rare
cases. It will be relaxed below. We shall assume instead that the quoted uncertainties of the
data may be wrong by an unknown common factor. Mohr and Taylor [1] have also considered
this assumption in an attempt to make the available data consistent. Conceptually this is
a highly debatably assumption, but technically it removes the discrepancy between the
scatter of the data and the quoted uncertainties. It is the Bayesian treatment of section II
which allows to view the estimate (1) as the expectation E(G) of a probability distribution
(associated with the given information) and the squared uncertainty u2(G) as the variance
var(QG) of that distribution.

We shall then introduce a generalization of the common distributional assumption. In
the sense of the maximum entropy principle [2] the Gaussian form of a distribution results
from the knowledge of only mean and variance. An infinite manifold of distributions can be

constructed from the knowledge of mean and variance (or standard derivation). A particular
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interesting choice is the Laplace distribution. It has of course lower entropy than the Gaus-
sian but offers interesting properties. While in the Gaussian case data point d; contributes
(d; — G)?/0? to the overall misfit, for the Laplace distribution the contribution is |d; — G|/0;.
It is immediately clear that data with values far off the mainstream, which are usually called
outliers, have a much more pronounced influence on the misfit for a Gaussian rather than
a Laplace likelihood. This argument is of course in favor for the Laplace distribution for
all sets of data which do not obey the strong assumption that their sampling distribution is
Gaussian.

It would be an uncomfortable situation if we were left with a choice between the two on
the basis of a qualitative argument or even as a matter of taste. Fortunately the relative
performance can be quantified within the frame work of Bayesian probability theory. The key
word is here Bayesian model comparison. We shall also introduce a third likelihood model
function into the game which keeps the Gaussian character for the mainstream data and
turns gradually over to a Laplace behaviour for more distant measurements. The function
offering this is a hyperbolic sech of argument |d; — G|/o;. Not surprisingly these three
different forms of the likelihood function result in general in different pairs of estimates for
E(G) and var(G). Within Bayesian probability theory the seeming dilemma of choosing
one result out of three is resolved by a weighted mean of the three results with weights equal
to the respective model probabilities.

This paper assumes a basic familiarity of the reader with Bayesian probability theory.
It is the central tool employed in this paper and a considerable amount of literature on
the subject is available. As a good introduction I suggest the text books by Sivia [3] and

Gregory [4]. Shorter summaries can be found in the introductory parts of [5] and [6].

II. THE GAUSSIAN LIKELTHOOD

In this section we investigate and extend the Gaussian likelihood. We start with a deriva-
tion of (1) employing the Bayesian language. Given a set of data {d;} with exactly known
associated variances {o?} the least informative (maximum entropy-) distribution encoding

this knowledge is a Gaussian [2]

p(cZ]G,&,f):{Ho_;ﬁ}exp{_%z(di;%z} . (3)




p(cﬂG, g, I) is the sampling distribution of the data given G' and &. If considered as a function
of G given d and & it is called the likelihood of G. The likelihood of G is the basic information
required to calculate the target quantity p(G |J; 7, 1), the probability distribution of G given

d and &. The relation between the two distributions is provided by Bayes’ theorem.
p(G|d.3,1) = p(GIT) - p(d|G, . 1) /p(dl&, T) - (4)

p(G|I) is called the prior distribution for G which summarizes the knowledge about G before
considering the data. We shall take it flat throughout this paper

1

p(G|I) = G _q.

Gmin S G S Gma:v ) (5)

and zero otherwise. The interval [G,in, Gmaz| is assumed to include the true value of G
which is unknown. p(d|@, I) is called the evidence of the data. It follows from the Bayesian

marginalization rule

-

pdlG, 1) = / p(GII) - pld|G. ., T)dG . (6)

The numerical value of p(d|, I) is the probability that the data represent fluctuations about
an unknown target value G regardless of what the numerical value of G is.

A more convenient form of (3) can be derived using the definitions

N 1 ND d; ND? d?
D B R D D= S D D= (7)

This yields

p(d|G, 3, 1) = (H ai\l/ﬁ> exp {—%(G —D)? — %W} : (8)

i
N is the number of data and AD? the variance defined in the usual way as

var(D) = AD? = D? — D .

