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Abstract. Alfvén oscillations in three-dimensional toroidal magnetic configurations
(stellarators) are considered. It is shown that the wave functions of the Alfvén
continuum can be trapped in certain “waveguides” when there are sufficiently large
harmonics with sufficiently close periods along the magnetic field lines in the Fourier
spectrum of the magnetic configuration. Such trapping is typical in the frequency
range of the helicity-induced continuum gaps, in which case the wave functions are
typically trapped at the inner circumference of the magnetic flux surface. Trapping
also takes place near the crossings of continuum gaps, the localization of the wave
becoming stronger with approach to the crossing point. At the crossing point, the
continuum wave functions are localized at single field lines, which is shown to result
in “annihilation” of the gaps (the width of the joint gap is the difference of the widths
that the two gaps would have is they were alone). It is shown with the use of the
ballooning formalism that the Alfvén eigenmodes (AEs) associated with the trapped
continua are also trapped in regions of the same shape. Experimental observations on
the stellarator Wendelstein 7-AS are reported, which indicate that trapping of AEs at
the inner circumference of the plasma indeed takes place.

1. Introduction

Spectra of the shear Alfvén waves attract considerable attention due to the ability of

oscillations of the discrete spectrum (Alfvén eigenmodes, AE) to be destabilized by fast

ions. Alfvén instabilities have been observed in many experiments on tokamaks and

stellarators [1, 2, 3]. They are of interest since they can lead to enhanced loss of fast

ions [1, 2, 3] and considerably affect the confinement of the thermal plasma [2, 4]. In

addition, such instabilities can be used for diagnostics (MHD spectroscopy [5, 6]) and

may offer a possibility to remove helium ash from a stellarator reactor [7].

Historically, the investigation of Alfvén spectra in non-uniform plasmas was first

carried out for the one-dimensional (slab or cylindrical) geometry of the magnetic

configuration. It was found that the variation of the the Alfvén velocity, vA, and the

longitudinal wave number, k‖, with the radial coordinate, r, produces the continuous

spectrum at the frequencies ω = k‖(r)vA(r). Shear Alfvén oscillations with the frequency
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in the continuum are damped near the flux surface where the local Alfvén resonance

ω = k‖(r)vA(r) occurs [8]. Outside the continuum there may exist AEs – Global Alfvén

Eigenmodes (GAE) [9, 10], which are weakly damped.

The two-dimensionality (poloidal asymmetry) of a toroidal magnetic configuration

produces frequency gaps in the Alfvén continuum [11], which makes possible the

existence of other types of AEs – the Toroidicity-induced Alfvén Eigenmodes (TAE [12]),

the Ellipticity-induced Alfvén Eigenmodes (EAE [13]) and the Noncircular triangularity-

induced Alfvén Eigenmodes (NAE [13]). Non-ideal effects (the finite Larmor radius and

the electron inertia) are responsible for the existence of kinetic counterparts of the gap

eigenmodes – kinetic TAEs (KTAE [14]) and kinetic EAEs (KEAE [15]). In addition,

several types of Energetic-Particle Modes (EPM), i.e., the modes that are not only

destabilized by energetic ions but owe their existence to them, are possible [16].

The absence of the toroidal symmetry in a stellarator complicates the Alfvén

spectrum, resulting in the appearance of new gaps in the high-frequency part of the

spectrum. These gaps may contain AEs of new types – Helicity-induced and Mirror-

induced Alfvén Eigenmodes (HAE and MAE) [17, 18, 19, 20]. However, the effect

of the three-dimensionality of the stellarator geometry on the Alfvén wave spectra is

not restricted to a simple multiplication of the continuum gaps. It has been found

that the three-dimensionality qualitatively changes the structure of the AC. First of

all, the coefficients of the equation for the Alfvén waves in a three-dimensional (3D)

configuration are quasiperiodic rather than periodic along the magnetic field lines (at

the flux surfaces where the rotational transform, ι, is irrational). As a result, the AC

has the structure of a Cantor set at the irrational-ι flux surfaces, and the AC equation

can possess not only continuous but also dense discrete spectra [21]. Recently, it was

found that the interference of two Fourier harmonics of the equilibrium quantities with

close periods along the magnetic field can result in new phenomena (“annihilation” of

the AC gaps at their crossing points [22]; trapping of Alfvén waves in certain angular

sectors (waveguides) [23, 24, 25]).

In this work, we study the properties of the AC and AEs in a frequency vicinity

of two continuum gaps produced by equilibrium harmonics with close periods along

the magnetic field (note that this means that the gaps are close in frequency). Some

preliminary results on this topic were reported at conferences [22, 23, 24, 25] and

included to an invited paper [25], but most of the material of the present paper has

never been published in journal papers. The limit case when the two harmonics have

equal periods along the field lines at a certain flux surface is considered (which means

that the corresponding gaps cross at this flux surface; note that this is possible only in

3D configurations). We show that in this case the wave functions of the AC are localized

at single field lines, which leads to the “annihilation” of the gaps: the width of the joint

gap is equal to the difference of the widths that the gaps would have if they were alone.

Considering the case when the gaps are at a sufficiently small but finite distance, we find

that the AC wave functions are trapped in certain regions (“waveguides”) of the flux

surfaces, which drastically changes the structure of the continuum. We demonstrate that
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continuum gaps in the high-frequency part of the AC in many stellarators are typically

sufficiently close in frequency for the waves to be trapped. We use the ballooning

formalism [26] to show that the AEs in the corresponding frequency range are also

trapped in the waveguides of the same structure. Finally, we present experimental

observations of Alfvénic activity in the stellarator Wendelstein 7-AS (W7-AS [27]),

which indicate that some AEs are trapped at the inner circumference of the plasma

torus in agreement with theory predictions.

The structure of the work is as follows. In section 2, the AC in the vicinity of two

close gaps is investigated. In particular, in subsection 2.1 basic properties of the AC

are introduced, and peculiarities of the high-frequency part of the AC in stellarators are

discussed. In subsection 2.2, the structure of the AC at a point where the two gaps cross

is elucidated, and the phenomenon of the gap annihilation is demonstrated. Results of

a numerical study of the AC near the crossing point are presented in subsection 2.3. In

subsection 2.3, an analytical explanation of the numerical results is given. In section 3,

the phenomenon of the localization of AEs produced by two interacting gaps in certain

waveguides is demonstrated. An experimental observation of poloidally localized Alfvén

instabilities is presented in section 4. Finally, the conclusions are presented in section 5.

