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Abstract. The stochastic diffusion (SD) resulting from collisionless transformations
between locally trapped and locally passing orbits may lead to a significant loss of
energetic particles from stellarator plasmas (Beidler C D et al 2001 Phys. Plasmas 8
2731). In this work, a method to mitigate the consequences of SD is suggested. The
method consists in changing the shapes of the separatrices between the locally trapped
and locally passing states so that most separatrices do not cross the plasma boundary,
which is achieved with a suitable modification of the magnetic configuration. It is
demonstrated analytically that in this way the particle loss because of the SD may be
reduced significantly, even though the SD still occurs. In particular, it is possible to
protect fast particles inside a certain radius from SD loss. It is shown that a variation
of the electric field can also affect the SD loss. The modifications of the magnetic
configuration and the electric field required for the mitigation are quantified for a
configuration of the stellarator Wendelstein 7-X.
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1. Introduction

It is known that the lack of axial symmetry in stellarators results in a diversity of particle

orbits (see, e.g., [1]). Typically, the variation of the magnetic field strength, B, along

a field line is characterized by two scale lengths in the toroidal angle, ϕ. One of them,

∆ϕ ∼ 2π/N , where N is the number of the field periods, is the size of the local magnetic

wells. The larger scale, ∆ϕ ∼ 2π/ι, where ι is the rotational transform, is produced

by toroidicity (as well as by the interference of different helical harmonics of B). As a

result, the particles with small magnetic moments are passing, i.e., they never change

the direction of their longitudinal motion. Usually, there is a fraction of particles which

always remain trapped in local magnetic wells (they are particles with large magnetic

moments). The particles with intermediate magnitudes of the magnetic moment are

transitioning between the locally trapped state and the locally passing (or toroidally

trapped) state. In the latter state, they are trapped by the toroidal inhomogeneity of

B, passing the local magnetic maxima.

A numerical simulation of a fusion reactor based on traditional stellarator

concepts [2] have shown that the majority of trapped energetic ions escape from the

plasma with characteristic time of the order of the orbital time scale, i.e., much shorter

than the thermalization time. It was realized that this fact would mean the loss of a large

fraction of fusion-produced alpha particles, which could constitute a serious problem for

designing a stellarator reactor. This increased the interest paid to the confinement of

energetic ions in stellarators.

As a result, several new concepts of the stellarator design have appeared, which

received the common name of “optimized stellarators”. In these devices, the orbits of

the collisionless motion of the particles are aligned to the flux surfaces. One of the

approaches to designing optimized stellarators is quasi-symmetry. The quasi-symmetric

stellarators [3, 4, 5] are designed so that the magnetic field strength possesses a certain

symmetry (helical or toroidal) in flux coordinates, which provides the existence of

invariants of the particle motion. A more general approach is known under the names

of quasi-omnigeneity or quasi-isodynamicity [4, 6]. It consists in demanding that the

level contours of the adiabatic invariants of the particle motion approximately coincide

with the flux surfaces (or that the average drift across the flux surfaces approximately

vanishes for one bounce, which is the same) and optimizing the magnetic field of the

configuration, having this requirement as one of the optimization criteria. In particular,

this approach was used in the development of the device Wendelstein 7-X [7] (W7-X)

and several conceptual projects of Helias reactors [8], which were designed as W7-X

improved and scaled to the reactor size. The so-called “quasi-poloidal” devices [9]

exaggerate one of the features of the Wendelstein-type configurations – a large mirror

harmonic of the magnetic field (i.e., the harmonic ∝ exp(iNϕ), where ϕ is the toroidal

angle and N is the number of the field periods). Finally, it was found recently that

the inward shift of the magnetic axis in the heliotron LHD (Large Helical Device [10])

results in a significant improvement of the particle confinement [11]. The mechanism
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of the improvement in LHD consists in aligning the minima of B along the field lines,

which was actually suggested earlier [12] as a way to reach quasi-isodynamicity for

deeply trapped particles.