The posterior distribution of G' given d and & is then

1 N —2 N——
| (H m—) 0 {~g(@ =D = B} . (10

3

- I
p(ald a1 = 24 ;

p(d|a, 1)
The posterior distribution of G given d and & is the most detailed result of a Bayesian

analysis. It is sometimes both, possible and desirable to characterize it in terms of a few
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numbers. We use throughout this paper mean and variance of the posterior distribution.
Other choices as for example mode or median and arguments of tail areas are also in use
and may be more informative for skew distributions. Mean and variance of (10) are given
by

E(G) =D, var(G) = p*/N , (11)

and we are back at the results already cited in the introduction (1). It is interesting to
note, that the exponential in (10) depends on the data only through D, p?> and D2. The set
D, p? and D2 is called a sufficient statistic of the data in a Gaussian likelihood. A sufficient
statistic smaller than the number of data exists only in exceptional cases and the Gaussian
form of the likelihood (10) is an example.

The weakness of (11) has already been discussed in the introduction. A possible mod-
ification of the likelihood (3, 8) consists of introducing a scaling factor o common to all
uncertainties but of unknown magnitude. Such a factor, if properly chosen reduces the in-
consistency of the quoted data uncertainties and the data scatter. The modified likelihood,

which we mark by an additional discrete model variable A, is then

SO 1o\ 1 N S —
p( |G,U,O[,M1,I) = (HW) a—NeXp{—W(G—D) — 2a2p2AD2} . (]_2)

The joint posterior distribution for G and « becomes using Bayes’ theorem

p(Ga Oé|(i; 57 M17 I) = p(au) : p(G|I) : p(d_]Ga 57 Q, M17 I) / p(cﬂ&’, M17 I) : (13)
(13) requires the specification of a further distribution p(«|I). In the absence of any informa-
tion about the magnitude of o prior to taking notice of the data, we use the transformation

invariant uninformative Jeffreys’ prior [3]

1 1 1
.- <a<B. 14
2ln B a’B_a_ (14)

p(a|B,I) =

In a strict sense (14) is only transformation invariant for support parameter B — oco. In this
limit (14) is no longer normalizable and becomes improper. At this stage we stay with the
bounded normalized form (14) and discuss the limit where appropriate. The joint posterior

for G and « is now fully specified and can be used to calculate moments

B(G™a™) = / a"da / GmAGH(G, a|d. &, My, T) (15)



Interesting cases are (m = 0,1,2,n = 0) und (m = 0,n = 0,1,2) to estimate means and
variances for G und a. Let us now assume that G,,;,, Gpee, and B have been chosen so
large, that the limits of integration in (15) can be extended —oo < G < o0 and 0 < o < 0
without changing the values of the definite integrals in (15) to any prescribed precision. Both
integrations can then be done analytically. Imagine to perform the a-integration first. It
will destroy the Gaussian structure of the likelihood since the result is a student distribution.
It has the same maximum position G = D as (12) but a width which is now proportional
to (AD?)'/? rather than p. The step of a-integration couples the data scatter and the data
uncertainties. Results of a subsequent G-integration are then

E(G)=D , war(G)= AD? . (16)

o= (5F) o (457) /(%)

NAD? | 2 [r(%;] a7

var(a) = 27 N3 (T
2

(16) and (17) have been applied to the data set used for the CODATA_98 evaluation
[7]. The reason that we stay at this stage with the CODATA_98 data set is that the
CODATA _02 data set contains conceptual mistakes which will be discussed and corrected
after the Bayesian procedures have been established and tried on the ’98 data set. Moreover,
the '98 data set contains a measurement far off the mainstream [8] such that is was neglected
in the 98 evaluation of the point estimate. It gave, however, rise to an arbitrary enhancement
of the calculated uncertainty by the CODATA committee. The aim of the present paper
is to make data censoring and ad hoc adjustments superfluous by developing sufficiently
robust methods. In order to avoid misunderstandings I want to emphasize at this point that
I keep the highest regard for the painstaking, formidable CODATA task of evaluating the
validity of experiments performed at various excellent laboratories around the world. My
point is different: once an experiment has been identified as valid and state of the art, the
numerical result of its measurements, point estimate and uncertainty should be accepted.

The first row in Table I shows the least squares result (1). The second row shows results

from (16) and (17). The very large expectation value E(«) shows the extreme inconsistency

7



TABLE I: Point estimates and uncertainties of the gravitational constant employing the likelihoods

proposed in this paper. Data are taken from [7].