2. Continuum in the vicinity of two close continuum gaps

2.1. Basic properties of the continuum

Assuming that the toroidal plasma under consideration possesses nested magnetic flux

surfaces, we use Boozer magnetic coordinates [28] (xψ, xθ, xφ) = (ψ, θ, φ) with ψ the

toroidal magnetic flux, θ and φ the poloidal and toroidal angles, respectively. Then

the continuous spectrum of the ideal Alfvén oscillations is described by the following

equation [19, 29]:

L̂
(
hψψ

g L̂Φ
)

+ ω2 R2

〈vA〉2hψψ
c Φ = 0, (1)

where ω is the frequency; Φ(ψ, θ, φ) is the wave function (the scalar potential of

the electromagnetic field perturbation); L̂ = ∂/∂φ + ι(ψ)∂/∂θ is an operator of

differentiation along the field lines; hψψ
c = hψψ

g /h4
B; hψψ

g (ψ, θ, φ) = gψψ/〈gψψ〉; 〈. . .〉
denotes flux surface averaging; gψψ = |∇ψ|2 is the corresponding component of the

contravariant metric tensor; hB(ψ, θ, φ) = B/〈B〉; B is the magnetic field strength;

vA = B/(4πρ)1/2 is the Alfvén velocity; ρ = ρ(ψ) is the plasma mass density;

R(ψ) = 〈B〉√gh2
B is approximately the major radius of the plasma torus; g is the

metric tensor determinant. Equation (1) includes only derivatives by angles with ψ

playing the part of a parameter. Supplemented with natural boundary conditions of

periodicity in θ and φ, this equation determines a set of eigenfrequencies, which form

the branches of the continuum as ψ is varied. In fact, the continuum equation (1) is

a generalization of the Alfvén wave dispersion relation, ω = k‖vA, to inhomogeneous

plasmas with complicated geometry (setting hψψ
g = hψψ

c = 1 and L̂ = ik‖ in the
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former, we obtain the latter). However, as mentioned above, the physical meaning of

this dispersion relation in inhomogeneous plasmas is different. Instead of determining

the frequencies at which the wave can propagate, it determines the frequencies of the

local resonances of the Alfvén wave, perturbations with the resonance frequencies being

intensively absorbed at the resonant flux surfaces [8].

Actually, the AC equation (1) includes only derivatives along a field line. Written

in the coordinates (ψ, α ≡ θ− ιφ, φ), where α is a field line label, it becomes an ordinary

differential equation:

d

dφ

(
hψψ

g

dΦ̂

dφ

)
+ Ω2hψψ

c Φ̂ = 0, (2)

where Ω = ωR/〈vA〉 is the dimensionless frequency, and α is an additional parameter.

The price of this simplification is that the wave function Φ and the coefficients of the

equation, generally speaking, lose their periodicity: When ι is irrational, a function

periodic in θ and φ is quasiperiodic on a single field line. The simplest way to set the

boundary conditions is then to require that Φ is finite at φ = ±∞. However, then we

do not observe the periodicity properties of Φ. As we will see, this may change the

spectrum of the equation for rational ι.

It will be convenient to have the AC equation presented also in a matrix from.

With this aim, we expand hB, hψψ
g , and hψψ

c in Fourier series:

hB = 1 +
1

2

∑
µ,ν

εB(µ,ν) exp(iµθ − iνNφ), (3)

hψψ
g,c = 1 +

1

2

∑
µ,ν

εψψ
g,c(µ,ν) exp(iµθ − iνNφ), (4)

where N is the number of the configuration periods. We will refer to the Fourier

coefficients εB(µ,ν) and εψψ
g,c(µ,ν) will be as coupling parameters (since they characterize the

coupling of different harmonics of the wave) and to µ and ν as the poloidal and toroidal

coupling numbers, respectively. Taking into account which possible couplings between

harmonics of Φ can result from equations (3) and (4), we take the wave function at a

single field line (θ = α + ιφ) in the form

Φ = exp(ik̃φ)
∞∑

p,s=−∞
Φps exp[i(pι− isN)φ + ipα]. (5)

where k̃ = k‖R is the normalized longitudinal wave number of the leading harmonic of

the wave. Then equation (2) takes the matrix form
∞∑

p,s=−∞
Gp∗,s∗;p,s(ψ, k̃)Φps = Ω2

∞∑
p,s=−∞

Cp∗,s∗;p,s(ψ)Φps, (6)

where G and C are infinite Hermitian matrices given by

Gp∗,s∗;p,s(k̃) =

(
δp∗,pδs∗,s +

1

2
εψψ
g(p∗−p,s∗−s)

)
k̃(p∗s∗)k̃(ps), (7)
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Cp∗,s∗;p,s = δp∗,pδs∗,s +
1

2
εψψ
c(p∗−p,s∗−s), (8)

k̃(ps) = k̃ + pι− sN are the normalized longitudinal wave number of the corresponding

harmonic of Φ, δi,j is the Kronecker symbol. The matrix form shows that the spectrum

of equation (2), in fact, does not depend on the field line (the parameter α does not

enter equation (6)). If we restore the constraint that Φ is periodic in θ and φ then

equation (5) should be compatible with a standard Fourier representation of Φ, which

is possible when k̃ = mι − n for some integer m and n. When ι is irrational, any real

number can be approximated by mι− n with arbitrary accuracy for some m and n. At

the same time, if ι is not constant, for any flux surface with rational value of ι there

are surfaces with irrational ι at arbitrarily close distance. For this reason, when we are

interested in the AC in general rather than in the behaviour of its separate branches,

we do not need to care that k̃ = mι− n.

In the cylindrical geometry, when different Fourier harmonics of the wave are

decoupled, the AC consists of the corresponding branches Ω = Ωm,n(ψ) = |k̃m,n|, where

k̃m,n = mι − n is the normalized longitudinal wave number of the harmonic (m,n),

m and n are the poloidal and toroidal wave numbers, respectively. To see this, it is

sufficient to take Φ ∝ exp(imθ− inφ) in equation (2) or omit all non-diagonal elements

in equation (6).

Deviations from the cylindrical geometry lead to coupling of different wave

harmonics. When the coupling is weak, we can study only interactions of pairs of the

harmonics. Let us consider a pair of wave harmonics, (m,n) and (m + µ, n + νN),

interacting via the Fourier harmonic (µ, ν) of the magnetic configuration, i.e., the

harmonic ∝ exp(iµθ−iνNφ). Taking the corresponding 2×2 sub-matrix of equation (6),

one can see that the smaller is the difference |k̃m,n| − |k̃m+µ,n+νN |, the stronger is

the interaction. The consequences of the interaction are most serious when k̃m,n =

−k̃m+µ,n+νN = ±k̃∗(µ,ν), where k̃∗(µ,ν) = (µι − νN)/2 is the normalized characteristic

longitudinal wave number associated with the (µ, ν) coupling. This condition determines

the line

Ω∗(µ,ν)(ψ) ≈ |k̃∗(µ,ν)| (9)

on the plane (ψ, Ω) (this line is the locus of the crossings of pairs of cylindrical continuum

branches Ω = Ωm,n(ψ) and Ω = Ωm+µ,n+νN(ψ) for arbitrary m and n). Near this line,

the (µ, ν) coupling (i.e., the coupling via the (µ, ν) harmonic) produces a gap in the

continuum, which we will label with the numbers (µ, ν). The width of this gap is about

[19]

δΩ/Ω ≈ |εψψ
(µ,ν)|, (10)

where εψψ
(µ,ν) = (εψψ

g(µ,ν) + εψψ
c(µ,ν))/2 ≈ εψψ

g(µ,ν) − 2εB(µ,ν).