Numerical simulations of the alpha particle behaviour [13] have shown that the

alpha particle confinement in optimized configurations is indeed much better than that

in traditional stellarators. Most particles in the optimized configurations, including a

majority of trapped particles, are confined for times much longer than the characteristic

times of the orbital motion. However, it turned out that a considerable fraction

of particles are still lost before their thermalization, the main reason of the loss

being the stochastic diffusion (SD), i.e., the collisionless diffusion occurring because

of the stochastization of the particle motion. Later it was shown that the most

important mechanism of the SD in Wendelstein-type configurations, which dominates

the particle loss, is the diffusion of the transitioning particles due to radial jumps

during the transitions between the locally trapped and locally passing states [14].

This diffusion is similar to the diffusion of charged particles due to repeated trapping

and detrapping in a wave with varying amplitude; it was earlier considered for the

particles transitioning between the locally trapped and toroidally trapped states in a

tokamak with toroidal field ripple (see [15] and references therein). One can expect

that this mechanism is important also in other optimized systems in which there is a

large fraction of transitioning particles, e.g., in “quasi-poloidal” devices and optimized

heliotron configurations.

In this work, we suggest a method of the mitigation of consequences of the SD

caused by particle transitions. Namely, we suggest to modify the configuration so that

the separatrices separating the regions of the locally passing particles and the locally

trapped ones become closed within the plasma. As will be shown below, this results

in a decrease of the particle loss caused by the SD, even though the SD still occurs.

Although the model magnetic configuration that we consider is relevant to Wendelstein-

line stellarators (we consider a standard configuration of W7-X), the main idea of the

mitigation is applicable to other configurations as well.

The structure of the work is as follows. In section 2 the model magnetic field and

the equation of the separatrices are described. The principal idea of the proposed way to

mitigate the consequences of the stochastic diffusion is explained in section 3. Numerical

estimates for a configuration of W7-X are given in section 4. Finally, in section 5 the

conclusions are presented.

2. Model of the magnetic field

We will use Boozer coordinates (x, θ, ϕ), where x is a flux surface label, θ the poloidal

angle and ϕ the toroidal angle. The radius-like coordinate x, 0 < x < 1, is defined

by ψ = ψax
2, where ψ is the toroidal magnetic flux, and ψa is its value at the plasma

boundary.
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We expand the magnetic field strength B in a Fourier series:

B = B̄

[
1 +

∑
µ≥0, ν

εµν(x) cos(µθ − νNϕ)

]
, (1)

where B̄ is the average magnetic field strength on the magnetic axis. Here we restrict

ourselves to considering a model magnetic field, in which only the toroidal (µ = 1,

ν = 0), mirror (µ = 0, ν = 1), helical (µ = ν = 1), and diamagnetic (µ = ν = 0)

harmonics, which are the largest in W7-X and the Helias reactors, are non-zero. For

instance, in W7-X configurations [16], these four harmonics are several times larger than

the rest of the harmonics, making a dominant contribution to the division of the phase

space into the regions of the trapped and passing particles. Further, we approximate

these harmonics with linear and quadratic functions of x: ε10 ≡ −εt = −ctx,

ε11 ≡ −εh = −chx, ε00 ≡ ε0 = c0x
2 and ε01 ≡ εm = εm0 + cmx2, where cm, ch, ct,

c0 and εm0 are positive constants determined by the particular magnetic configuration.

In W7-X these expressions with an appropriate choice of the coefficients are accurate to

within a few percent. Then we can write the magnetic field as follows

B

B̄
= 1 + c0x

2 − ctx cos θ + εhm(x, θ) cos[Nϕ + χ(x, θ)], (2)

where ε2
hm = ε2

m − 2εmchx cos θ + c2
hx

2, and χ(x, θ) = cos−1[(εm − chx cos θ)/εhm].