MODEL et E(a) Mod-prob
LSQF 6.6818(3) - -
GAUSS 6.6818(65) 24.7(6.7) 0.002
LAPLACE 6.6739(23) 10.5(3.9) 0.418
COSH! 6.6751(41) 11.4(4.1) 0.580

of this data set due to the far away high precision measurement of Michaelis et al. [8]. This
is also reflected in the increase of the uncertainty of G' by a factor of 22. The last entry in
line 2 displays the probability that the model employing [1] explains the data satisfactorily
when compared to the models employing the alternative likelihood functions discussed in

the following two sections. The calculation of these numbers will be addressed in section V.

III. THE LAPLACE LIKELTHOOD

The information assumed available, mean and variance, can of course be used to specify
alternative distributions albeit with lower entropy than the Gaussian. We label with M, a
distribution which uses the modulus rather than the square as a distance measure. This is,
properly normalized

T o 1 1 1
p(dIG. &, 0, My 1) = (Hg) a—Nexp{—;Z

[ )

g;

di_G‘} . (18)

The posterior for G and « is again obtained employing Bayes’ theorem with assumptions
on p(G|I) and p(«|I) as before. The calculation of moments from the posterior is not as
simple as for M;. But surprisingly it can be done analytically. To understand this, we point
out that the log-posterior is a polygon as a function of G. Assume now a re-labeling of the
data such that d; < d;y; for all 7. The case dj = dj; can be absorbed by dropping dy; and
changing 1/0y to 1/0y + 1/0k1. We see then that for G < d; the log-posterior is a straight



line as a function of G' with slope up to a factor of 1/«

so=Y 1/o;. (19)

i
For the interval d; < G < dy data point d; contributes a negative slope —1/07 and all the

other data positive values 1/0;. We have in general
81280—2/01,8i28i_1—2/0i,i:2...N. (20)

Alternatively the slope of the polygon in G in the interval [d;, d; ;1] can be expressed as

Jivi — fi d; — dy,
Si = , Ji=— 21
diy1 — d; d ; Ok ( )
The likelihood for d; < G < d;;1 can therefore be written as
71 — Z 2
pl |G,a,a,M2,1):a—;e {J; (G d)} : (22)

with Z5 given by

Zy = (H %) . (23)

G-integrals over the posterior reduce then to the type

Ii(a,k)szve {fl Sd}/deGexp{ ‘el (24)

(%

which is again elementary. The alternative expression for s; in (21) is useful to simplify the

result of this integration, yielding for the simplest case k = 0

a0 = L feptZty et £y} (29

)

The remaining a-integral can be reduced to a I'-function keeping in mind that all f; < 0

and yields
L;(0) = Zy - T(N — 1) - {| figa |70 — | |70 (26)

For the end intervals G < d; and G > dy one of the limits of integration in (24) becomes

infinite. The results for these cases are

Zy T(N —1)

Zy T(N—1)
|swl [fw|N!

Loy=22.2"""
0() So |f1|N71 )

IN(O) = (27)



Higher moments for G and « are of course more cumbersome but can be evaluated along
the indicated scheme.

Results for the estimate of G' using the '98 data set and model M, the Laplace likelihood,
are shown in the third row of Table I. The most remarkable result is the drastic reduction of
the mean value of G, but note that also the uncertainty has decreased by a factor of 3. The
estimate of GG is in fact compatible with the result obtained by the CODATA group neglecting
the problematic measurement [8] and is convincing demonstration of the robustness of (18)
against outliers. We see further, that the expectation value of o has decreased by a factor

of 2.3 and the probability of this model has strongly increased compared to M.