When the coupling is strong, which is typically the case in stellarators because of

strong shaping, the width and position of the gaps cannot be found by considering only

interactions of pairs of wave harmonics. The width of the (µ, ν) gap is contributed not
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only by the (µ, ν) harmonics of the coefficients but also by all possible combinations of

harmonics (µ1, ν1), . . . , (µk, νk) such that (µ1, ν1) + . . . + (µk, νk) = (µ, ν). As a result,

the gap with certain (µ, ν) may appear even when the direct (µ, ν) coupling is absent

or negligible (we will refer to such gaps as “combination” gaps). In addition, numerical

calculations show that the interaction between the gaps displaces them, so that their

frequencies may sometimes differ from that given by equation (9) by a factor of two or

even more [19]. Then a natural question appears: Is there a way to label the gaps in

this case, i.e., to attribute the corresponding coupling numbers (µ, ν) to each gap?

This problem has already been addressed in the theory of the Schrödinger equation

with a quasiperiodic potential [30] and in the paper [21]. The substitution Φ =

(hψψ
g )−1/2Φ̃ transforms equation (2) into an equation very similar to the Schrödinger

equation (the only difference is in the way the eigenvalue enters the equation, which

does not seem to be essential). The potential of this equation, like the coefficients

of equation (2), is quasiperiodic for irrational ι. Theory [30] states that a “natural”

labelling for a Schrödinger equation can be found from the so-called “winding number”,

which shows how many times per unit length the eigenfunctions of the equation at the

boundaries of the spectral gap oscillate around zero.

Another method to label the AC gaps, which is more convenient when the problem

is treated in the matrix formulation, is used in the AC code COBRA [19]. Equation (6) is

solved with reduced non-diagonal elements of the matrices C and G (they are multiplied

by a small factor) and k̃ = −k̃∗(µ,ν)/2. It is then assumed that the boundaries of the

gap (µ, ν) are determined by those eigenfrequencies of (6) which correspond to the

eigenvectors with the prevailing contribution of the harmonics with (p, s) = (0, 0) and

(µ, ν). Since −k̃(0,0) = k̃(µ,ν) = k̃∗(µ,ν)/2, one can show that the winding number of these

harmonics has exactly the magnitude required by the theory [30] for the boundaries

of the gap (µ, ν). Then the code gradually increases the non-diagonal elements until

they reach their actual magnitudes and follows the continuations of the two selected

eigensolutions. It is assumed that on the end of this process the boundaries of the

gap are given by the eigenfrequencies of the two selected continuum branches. Our

experience of calculations has shown that this method gives reasonable results. It seems

to be equivalent to the winding-number method, although we have not tried to prove this

fact rigorously (in fact, it is sufficient to prove that the winding number is a continuous

function of the coupling parameters).

As an example, let us consider the AC calculated with COBRA for W7-AS shot

No. 56936 (figure 1). One can see that the high-frequency part of the AC is in striking

contrast to the low-frequency one: in the low-frequency part (up to 150 kHz), the gaps

separate rather wide continuum bands, whereas in the high-frequency part (in the range

of helicity-induced and mirror-induced gaps) the continuum is compressed by wide gaps

into extremely thin threads. For instance, the relative width of the continuum wall

between the (2, 1) and (3, 1) gaps at r/a = 0.3 is as small as δω/ω ≤ 6 × 10−4. If

these two gaps were narrow, the relative distance between them could be estimated
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Figure 1. Alfvén continuum in W7-AS shot No. 56936.

from equation (9) as

2
Ω∗(2,1) − Ω∗(3,1)

Ω∗(2,1) + Ω∗(3,1)

= 2
|k̃∗(2,1) − k̃∗(3,1)|
|k̃∗(2,1) + k̃∗(3,1)|

=
ι

N − 2.5ι
≈ 0.12. (11)

at r = 0.3a. At the same time, the relevant coupling parameters are

εψψ
(2,1) = 0.59, εψψ

(3,1) = 0.35. (12)

Due to equation (10), these parameters are estimates of the relative widths of these

gaps (of course, these estimates are valid only for narrow gaps; the actual widths of

the gaps are different). We observe that the estimated gap widths well exceed the

estimated distance between them (the gaps have “not enough space”). Then it seems

understandable why the continuum wall between the gaps is very narrow. However, it

is not immediately clear how as small number as 6 × 10−4 can be obtained from these

three numbers. The wave functions with the frequencies in this continuum wall possess

complicated Fourier spectra, the wave almost vanishing at the outer circumference of the

torus (“anti-ballooning” behaviour). An example is the wave function (m, n) = (0, 2)

with the frequency in the continuum thread between the (2, 1) and (3, 1) gaps at

r/a = 0.3 (figure 2).

The AC in LHD (Large Helical Device [31]) exhibits the same general pattern

(see figure 7 in [32]): The continua in the high frequency range look like thin threads

separated by wide gaps. One can suppose that the reason for this is the same as in W7-

AS. The estimated relative distance between the helicity-induced gaps is ∼ ι/N , which
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Figure 2. Wave function of the continuum branch (m,n) = (0, 2) at r/a = 0.3 in
W7-AS shot No. 56936.

is less than the characteristic magnitude of the coupling parameters associated with

helicity. It seems that this is typical, at least, for high-N stellarators, which motivates

us to study the structure of the AC and the AEs in this situation.

2.2. Crossing of two gaps and gap annihilation

Since we are interested in the case when the distance between the gaps is very small,

it seems reasonable to consider first the limit case when the distance between two gaps

totally vanishes, i.e., when they cross at a certain flux surface. Let us consider two gaps

with the coupling numbers (µ1, ν1) and (µ2, ν2) and assume that there is a flux surface

ψ = ψX at which the corresponding gaps cross, ω∗(µ1,ν1)(ψX) = ω∗(µ2,ν2)(ψX), which

means due to equation (9) that k̃∗1(ψX) = σk̃∗2(ψX) with σ = ±1, where k̃∗1 ≡ k̃∗(µ1,ν1)

and k̃∗2 ≡ k̃∗(µ2,ν2). This, in particular, implies that

ιX ≡ ι(ψX) =
ν1 − σν2

µ1 − σµ2

N (13)

is rational, so that the field lines are closed at ψ = ψX .