Consider a particle with mass M , charge e, full energy W and magnetic momentum

µp in the guiding center approximation. Particle velocity along the magnetic field is

given by v2
‖ = 2(W −µpB− eΦ)/M , where Φ is the electric field potential. We take this

potential to be zero at x = 0. This means that at x = 0, full energy W is identical to

the particle kinetic energy Mv2
‖/2 + µpB. In our model magnetic field the expression

for v‖ reduces to

v2
‖ = 2µpB̄εhm{κ2 − sin2[(ϕ− χ)/2]}/M, (3)

where

κ2 =
α− φ− (c0x

2 − ctx cos θ)

2|εhm| +
1

2
, (4)

α = W/(µpB̄)−1 is a pitch-angle variable and φ = eΦ/(µpB̄) is the normalized potential

of the electric field. If the particle drift across the field lines is sufficiently slow in

comparison with the longitudinal motion and ι/N ¿ 1, the coordinates x and θ are

almost constant for the time of the particle transit / bounce motion in one field period.

Then we can study the motion in ϕ with x and θ fixed, considering ϕ as a fast variable

and x and θ as slow variables. With respect to the fast motion in ϕ, the expression (3)

is the velocity of a nonlinear pendulum, and the separatrix between “rotation” (locally

passing particles) and “libration” (locally trapped particles) is given by κ2(x, θ) = 1.

The adiabatic invariant associated with the fast longitudinal motion is [17]:

J∗ =





σ
e

Nc
Ψp +

M

2π

∫ 2π/N

0

dϕ
Bϕ

B
v‖ for passing particles,

M

2π

∮
dϕ

Bϕ

B
v‖ for trapped particles,

(5)



Mitigation of stochastic diffusion losses in optimized stellarators 5

Figure 1. Sketches of two different types of separatrices. Left: the particle leaves
the plasma when the transition point wanders randomly along the separatrix. Right:
the particle transition point is confined within the plasma. Notation: thin black line,
the plasma boundary; bold dashed line; the separatrix; lines with arrows, different
orbits of the same particle in the process of stochastic diffusion (the motion in the
locally passing state between the reflection points is shown inside the separatrix; the
precession motion in the locally trapped state, outside).

where σ = sgn(v‖), Ψp is the poloidal magnetic flux, Bφ is the corresponding covariant

component of B. The integrals in this equation are taken at constant x and θ, the

integral for trapped particles being taken between the particle turning points.

3. The principal idea of the mitigation

When transitioning particles cross the separatrix κ2(x, θ) = 1 because of precession in

x and θ, they suffer transformations between the locally passing state and the locally

trapped state. Because adiabaticity breaks down near the separatrix, the adiabatic

invariant J∗ accumulates random jumps, which lead to stochastic diffusion. The

separatrix, though, is completely determined by W and µp, and when there is no electric

field, these two parameters occur in (4) only in the α combination. All three quantities

W , µp and α are constants of motion in the guiding-centre approximation, and the

breakdown of adiabaticity for J∗ does not influence them. Therefore, in the process of

stochastic diffusion a given particle will always cross the same separatrix, even though

its orbit (determined by J∗ in addition to W and µp) changes at each crossing. The

crossing point will, naturally, wander along the separatrix.

Observing this, we conclude that not every particle which experiences stochastic

diffusion may escape from the plasma. This is demonstrated in figure 1, where the

bounce-averaged / transit-averaged particle motion is shown in the poloidal plane. We

assume that the random jumps of the particle adiabatic invariants are small, so that

at each instant we can characterize the particle by a certain closed orbit, which slowly
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evolves because of the jumps. If the particle’s separatrix is closed within the plasma and

the bounce-averaged orbits of locally trapped particles are sufficiently close to x = const

(figure 1, right), the particle is unable to leave the plasma despite stochastic diffusion.