IV. THE HYPERBOLIC COSINE LIKELIHOOD

Interestingly there exists a likelihood function which exhibits the small argument char-
acter of a Gaussian and the large argument character of the Laplace density. Consider the

normalized function

2 1 d—G
flalo) = —- , o= |——| . (28)
ma exp(|z|/a) + exp(—|z|/a) o
Expanding the denominator we obtain
1 1 1 122
N 1_—‘— . 29
f(zla) Ta 1+ %|§|2 TQ ( 2 la ) (29)

This must be compared to the small argument expansion of a normalized Gaussian
1 1x2 1 1 rz\2
expq— |2} = -2 (%) +> 30
a2 p{2‘&}a27r( 2 \a (30)
For N independent data the likelihood based on (30) becomes
- 1 1 1 di—G
p( |G70—7057M37[):(HTQ)Q—NGXP{_E; a; ‘}
A 2 |d, — G|
<—> I1 {1 + exp [—— i H} . (31)
T . a| og

(31) has been arranged such that the first factor becomes identical to the likelihood M, and

the second factor ¢ provides a correction which is bounded

(2) <o=(4) (32)
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[ was unable to find a way to obtain analytic integrals of the posterior constructed from (31)
and its moments in « and G. These computations had therefore to be done numerically. The
availability of analytic results for models M; and M, was of great help in the course of this
work because the accuracy of the numerical procedure could be calibrated by comparison
to the respective analytic results. Application of model M3 to the CODATA_98 data set
yielded the results shown in the fourth row of Table I. The mean has slightly increased such
that it lies between Gauss and Laplace results. The same holds for the uncertainty. The
expectation value E(«) shows also a ten percent increase. All these numbers are in line with
the property of M3 that it approaches Gaussian behavior for small arguments and turns over
to Laplace behavior for large arguments. The model probability for Mj is highest among
the three signalling that the likelihood Mj is best suited to represent the data.

V. AVERAGE OVER MODELS

At this stage we face the problem that we have three different answers of the estimation
problem related to the three different likelihoods. The discrete variable M; can however be
eliminated employing the Bayesian marginalization rule. The posterior density which we

should have used in the first place is p(a, G|ci; G,1). It can be obtained from the identity
p(e, G|d, &, 1) =Y pla, G, Mi|d, &, T) , (33)
which decomposes upon use of the product rule into
plo, G|d, &, 1) =Y p(M;|d, 3, 1) - p(e, G|d, &, M;, T) . (34)

—

The expansion coefficients p(Ml|J: 7, 1) are related to the marginal likelihoods p(d|&, M;, I)

via Bayes’ theorem

p(M;|d, 3, 1) = p(M;| p(dl, M;. 1) /p(d]33. ) - (35)
Use of (35) requires to specify prior probabilities p(M;|I). The most uninformative choice
is uniform p(M;|I) = 1/3 for all i. The expansion coefficients can then be obtained from
previously calculated evidences. Numerical values of the model probabilities are given in

the last column of Table I and Table IV. The final result for the expectation value of a"G™
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TABLE II: Point estimates and uncertainties from the Bayesian approach compared to the least

squares estimate.

Source % Key
CODATA 98 adjustment 6.6729(100) (a)
This work, same data set 6.6746(35) (b)
This work deleting [8] 6.6732(7) (c)
is then
E(a"G™) =Y " p(M;|d,&,1) - E(a"G™|d, &, M) . (36)

Note that we must first use (36) to find moments from which we subsequently calculate
variances and uncertainties. Table IT shows final results for the CODATA_98 data set.
The first and third entries are essentially identical apart from the uncertainty which was
arbitrarily estimated in the CODATA 98 adjustment while it was calculated in this work.
Most interesting is the middle entry which includes the outlier [8] in the analysis with little
influence on the point estimate. A strong effect is seen in the uncertainty, which rises by a
factor of five, reflecting the fact that the [8] is indeed highly inconsistent with the rest of
the data. Quite the same, this result is an impressive demonstration of the robustness of

the method developed in this paper.

A. The CODATA 02 adjustment

The CODATA _02 evaluation rests on ten different data entries. Two of them are the
same as in the '98 data set. One new data point stems from Gundlach and Merkowitz [9].
Five data are from experiments which have been improved since the 98 adjustment. Finally
the remaining two "data” were chosen as the 1986 and 1998 CODATA recommended values.
This is in order as far as the 1986 recommended value [10] is concerned since this was a
single measurement whose uncertainty was, however, arbitrarily doubled by the committee.
The inclusion of the '98 estimate, however, cannot be accepted for two reasons. The first
is that this kind of information transfer holds only in the case of a Gaussian likelihood