Having in mind that equation (1) involves only derivatives along the field lines, we

study this equation on a single closed field line, θ = α + ι(ψX)φ, where α = const is a

field line label. Then, using equation (13), we put equation (4) into the form

hψψ
g,c = 1 +

1

2
εg,c(X)(α) exp

(
i
µ2ν1 − µ1ν2

µ1 − σµ2

Nφ

)
+ c.c. + (. . .), (14)

where

εg,c(X)(α) =

{
εψψ
g,c1 exp(iµ1α) + εψψ

g,c2 exp(iµ2α) when σ = +1 ,

(εψψ
g,c1)

∗ exp(−iµ1α) + εψψ
g,c2 exp(iµ2α) when σ = −1,

(15)
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εψψ
g,c1 ≡ εψψ

g,c(µ1,ν1), εψψ
g,c2 ≡ εψψ

g,c(µ2,ν2), “c.c.” means complex conjugate, and (. . .) stands for

the contribution of all harmonics except for (µ, ν) = (±µ1,±ν1) and (±µ2,±ν2). We

observe that the two harmonics merge into one on each field line. The amplitude of

this net harmonic and, thus, the width of the resulting gap in the continuum depends

on the field line (on α). The total continuous spectrum is the union of the continua

for all field lines. Therefore, neglecting the influence of the rest of harmonics and using

equation (10), we can estimate the width of the joint gap produced by the harmonics

(µ1, ν1) and (µ2, ν2) as

δω ≈ 1

2
min

α

∣∣εg(X)(α) + εc(X)(α)
∣∣ ω =

∣∣∣
∣∣∣εψψ

(µ1,ν1)

∣∣∣−
∣∣∣εψψ

(µ2,ν2)

∣∣∣
∣∣∣ ω. (16)

We conclude that the two gaps “annihilate” at the crossing point: the width of the net

gap is approximately the difference of the widths that the two gaps would have if they

were alone. Another conclusion we make is that at ψ = ψX the continuum depends on

the field line, the dependence being the stronger, the wider are the crossing gaps. This

implies that the continuum wave functions are localized at separate field lines.

2.3. Vicinity of the crossing: Numerical study

To study the AC in the vicinity of a crossing point of two gaps numerically, we proceed

from the matrix form of the AC equation (equation (6)). Let us choose a wave harmonic

with the wave numbers (m,n) = (m0, n0) such that k̃m0,n0 ≈ k̃∗1. Then we define a

sequence of harmonics as follows:

(m2l+1, n2l+1) = (m2l, n2l)− (µ1, ν1N),

(m2l+2, n2l+2) = (m2l+1, n2l+1) + σ(µ2, ν2N).
(17)

Since k̃∗1 ≈ σk̃∗2 near the crossing point of the gaps, a large number of the harmonics

of the sequence are characterized there by approximately the same longitudinal wave

numbers (up to sign):

. . . ≈ −k̃m−1,n−1 ≈ k̃m0,n0 ≈ −k̃m1,n1 ≈ k̃m2,n2 ≈ . . . (18)

Therefore, one can expect the interaction of the harmonics within the sequence to be

strong, whereas the coupling with harmonics outside the sequence can be expected to be

much weaker. Having this in mind, we simplify equation (6) by taking the sub-matrix

corresponding to harmonics (ms, ns) with s = −L, . . . , L. In addition, we neglect all

coupling parameters except for (µ, ν) = (µ1, ν1), (µ2, ν2), (−µ1,−ν1), and (−µ2,−ν2).

We obtain the following eigenvalue problem for three-diagonal matrices:

L∑
s=−L

Gp,s(d, κ)Φs = Ω2

L∑
s=−L

Cp,sΦs, s = −L, . . . , L, (19)
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where Φs is the wave harmonic with the wave numbers (ms, ns), the three-diagonal

matrices G and C are given by

Gp,s = G∗s,p = k̃pk̃s





1 for p = s,

εψψ
g1 for p = s− 1 = 2l − 1,

εψψ
g(−σµ2,−σν2) for p = s− 1 = 2l,

0 for p 6= s, s± 1,

(20)

Cp,s = C∗s,p =





1 for p = s,

εψψ
c1 for p = s− 1 = 2l − 1,

εψψ
c(−σµ2,−σν2) for p = s− 1 = 2l,

0 for p 6= s, s± 1,

(21)

k̃p ≡ k̃mp,np = (−1)pk̃X + κ + pd, d(ψ) = σk̃∗2 − k̃∗1, k̃X(ψ) = (σk̃∗2 + k̃∗1)/2,

κ = k̃m0,n0 − k̃X is a parameter.

For the exact crossing (ι = ιX , d = 0), equation (19) for L = ∞ can be

solved analytically. Indeed, the matrices are periodic in this case: Gp+2,s+2 = Gp,s,

Cp+2,s+2 = Cp,s. Then we can take Φs in a periodic form:

Φ2l = a1 exp(iγl), Φ2l+1 = a2 exp(iγl). (22)

Solving the obtained eigenvalue problem and varying κ and γ, we obtain a continuous

spectrum with a gap, the boundaries of the gap corresponding to κ = 0. The width

of the gap agrees with equation (16). Thus, as one could expect, we recover results

of subsection 2.2 (the gap annihilation). Note that the eigenfunction described by

equation (22) is localized on a field line (which depends on γ), also in agreement with

subsection 2.2.

To study the spectrum for ι 6= ιX , we solved the eigenvalue problem (19) numerically

with the use of the QZ algorithm [33]. In each calculation we obtained several

eigenvectors peaked at l ≈ ±L. Such eigenvectors were discarded as spurious. The rest

of the eigenvectors seemed to converge with the increase of L, although with different

rates. To outline the continuum for some ι, we scanned κ ≡ k̃m0,n0 with a small step in

the interval −δ ≤ κ ≤ δ (it is sufficient to take κ within this interval because k̃2l − k̃X

for some l always lies in this interval).

Two typical results of the calculations are presented in figures 3 and 4, where the

spectra of equation (19) are shown versus d (note that d can be considered as a radial

variable when ι is a monotonic function of ψ). The eigenvalues of equation (19) are shown

with dots, which form vertical bands as κ is varied. We observe that the gaps indeed

annihilate at the crossing point (d = 0). In particular, in figure 3, where a crossing

of two gap of equal widths is shown, the annihilation is total (both gaps are closed at

d = 0). In the vicinity of the crossing point, multiple combination gaps appear, which

are characterized by the coupling numbers 2(µ1, ν1) − σ(µ2, ν2), 3(µ1, ν1) − 2σ(µ2, ν2),

etc. The widths of such gaps decrease with the increase of d, so that at the ends of the
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c1 = 0.1, εψψ
c2 = 0.05, L = 20.
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interval most of them are negligible. The gaps are separated by continuum walls, which

are extremely thin at small d, e.g., δΩ/Ω ≈ 3 × 10−8 for the continuum wall between

the main gaps at d = −0.005 in figure 4 (at the place shown with gray cross). The

width of each wall decreases with a decrease of d, obeying the law ∝ exp(−C/d), where

C is a constant depending on the specific wall. Calculations with increased L reveal

more combination gaps because the approximation error because of finite L increases

the width of the walls.

Note that the Fourier structure of the continuum wave functions becomes very

complicated as d decreases (the eigenfunctions at the exact crossing consist of infinite

number of harmonics). This explains the computational difficulties observed in

continuum calculations [34] near the flux surfaces where pairs of wide gaps cross.