On the other hand, if the separatrix crosses the plasma boundary (figure 1, left), the

particle will most likely be lost on the stochastic diffusion time scale unless the slowing-

down time is shorter. Note that if the bounce-averaged particle orbit is not closed within

the plasma, the particle is lost on the much shorter precession time scale, and in this

case it is meaningless to discuss stochastic diffusion at all.

To obtain more concrete results, consider locally trapped particles. For these

particles we use the approximation of zero orbit width, x = const. This approximation

is justified in optimized stellarators. A particle with given x and α is transitioning if

κ2 = 1 at some θ. It follows from equation (4) that this condition can be satisfied only

for particles with α in a certain range

αmin(x) < α < αmax(x). (6)

In our model magnetic field the quantities αmin and αmax are determined by solving the

equation κ(x, θ, α) = 1 for α at θ = 0 and θ = π, respectively, and are given by

αmax(x) = c0x
2 + φ(x) + ctx + εm + chx,

αmin(x) = c0x
2 + φ(x)− ctx + |εm − chx|. (7)

Figure 2 shows two graphs of αmin(x) and αmax(x), for the standard W-7X high-beta

configuration and for the same configuration modified by decreasing the mirror harmonic

to cm = 0.03 and εm(0) = 0.

Stochastic diffusion losses are markedly lower in the modified configuration. Indeed,

the particles are lost only from those separatrices which cross the x = 1 boundary. A

separatrix for particles with a given α is represented on the graphs by a horizontal

line segment x ∈ [xmin(α), xmax(α)], where the functions xmin(α) and xmax(α) are the

inverse functions to αmax(x) and αmin(x), respectively, so that αmax(xmin(α)) ≡ α

and αmin(xmax(α)) ≡ α. The marginal separatrix has α = αmin(1). It divides the

“phase space” of transitioning particles (x, α), which is bounded by equation (6) and

the inequality x < 1, into two parts, and particles escape only from the upper part.

Therefore, the proportion of the particles that can be lost because of stochastic diffusion

increases with the area of the upper part relative to the area of the lower part.

Note that for any choice of the constants in our model magnetic field and for any

φ(x) profile, αmax(x) is strictly greater than αmin(x) for all x ∈ (0, 1). Therefore, some

separatrices always cross the plasma boundary, and thus it is impossible to prevent all

stochastic diffusion losses.

If for a particle with a given α the largest root xr of the equation αmin(xr) = α is

less than unity, stochastic diffusion cannot lead to the loss of such a particle. From a

different point of view, all particles located inside a certain radius x∗ determined from

αmax(x∗) = αmin(1) (8)
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Figure 2. αmin and αmax versus x. Left: for standard W-7X high-beta configuration
(c0 = 0.072, cm = 0.046, εm(0) = 0.02, ct = 0.041, ch = 0.077, β0 = 0.094, where β0 is
the ratio of the plasma pressure to the magnetic field pressure at x = 0) in the absence
of the electric field (φ = 0). Right: for the same configuration with decreased mirror
harmonic (cm = 0.03, εm(0) = 0). Marginal separatrix, defined by α = αmin(1), shown
in heavy dashed line. Stochastic diffusion leads to loss of particles only in the shaded
areas.

also cannot be lost, because they either do not cross any separatrix and experience no

stochastic diffusion, or their separatrix is completely inside the plasma.

To obtain a solution of (8), we approximate the normalized electric potential with

the sum of a quadratic potential, which corresponds to rigid rotation of energetic ions,

and a potential barrier of height δφb with a maximum at x = 1 such that the barrier is

localized outside the radius x∗:

φ(x) = cφx
2 + δφbf(x), (9)

where f(x) is the barrier shape function with the maximum value f(1) = 1. Its exact

form is not important in our model provided that f(x∗) ¿ 1, because the electric field

potential adds both to αmin and αmax. If the barrier is localized at a smaller radius

xb < 1, it affects x∗ only if αmin(xb)+ δφb > αmin(1). If this is the case, x∗ may be found

by substituting xb instead of 1 into the right-hand side of (8).