with (assumed) exact uncertainties of the data. It fails already for our likelihood M; let
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alone M, and Mj;. The second reason is of conceptual nature. The 98 evaluation rests on
ten data, out of which seven appear in the 02 evaluation, two unchanged and five from
improved experiments. Inclusion of the information of the two unchanged data also via
the 98 adjusted value puts an unjustified higher weight on them. Inclusion of the five
data from different stages of the same experiment, the ’98 data via the '98 adjustment
and the ’02 data as the new data violate in addition the independence assumption which
is the basis for the product form of the likelihoods even for the simplest case (3). This
work employs therefore a modified data set for the final evaluation of G. The 1986 data
point was used with its originally published uncertainty [11]. The data from the JILA_98
experiment [12] was included. The CODATA committee chose to exclude it from the '02
adjustment ”because of its relatively large uncertainty” [1]. This argument appears rather
odd to me. It probably dates back to the age of mechanical desk calculators. Fortunately
modern computing facilities do not limit the size of a data set. Moreover in the light of
the previously developed likelihood models both pieces of information, deviation from the
mainstream and quoted uncertainty are important for robust estimation of G. We do not
include the measurement [8] which was discordant with the rest of the '98 data set because
a review of various critical aspects of the experiment led Michaelis et al. to withdraw their
former result [13]. In summary, the data set underlying the CODATA 02 evaluation was
modified by withdraws of the 98 recommended value, addition of the JILA_98 [12] data and
restoration of the uncertainty of the CODATA _86 recommended value. In order to avoid
ambiguities we reproduce the modified data set which forms the basis for the final result of
this paper in Table III.

Table IV shows results for the different models discussed in this paper. The point esti-
mates agree all very well with each other. The difference appears in the uncertainty. Clearly
the least squares result overestimates the precision. Remember that this algorithm is insen-
sitive to the scatter of the data. The expectation values E(a)) show that this scatter is in fact
larger than tacitly assumed (o = 1!) in the least squares algorithm. However, altogether this
data set is of much higher quality than the '98 data and of similar quality (result not shown)
if the data [8] is removed from the '98 data set. The model probabilities for M; and M, are
quite similar indicating that both aspects are contained in the data set. It is therefore most
satisfactory that model M3 which addresses both aspects turns out to be the most probable.

Table V shows final results after marginalization over the models. The three estimates are
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TABLE III: Data set employed for the final Bayesian estimate of G. This is a modification of the

data set used in [1].

Identification Reference #‘:&*2
Gundlach and Merkowitz 9] 6.674255(92)
Luther and Towler [11] 6.67259(43)
Schwarz et al. [12] 6.6873(94)
Bagley and Luther [14] 6.67400(70)
Karagioz [15] 6.67290(50)
Luo et al. [16] 6.67090(70)
Quinn et al. [17] 6.67559(27)
Kleinevo [18] 6.67422(98)
Schlamminger et al. [19] 6.67407(22)
Armstrong and Fitzgerald [20] 6.67387(27)

TABLE IV: Performance of the likelihoods developed in this paper for the latest data set given in

Table III.
MODEL % E(a) Mod-prob
LSQF 6.67419(7) - -
GAUSS 6.67419(24) 3.1(8) 0.22
LAPLACE 6.67411(20) 2.4(9) 0.29
COSH! 6.67414(25) 2.3(8) 0.49

TABLE V: Point estimates and uncertainties from the full Bayesian calculation compared to the

CODATA _02 adjustment [1].

Source % Key
CODATA _02 adjustment 6.67422(100) (d)
This work, same data set 6.67416(21) (e)
This work modified set 6.67414(24) (f)
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FIG. 1: Results of the present work (b, c, e, f) in comparison to the CODATA_98 (a) and CO-

DATA_02 (d) recommendation. Labels a-f correspond to the keys given in Table IT and Table V.

highly consistent and the main improvement over the CODATA 02 adjustment appears to
be the narrowing of the uncertainty by a factor of four. The recommended value of G on

the basis of the algorithm developed above is
G = 6.67414(24) - 10 "mPkg s 2. (37)

It may please the proponents of the least squares algorithm as the ultimate data analysis tool
to realize that the result (37) coincides nearly with the CODATA_02 least squares estimate.
The coincidence is, however, accidental since the two evaluations differ in data sets and
methods. Remember also, that (37) is characteristic for the given data set while identical
least squares results can be obtained from an infinite manifold of data sets featuring the
same sufficient statistic p,lj We recall further that (37) provides a rigorous uncertainty
estimate which relies on both, the scatter of the data and the quotation of their experimental
uncertainties. All results collected in Tables II and V are also shown in Fig. 1 in order to

facilitate comparison.