It should be mentioned also that the characteristic picture shown in figures 3 and

4 is not a result of the approximations we made (only two harmonics in the equilibrium

and a sequence of harmonics described by equation (17) are taken into account). Similar

picture was obtained in [34] (figure 5), where no such assumptions were made. These

assumptions were needed here only to reach better numerical resolution.

2.4. Vicinity of the crossing: Analytical solution

We solve equation (2) in a vicinity of a gap crossing, assuming that the coefficients

include only cosine harmonics (this is typically the case in stellarators) and keeping

only the harmonics (µ1, ν1) and (µ2, ν2) responsible for the crossing gaps. Expressing

the coupling numbers in terms of k̃X and d, we obtain:

hψψ
g,c = 1 + εψψ

g,c1 cos
[
(2k̃X − d)φ + µ1α

]
+ εψψ

g,c2 cos
[
σ(2k̃X + d)φ + µ2α

]
, (23)

where the coupling parameters are assumed to be real. When υ ≡ d/k̃X ¿ 1, the

periods of both harmonics almost coincide. Then the functions hψψ
g (φ) and hψψ

c (φ) have

two characteristic scales. The fast scale, ∆φ ∼ π/k̃X , is approximately the period of

both harmonics. The slow one, ∆φ ∼ π/d, is the period of the slow variation of the

relative phase of the two harmonics.

Before a rigorous analysis, we will give a graphical explanation of the results that

we are going to obtain. In figure 5, a sketch of the variation of h = (hψψ
g + hψψ

c )/2

along a field line is presented. When υ ¿ 1, the sum of the two harmonics entering h

can be considered as one harmonic with the amplitude slowly varying between εmax =

|εψψ
1 |+|εψψ

2 | and εmin = ||εψψ
1 |−|εψψ

2 ||, where εψψ
i = (εψψ

gi +εψψ
ci )/2 with i = 1, 2. As follows

from equation (10), the amplitude of the oscillations of a certain harmonic of h along the

field lines characterizes the width of the corresponding continuum gap. Assuming that

the variation of the amplitude is sufficiently slow to be neglected, we conclude that the

continuum wave propagation is forbidden for 1− εmin < Ω2/k̃2
X < 1 + εmin, whereas the

frequencies outside the interval 1−εmax < Ω2/k̃2
X < 1+εmax belong to the continuum. In

the intermediate intervals, 1−εmax < Ω2/k̃2
X < 1−εmin and 1+εmin < Ω2/k̃2

X < 1+εmax,

the wave is trapped in certain parts of the field lines, the parts where the frequency lies
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Figure 5. Sketch of the AC produced by two harmonics of the configuration with
close characteristic longitudinal wave numbers. The variation h = (hψψ

g + hψψ
c )/2

along a field line is also shown. Solid curve, h; dashed curves, the envelopes of h; grey
horizontal bands, the continuum. The region between the envelopes is a forbidden
zone for the continuum waves.

outside the envelopes of h (see figure 5). This should result in the formation of a

system of frequency levels. Similar levels in different “pockets” of the envelopes interact

due to tunnelling, turning into continuum bands of finite width. We can assume that

these bands correspond to the thin continuum walls observed in numerical calculations

in subsection 2.3 (see figures 3 and 4). In a sense, such continua are similar to deep

electron energy zones in a solid crystal. The energy of such a zone can be found in

the assumption that the electron is bounded in a single potential well corresponding to

a single atom. However, tunneling between the atoms results in the zone width being

finite.

Now we proceed to quantitative calculations. We begin with averaging equation (2)

over the fast scale. With this aim, we present it in a Hamiltonian form:

dΦ

dt
=

∂H

∂P
,

dP

dt
= −∂H

∂Φ
, (24)

where

H =
1

2hψψ
g

P 2 +
1 + λ

2
hψψ

c Φ2 ≈ 1

2
(P 2 + Φ2) +

1

2
[−χgP

2 + (λ + χc)Φ
2] + O(ε2), (25)

P =
hψψ

g

k̃X

dΦ

dφ
, (26)

t = k̃Xφ, λ = Ω2/k̃2
X − 1, χg,c = hψψ

g,c − 1. We assume that υ ¿ 1 and λ ∼ χg ∼ χc ∼ ε,

where ε is a small parameter. Our aim is to average the fast oscillations in the first-order
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part of the Hamiltonian along the trajectories of the zeroth-order motion. One can see

that these trajectories rotate with the unit frequency around the origin of the phase

plane (Φ, P ). Having this in mind, we introduce the action–angle coordinates (ζ, J) as

follows:

Φ = (2J)1/2 sin(ζ + t), P = (2J)1/2 cos(ζ + t). (27)

The coordinate transformation (Φ, P ) → (ζ, J) is canonical, resulting from the

generating function Φ2 cot(ζ + t)/2. To first order, the Hamiltonian in the new

coordinates is

Ĥ = H − J = [−χg cos2(ζ + t) + (λ + χc) sin2(ζ + t)]J. (28)

The zero-order trajectories in the new coordinates are simply J = const, ζ = const.

Therefore, the averaging consists in putting hg and hc given by equation (23) to

equation (28) and excluding fast oscillations with d/dt ∼ 1. This can be considered

as a transformation from the variables (ζ, J) to new “corrected” canonical variables

(ζ̄ , J̄), in which the Hamiltonian is free of fast oscillations [35] (detailed analysis shows

that J̄ = J +O(ευ), ζ̄ = ζ +O(ευ)). We arrive at the Hamiltonian

H̄ =
1

2

{
λ + g− cos

[
2(ζ̄ + z)

]
cos

(
υt̂

)
+ g+ cos

[
2(ζ̄ + z)

]
cos

(
υt̂

)}
J̄ , (29)

where t̂ = t − tM , the time shift tM = [(µ1 − σµ2)α + arccos(−s) + 2πM ]/(2υ) is

defined so that any local minimum of the amplitude of h could be placed to t̂ = 0

with an appropriate choice of integer M , z = (υt0 − µ1α)/2, g− = (−1)M(sεψψ
2 − εψψ

1 ),

g+ = (−1)M(sεψψ
2 + εψψ

1 ), s = sgn(εψψ
1 εψψ

2 ). Introducing new coordinates, (Φ̄, P̄ ), with

the canonical transformation

Φ̄ = (2J̄)1/2 sin(ζ̄ + z), P̄ = (2J̄)1/2 cos(ζ̄ + z), (30)

we obtain

H̄ =
1

4

[
A

(
t̂
)
Φ̄2 + B

(
t̂
)
P̄ 2 + 2g+ sin

(
υt̂

)
P̄ Φ̄

]
, (31)

where A = λ− g− cos(υt̂), B = λ + g− cos(υt̂).