Using (9), we obtain the solution to (8):

x∗ = −y + [(y − 1)2 + δ]1/2, (10)

where y = (ch + ct)/2(c0 + cm + cφ) and

δ =
|εh(1)− εm(1)|+ εh(1)− εm(1) + δφb

c0 + cm + cφ

. (11)

When εh(1) < εm(1) and δφb = 0, as, e.g., in the high-mirror W-7X configurations, this

solution simplifies to

x∗ = 1− ct + ch

c0 + cm + cφ

. (12)
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We can see that in this case, increasing c0 and the parabolic component of the mirror

harmonic, cm, (e.g., by increasing the plasma pressure) and adding a negative radial

electric field increases x∗ and lessens the stochastic diffusion losses. Note that increasing

the constant component of the mirror harmonic, εm(0), does not improve x∗. In the

opposite case, i.e. when εh(1) > εm(1), the influence of the mirror and helical harmonics

depends on the relative magnitudes of all harmonics in our model, but larger values of

εm(0) always lead to smaller x∗.

4. Numerical estimates

Let us first consider the high-mirror configuration of W-7X with β0 = 0.068 (see, e.g.,

figure 2 in [16]). Substituting appropriate values for the harmonics of the magnetic

field (ct = 0.043, ch = 0.08, c0 = 0.05, cm = 0.03, εm(1) = 0.125), we see that the

expression (12) is valid in this case. We obtain that x∗ < 0, which means that there are

no closed separatrices at all. Individual particle orbits are also poorly confined in these

configurations. To obtain x∗ = 0.5, the denominator of (12) needs to be tripled. If we

adopt the reasonable assumption that c0 and cm grow linearly with β0, which is the β

at r = 0, and estimate the relationship from magnetic configurations with different β0,

it follows that β0 in excess of 0.2 is necessary, which is hardly of practical importance in

W-7X, but may be relevant to a Helias reactor. We can also estimate the radial electric

field required to reach the same value of x∗ = 0.5. For the case without the barrier

(δfb = 0), equation (9) yields cφ ∼ eE ′
ra

2/2W . From this estimate we can see that

for 50-keV particles in the same high-mirror configuration we would need an electric

field on the order of 30 kV/m, corresponding to plasma rotation with the frequency

of 1.2 × 104 s−1. This is much larger than the typical values. Even the combined

effects of both negative electric field and plasma pressure is insufficient to significantly

improve the situation. Moreover, when β0 is increased, the overall β profile tends to

become more peaked, and the approximation of quadratic x dependence in the mirror

and diamagnetic harmonics breaks down, invalidating the solution (10).

In the standard configurations of W-7X [16], the inequality εh(1) > εm(1) holds,

and we must use equation (10). Then we obtain x∗ ≈ 0 in the standard configuration

with β0 = 0.068, but already in the high-beta variant with β0 = 0.094 we have x∗ = 0.17,

which means that the particles in the inner plasma core do not escape through stochastic

diffusion. If we modify this configuration, decreasing the mirror harmonic by a third to

cm = 0.03 and εm(1) = 0.03 (see figure 2), x∗ increases to 0.46. Thus, the stochastic

diffusion loss may be reduced by changing the mirror harmonic, which can be easily

manipulated in W7-X via variations of the current in the circular coils.

The effect of localized electric fields also must be estimated with (10). In the same

standard, high-beta W-7X configuration for a 50-keV particle, a barrier 3 kV high will

raise x∗ to 0.5. This “electric transport barrier” action of the negative electric field

works together with its beneficial effect on individual particle orbits described in [16].

The effect of electric field decreases with particle energy. While for the relatively
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slow 50-keV particles it is stronger than the effect of a magnetic configuration change,

for thermonuclear α-particles the electric fields necessary to affect particle drift motion

materially are quite out of the feasible range. This suggests that a positive electric field

may help to remove helium “ash” in a reactor. It was suggested in [16] to use the electric

field to deconfine orbits of locally trapped particle of certain energies with this purpose.