VI. CONCLUSION

The central claim of this paper is that the method developed is very robust compared to
the physicists pet tool, the least squares analysis. The robustness of the presented methods

is further corroborated by a data simulation. The upper panel of Fig. 2 shows some of the
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data on which the CODATA 98 was based as full dots with associated uncertainties. The
open circle represents an additional fictitious measurement which is moved across the cloud
of full dots in the range indicated by the small dots. The lower panel shows the resulting es-
timate of G (vertical scale) obtained from the Gaussian(dash-dotted)-, the Laplace(dotted)-
and the cosh™ (dashed)-likelihoods as well as the model averaged total as the continuous
trace. While estimates based on the Gaussian likelihood exhibit a linear response of the
estimate on the position of the fictitious measurement, the other models show a clear sat-
uration when the fictitious measurement becomes more of an outlier. This is conclusive
proof of their robustness. Given this robustness, data censoring preceding the analysis is
no longer necessary nor desirable. Of course, a censoring of the whole experiment and
procedure leading to a particular numerical value of the quantity in question is absolutely
necessary. This is, however, something entirely different than a census based on the amount
of agreement of a particular outcome with the rest of the data under consideration. The
CODATA committee has had anyway bad experience with excluding data on the grounds
that they seem to be discrepant with the rest. A prominent example is the difference be-
tween the 1973 and 1986 adjustments of the Faraday constant. Much of this discrepancy
is due to exclusion of two seemingly discrepant measurements in the 1973 evaluation [21].
The lesson for the Newtonian constant of gravitation is that there was insufficient reason in
the 1998 adjustment to exclude the PTB_95 data. Conversely, there was very good reason
to exclude it from the 2002 adjustment because it had meanwhile turned out that several
aspects of the experiment appeared doubtful and were no longer supported by the authors.
The second aspect of robustness concerns uncertainties. There are numerous examples in
the CODATA reports that uncertainties were ad hoc enlarged because the result of the least
squares procedure was considered improper in view of the observed data scatter. This holds
also for the ’98 and ’02 adjustments of the Newtonian constant of gravitation, see first rows
of Table IT and Table IV. The methods given in this paper consider in an integrated way
throughout simultaneously the quoted uncertainties and the scatter of the data. A beautiful
example of how this works is given in Table II. The third row shows the estimate from the
present work when the PTB_95 data is deleted from the set as was done in the CODATA
adjustment. The second row shows the result without an - at that time - unjustified data
censoring. While the point estimate shows a marginal change only the uncertainty increases

by a factor of five.
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FIG. 2: Performance of the different likelihoods employed in this work when a fictitious measure-
ment shown as an open circle is moved across a set of data shown as full dots. Dash dotted:
Gaussian-likelihood, dotted: Laplace-likelihood, dashed: cosh~!-likelihood. The continuous trace
shows the model averaged estimate. The vertical scale refers to the estimated value of G as a

function of the position of the fictitious measurement.

The present case of data analysis is a particularly simple one, since G does not correlate
with any other physical constant. It is therefore very well suited to develop methods because
the interpretation of results is simplest in this case. However, there ist not the slightest reason
why application could not be extended to the multivariate problem. The basic deficiency
of the least squares method persists in dimensions greater than one but becomes much less
obvious.

A good summary of the above arguments is the following citation from the New Scientist
[22]: ”We use fantastic telescopes, the best physical models and the best computers. The
weak link in this chain is interpreting our data using 100-year-old mathematics.” This must
change, the sooner, the better.

I conclude with a final comment on the assumption used throughout this paper that
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the uncertainties of the various measurements are in error by an unknown common factor.
The main reason for this was the corresponding attempt by Mohr and Taylor in order to
achieve consistency of the data set. While this assumption sounds reasonable for a bunch
of measurements from a single laboratory, it is in fact rather unrealistic for a set of data
from various different laboratories. A much more reasonable assumption for this situation is
that quoted uncertainties should not be taken to be the true uncertainties but rather point
estimates of the true uncertainties. A re-evaluation of the revised data set for G in Table III

based on this modified assumption concerning quoted uncertainties is currently performed.
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