The Hamiltonian of the form (31) can be reduced to Schrödinger equations. To

achieve this, we perform the canonical transformations

P1 = |B|1/2P̄ , Φ1 = |B|−1/2Φ̄,

P2 = |A|−1/2P̄ , Φ2 = |A|1/2Φ̄
(32)

to obtain the following pair of Hamiltonians:

H1 =
1

4

{
ς1ABΦ2

1 + ς1P
2
1 +

[
2g+ sin

(
υt̂

)− 2

B

dB

dt̂

]
P1Φ1

}
,

H2 =
1

4

{
ς2Φ

2
2 + ς2ABP 2

2 +

[
2g+ sin

(
υt̂

)
+

2

A

dA

dt̂

]
P2Φ2

}
,

(33)
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where ς1 = sgn(B), ς2 = sgn(A). Excluding one of the variables from the resulting

Hamilton’s equations, we obtain a pair of Schrödinger equations. Omitting the terms

containing υ2 or υ sin(υt̂), we can write these equations as follows:

d2Φ1

dt̂2
+

[
λ2 − g2

−
4

− g2
+ − g2

−
4

sin2
(
υt̂

)− g+υ

2
cos

(
υt̂

)]
Φ1 = 0,

d2P2

dt̂2
+

[
λ2 − g2

−
4

− g2
+ − g2

−
4

sin2
(
υt̂

)
+

g+υ

2
cos

(
υt̂

)]
P2 = 0.

(34)

These two equations are complementary: We cannot use the first equation when A ≈ 0

(i.e., λ ≈ g− cos(υt̂)) and the second one when B ≈ 0 (i.e., λ ≈ −g− cos(υt̂)) because

then some omitted terms of the equations are not small.

We observe that the averaging has confirmed the conclusions at which we arrived in

our qualitative analysis. Indeed, we have obtained Schrödinger equations with periodic

potentials, the wells of the potentials being at the same places as the “pockets” of the

envelope of h. When the wells are deep enough, the spectrum of such a potential is, in

fact, the discrete spectrum of a single well with the levels turning into narrow continuum

bands due to tunnelling between the wells. Therefore, we solve equations (34) for a

single potential well, disregarding the interaction between different wells. It is sufficient

to consider a vicinity of t̂ = 0 since we can place any well to that point by a proper choice

of M . We assume that |υt̂| ∼ |υ/g+|1/2 ¿ 1 (this estimate will be justified a posteriori),

expand sine and cosine and omit terms of order υ2. We arrive at the following pair of

quantum oscillator equations:

d2Φ1

dt̂2
+

(
λ2 − g2

−
4

− g+υ

2
− g2

+ − g2
−

4
υ2t̂2

)
Φ1 = 0, sgn(λ) = sgn(g−),

d2P2

dt̂2
+

(
λ2 − g2

−
4

+
g+υ

2
− g2

+ − g2
−

4
υ2t̂2

)
P2 = 0, sgn(λ) = −sgn(g−).

(35)

The joint spectrum of these two equations is given by

1

2
(λ2 − g2

−) + sgn(λg−)g+υ = |υ|γ(2j + 1), j = 0, 1, . . . (36)

with γ = (g2
+ − g2

−)1/2. Solving equation (36) for λ, we can write the frequencies of the

continuum bands as follows:

λ0 = −sgn(g+υ)g−

[
1− 2|υ|

γ + |g+|
]1/2

,

λ±j = ±
[
g2
− + 4jγ|υ| ± sgn(g+g−υ)

2|υ|g2
−

γ + |g+|
]1/2

, j = 1, 2, . . .

(37)

(note that j in this equation may differ by 1 from j in equation (36)). One can see

that the structure of the bands is in agreement with figures 3 and 4. Note that the

eigenfunctions in neighboring wells are different (because the substitution M → M + 1

results in g+ → −g+ and g− → −g−), but the eigenfrequencies are the same.

The obtained solutions are valid when the tunnelling between different potential

wells is weak enough, i.e., when the distance between the turning points is much less
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than the potential period, which is 2π/|υ|. Putting the frequency levels determined by

equation (36) into equation (35) and taking in to account that g2
+ − g2

− = 4|εψψ
1 εψψ

2 |, we

observe that the region of the wave propagation is

|t̂| ≤ ∆t =
C

|εψψ
1 εψψ

2 |1/4|υ|1/2
(38)

with C = (2j + 1)1/2 ∼ 1. Thus, the tunneling is weak when

|υ| = 2
||k̃∗1| − |k̃∗2||
|k̃∗1|+ |k̃∗2|

= 2
|Ω∗1 − Ω∗2|
Ω∗1 + Ω∗2

¿ π2

4
|εψψ

1 εψψ
2 |1/2. (39)

Using the similarity with electron waves in a crystal, we conclude that in this case the

width of a continuum band depends on υ as ∼ exp(−D/|υ|) with D constant, where the

argument of the exponent originates from the width of a potential barrier between the

wells. This dependence is also in agreement with the numerical results of subsection 2.3.

Let us formulate our results in physical terms. The inequality (39) means that the

relative difference between the periods of the harmonics along the field lines is small

in comparison with the corresponding coupling parameters. At the same time, this

inequality requires that the estimated distance between the gaps should be smaller than

their estimated widths, which is exactly the situation that we intended to analyze in

subsection 2.1. When it is satisfied for a certain pair of equilibrium Fourier harmonics,

the continuum wave functions are localized in the regions given by equation (38).

Returning from t̄ to the angles θ and φ in equation (38), we observe that the wave

is trapped within certain “waveguides” on each flux surface:

|(σµ2 − µ1)θ − (σν2 − ν1)φ− arccos(−s) + 2πM | ≤ 2C|υ|1/2

|εψψ
1 εψψ

2 |1/4
. (40)

These waveguides are produced by the interference of the equilibrium harmonics with

close periods along the magnetic field and are located at the places where the harmonics

tend to cancel. Equation (40) shows that the width of the waveguides decreases when we

approach the gap crossing (υ → 0). The continuum in this case looks as a set of narrow

frequency bands. The width of such a band is determined by the tunnelling through

the evanescence zones between the waveguides and exponentially decreases with |υ|−1.

The analysis above sheds light on the mentioned peculiarities of the structure of

the high-frequency part of the AC in stellarators. As mentioned in subsection 2.1,

the dominant Fourier harmonics of the magnetic configuration in many stellarators

(including W7-AS) are (µ, ν) = (2, 1) and (3, 1), which are associated with helical

elongation and triangularity of the plasma cross section. The other helicity- and mirror-

induced gaps can be considered, at least, partly as combination gaps created by these

harmonics ((4, 1) = 2× (3, 1)− (2, 1); (0, 1) = 3× (2, 1)− 2× (3, 1), etc.). Indeed, the

width of some the helicity-induced gaps is too large to be explained by the corresponding

coupling parameters. It follows from equations (11) and (12) that the condition (39)

is satisfied; hence, the continuum wave functions in the vicinity of these gaps are

trapped. Taking into account that sgn(εψψ
(2,1)) = sgn(εψψ

(3,1)) (which seems typical in other

stellarators, too), we find from equation (40) that the waves are trapped at the inner
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circumference of the torus, near θ = π, which agrees with the observed anti-ballooning

of the wave functions (figure 2). The extremely small widths of the continuum walls

between the gaps in this part of the spectrum (see subsection 2.1) are explained by their

exponential dependence on |υ|−1 (the latter is about 8 for the gaps (2, 1) and (3, 1), see

equation (12)).