When the stochastic diffusion time is less than the slowing-down time for cooled-down

α-particles, opening the separatrices of transitioning particles of low energies may serve

the same purpose.

On the other hand, changes of magnetic configuration affect particle confinement

regardless of particle energy. In particular, larger β0 is beneficial for the confinement.

In a reactor, this fortuitously agrees with the need of high β0 for efficient operation.

Since the formalism that we use here does not examine individual particle drift

orbits, there is a potential danger that while the separatrix is closed inside the plasma,

the contours of the adiabatic invariant which cross this separatrix are not. We checked

for this possibility numerically by comparing the sets of values of the adiabatic invariant

on the separatrix and at the plasma edge. If these sets do not intersect, no drift orbits

are lost from the separatrix. The check shows that such cases, when separatrices are

closed while drift orbits are not, are rare.

5. Conclusions

A method of stochastic diffusion loss mitigation is suggested in this work. This

mitigation is due to the closing of separatrices between locally trapped and locally

passing states within the plasma. If, for a given pitch-angle, the particle drift orbits

and the separatrix are closed within the plasma, the particles will not escape from the

plasma on the stochastic diffusion timescale. If the orbits are not confined, the separatrix

shape does not matter. However, in Wendelstein-type stellarators the orbits tend to be

confined when the corresponding separatrix is closed within the plasma. Although our

consideration disregards slowing down and, therefore, is applicable to the case when

the slowing-down time well exceeds the stochastic diffusion time, one can expect that

closing the separatrices within the plasma is favourable for the particle confinement in

the case when these characteristic times are comparable, too.

It is shown that in Wendelstein-type stellarators, plasma diamagnetism helps to

close the separatrices, while the toroidal harmonic tends to make them more open.

The role of the mirror and helical harmonics depends on their relative magnitudes. In

particular, in the case when the helical harmonic exceeds the mirror one at the plasma

boundary, a decrease of the mirror harmonic, which can be controlled by the circular

magnetic coils in W7-X, can prevent fast ion loss caused by stochastic diffusion from

within almost half the plasma radius.

Variations of the radial electric field (which can happen due to, e.g., transitions

between the electron root and the ion root or the formation of a transport barrier)

can affect the mitigation. Specifically, the negative radial electric field helps to close
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the separatrices. Localized potential barriers improve the separatrix shape when the

negative field region lies inside the positive field region. In the standard high-beta

configuration of W-7X, an electric potential barrier 3 kV high closes all separatrices

of 50-keV particles that intersect the x = 0.5 boundary, so that the transitioning

particles within this boundary cannot escape. In some configurations, positive electric

fields, which increase the stochastic diffusion losses rather than decrease them, may be

beneficial – for instance, they may help to remove helium “ash” in a reactor. Since the

effect of the electric field decreases with the particle energy, this increase of the loss will

weakly affect high-energy particles.

If considered in a wider context, magnetic configuration modifications favourable

for closing the separatrices within the plasma may happen to be adverse from the

point of view of some other criteria of the configuration quality (achievable β, quasi-

isodynamicity etc.). Hence, closure of separatrix shapes within the plasma could be

added as an additional criterion during the optimization of stellarator configurations.

Minimization of fast particle loss calculated with a Monte Carlo code is often included in

the set of criteria in the process of the stellarator optimization (see, e.g., [13]). However,

closure of separatrix shapes within the plasma is a criterion evaluated much faster than

the particle loss with a Monte Carlo code (although, admittedly, the latter criterion takes

into account loss channels other than stochastic diffusion of transitioning particles). It

should be emphasized that closure of separatrix shapes within the plasma is not the

same as the alignment of particle orbits to the flux surfaces (quasi-isodynamicity).
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