3. Alfvén eigenmodes produced by interaction of two close gaps

It is well known that the dependence of an AE on the poloidal and toroidal angles is

usually similar to that of the continuum branches with which the AE is associated (e.g.,

this is so for the odd and even TAE modes). Therefore, it is of interest to check if the

trapping of continuum waves in waveguides takes places for AEs in the same frequency

range. Neglecting the plasma pressure, we proceed from the following equation of ideal

Alfvén oscillations [36, 19]:

∑
i,j

{
1

gB2
L̂

∂

∂xi

[
√

ggij
⊥B2 ∂

∂xj

(
L̂Φ

B2
√

g

)]
+

1√
g

∂

∂xi

(√
ggij
⊥

ω2

v2
A

∂Φ

∂xi

)}
= 0, (41)

where gij
⊥ = gij − bibj; gij with i, j = ψ, θ, φ are the components of the contravariant

metric tensor; bi denotes the corresponding contravariant component of b = B/B. In a

large-aspect-ratio device, the components giφ = gφi with i = ψ, θ, φ are small (of order

of the squared inverse aspect ratio) in comparison with the rest [19]; therefore, below

we neglect the terms with i = φ or j = φ in equation (41).

To treat equation (41), we use the ballooning formalism as described in [26]. We

take Φ in the eikonal form,

Φ = Φ̂(ψ, θ, φ) exp[iε−1S(ψ, α)], (42)

where α = θ−ιφ, ε is a small parameter indicating that we consider waves with k‖ ¿ k⊥,

the eikonal S(ψ, α) is constant along the field lines, and the function Φ̂ characterizes

both the variation of the wave along the field lines and the slow transversal variation of

the wave envelope.

Putting the ballooning ansatz (42) into equation (41) and collecting the terms of

lowest order in ε, we obtain the ballooning equation:

d

dφ

[
∆(φ; ψ, α, φk)

dΦ̂

dφ

]
+ Ω2 ∆(φ; ψ, α, φk)

h4
B(φ; ψ, α)

Φ̂ = 0, (43)

where

∆ = hθθ
g + 2(φ− φk)ŝιh

ψθ
g + (φ− φk)

2ŝ2ι2hψψ
g , (44)

hθθ
g = gθθ

⊥ /〈gθθ
⊥ 〉 and hψθ

g = gψθ/(〈gψψ〉〈gθθ
⊥ 〉)1/2 are normalized metric tensor components,

ŝ = −ι′(〈gψψ〉/〈gθθ〉)1/2/ι is the magnetic shear, prime means differentiation in ψ,

φk = kι/kα, kι and kα are transversal wave numbers introduced by the equation

∇S = kα∇α + kι∇ι. The ballooning equation is an ordinary differential equation,

which determines the behaviour of the wave function along a field line. The coefficients
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of this equation are taken along the field line, so that θ = θ(ψ, α, φ) = α + ι(ψ)φ with

ψ, α = const. The quantity φk plays the part of a parameter in this equation, as well

as ψ and α. The dependence of the solution on these quantities is established through

high-order analysis [26, 37, 38]. Such analysis enables one, in particular, to obtain the so-

called “quantization condition,” which provides the periodicity of the obtained solution

in θ and φ. One can see that the ballooning equation is reduced to the continuum

equation (2) in the limit of φ → ±∞. Below we omit hats over Φ since this will not

lead to a confusion.

Like in section 2, we assume for the sake of simplicity that the metric coefficients

of the magnetic configuration include only two Fourier harmonics, (µ1, ν1) and (µ2, ν2).

Then we present hψθ
g and hθθ

g as follows (cf. equation (23)):

hθθ
g = 1 + εθθ

g1 cos
[
k̃X(2− υ)φ + µ1α

]
+ εθθ

g2 cos
[
k̃Xσ(2 + υ)φ + µ2α

]
, (45)

hψθ
g = εψθ

g1 sin
[
k̃X(2− υ)φ + µ1α

]
+ εψθ

g2 sin
[
σ(2k̃X + d)φ + µ2α

]
, (46)

where υ ¿ 1 (we take into account that 〈gψθ〉 = 0). On substituting equations (23),

(45) and (46) to equation (44), we find that the coefficients of equation (43) possess

three characteristic scales. Two of them, ∆φ ∼ π/k̃X (the period of the harmonics) and

∆φ ∼ π/(υk̃X) (the period of the beatings), have already appeared in our treatment

of the continuum equation. The third one, ∆φ ∼ 2/(ιŝ), is a characteristic scale

that usually appears in the ballooning theory. We consider the case of υ ¿ 1 and

s̄ = ŝι/k̃X ¿ 1, when the first scale is much shorter than the other two and use the

procedure described in subsection 2.4 to average equation (43) over fast oscillations.

Equation (43) is equivalent to Hamilton’s equations resulting from the Hamiltonian

H(P, Φ, t) =
1

2∆
P 2 + (1 + λ)

∆

2h4
B

Φ2, (47)

where P = ∆dΦ/dt, λ = Ω2/k̃2
X − 1 will be assumed to be ∼ ε, and the time variable

is t = k̃Xφ. Transforming this Hamiltonian to action–angle variables (ζ, J) with the

canonical transformation Φ = (2J/∆)1/2 sin(ζ + t), P = (2J∆)1/2 cos(ζ + t), we obtain

the Hamiltonian

H(J, ζ, t) =
λ + 1− h4

B

h4
B

J sin2(ζ + t) +
1

2∆

d∆

dt
J sin(2ζ + 2t). (48)

Then we average the Hamiltonian over fast oscillations with the frequency of order

unity. Neglecting the terms of order ε2 and higher, we obtain the averaged Hamiltonian

as follows:

H̄(ζ̄ , J̄ , t̄) = J̄

[
λ

2
+ C (t̄) sin

(
2ζ̄

)
+ D (t̄) cos

(
2ζ̄

)]
, (49)

where t̄ = t− k̃Xφk, J̄ = J +O(υε),

C(t̄) = X1(t̄) sin(υt̄− µ1ᾱ)−X2(t̄) sin(υt̄ + σµ2ᾱ)

+ Y1(t̄) cos(υt̄− µ1ᾱ) + Y2(t̄) cos(υt̄ + σµ2ᾱ), (50)
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Figure 6. Potential (56) for the gaps (µ1, ν1) = (2, 1) and (µ2, ν2) = (3, 1) in the
W7-AS shot No. 54937 at r/a = 0.45 (s̄ ≈ 0.016, υ ≈ 0.095).

D(t̄) = −X1(t̄) cos(υt̄− µ1ᾱ)−X2(t̄) cos(υt̄ + σµ2ᾱ)

+ Y1(t̄) sin(υt̄− µ1ᾱ)− Y2(t̄) sin(υt̄ + σµ2ᾱ), (51)

ζ̄ = ζ − υφk

2

µ1 + σµ2

µ1 − σµ2

+O(υε), ᾱ = α− 2υφk

µ1 − σµ2

+O(υε). (52)

The functions Xj(t̄) and Yj(t̄) for j = 1, 2 are given by

Xj(t̄) =
εθθ
j + εψψ

j s̄2t̄2

1 + s̄2t̄2
, Yj(t̄) =

2εψθ
gj s̄t̄

1 + s̄2t̄2
, (53)

where εψψ
j = εψψ

gj − 2εB ≈ (εψψ
gj + εψψ

cj )/2, εθθ
j = εθθ

gj − 2εB. We observe that there is no

parameter corresponding to φk after the averaging (one can expect that the dependence

of λ on φk is very weak, ∼ exp(−cs̄−1) with c ∼ 1, which is how averaged solutions

typically depend on the phase of fast oscillations).

Acting like in subsection 2.4, we reduce the Hamiltonian system (49) to a

Schrödinger equation. Here we will restrict ourselves to the case of s̄ ¿ ε, when the

calculations are less cumbersome. Then, introducing new variables (Φ̄, P̄ ) with the

canonical transformation

Φ̄ = (2J̄)1/2 cos(ζ̄), P̄ = (2J̄)1/2 cos(ζ̄), (54)

and excluding P̄ from Hamilton’s equations, we obtain

d2Φ̄

dt̄2
+ [E − U(t̄)]Φ̄ = 0, (55)
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where E = λ2/4 and U(t̄) = C2 + D2. One can present the effective potential U in the

form

U = 2
[
X2

1 (t̄) + Y 2
1 (t̄)

]1/2 [
X2

2 (t̄) + Y 2
2 (t̄)

]1/2
cos [2υt̄ + (σµ2 − µ1)ᾱ + γ(t̄)]

+X2
1 (t̄) + X2

2 (t̄) + Y 2
1 (t̄) + Y 2

2 (t̄), (56)

where

γ = tan−1 X2(t̄)Y1(t̄)−X1(t̄)Y2(t̄)

X1(t̄)X2(t̄) + Y1(t̄)Y2(t̄)
, (57)

and the branch of tan−1 is chosen so that γ is continuous and γ(0) = 0. A typical

example of the behaviour of the potential (56) is given in figure 6, where U is calculated

for the widest continuum gaps, (µ1, ν1) = (2, 1) and (µ2, ν2) = (3, 1), in a magnetic

configuration of W7-AS. Like in subsection 2.4, the oscillations of the potential result

from beatings of the two equilibrium harmonics. As a result, it has numerous wells, each

possessing multiple bounded states. As mentioned above, equation (43) turns into the

continuum equation at φ → ±∞. As a result, the potential U is approximately periodic

at large φ. The frequency levels in far potential wells spread into continuum bands due to

tunnelling between the wells, as was described in the previous section, the corresponding

wave functions remaining finite at φ → ±∞. In contrast to that, the bounded states

of the central wells, where the potential differs from the potential of the far wells by

more than the characteristic continuum band width, are restricted to one well (at most,

to several wells). They vanish at φ → ±∞ and represent eigenmodes of the discrete

spectrum. It follows from equations (40) and (56) that the central wells (for which

γ ≈ 0) are located at the same places where the continuum waves are trapped (provided

that sgn(εψψ
1 εψψ

2 ) = sgn(εθθ
1 εθθ

2 )). Thus, our assumption that the AEs are localized in

waveguides of the same shape as the continuum waves is confirmed. In particular, the

HAE modes produced by the dominant Fourier harmonics with (µ, ν) = (2, 1) and (3, 1)

are typically localized at the inner circumference of the torus, which is determined by the

signs of the corresponding harmonics of the configuration. As mentioned above, these

two harmonics are to a large extent responsible for all AC gaps with ν = 1. Hence, this

conclusion may be true also for the mirror-induced Alfvén eigenmodes (MAE).

Note that the nature of this “anti-ballooning” structure of the considered HAEs

differs from the nature of the anti-ballooning structure of the odd TAE. The latter

results from the approximate compensation of the two principal harmonics of the mode

at θ = 0. In contrast to this, the considered HAEs are poloidally inhomogeneous because

they are evanescent near the outer circumference of the torus. This implies that the

mode consists of many Fourier harmonics (much more than two) and it is much stronger

localized poloidally.

4. Experimental observation of high-frequency Alfvén eigenmodes

At the final stage of W7-AS shot # 54937, high-frequency activity of plasma was

observed. The instabilities were detected by Mirnov coils, which included two poloidal
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Figure 7. Locations of Mirnov coils.

Figure 8. Frequency spectrum of Mirnov signals in W7-AS shot # 54937 vs time.
Upper panel, coil 1; lower panel, coil 4.
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Figure 9. Spatial distributions of the poloidal component of the perturbed magnetic
field – solid red dots show the probe positions. Left: φ = 129◦; right: φ = 303.5◦.

arrays, MIR-3 and MIR-5, with a sample rate of 1 MHz [39]. The arrays were located

at φ = 129◦ and φ = 303.5◦, respectively (see figure 7). A Lomb periodogram analysis

of the Mirnov coil signals was carried out as described in [39]. The obtained spectrum

of the activity consisted of several lines in the range of 200–450 kHz (see figure 8),

which well exceeded the frequencies of TAE and EAE modes (less than 100 kHz in

the plasma core). Each line seems to be produced by a separate instability since the

amplitudes of the lines evolved independently. The identification of the instabilities

as Alfvén eigenmodes is supported by the fact that their frequencies slowly increased

with a decrease of the plasma density. In fact, each line consisted of separate bursts

with the duration ∆t ∼ 0.2 ms. The frequency width of each burst was ∆f ∼ 10 kHz.

As ∆f∆t ∼ 2, the observed frequency width may be completely caused by the finite

duration of the burst, although weak frequency chirping is not excluded.

Comparison of the frequency spectra of the activity at different Mirnov coils reveals

that the spectral lines exhibit different dependence on θ. Figure 8 shows the spectra

of the signals on the coils 1 and 4 located on outer and inner circumferences of the

torus, respectively. The comparison of the two spectra shows that most spectral lines

(the lines with the frequencies about 250, 290 and 410 kHz at t = 0.36 s) are much

stronger at the coil 4, whereas the 320 kHz line has approximately equal amplitudes

at both coils. Thus, the Mirnov signals exhibit strong poloidal inhomogeneity, which is

different for different spectral lines, and some spectral lines are much stronger at the

inner circumference of the device.

To answer the question if this inhomogeneity reflects a real variation of the

wave amplitude within the plasma, one needs to take account of geometrical effects

(the poloidal variations of both |∇θ| and the distance between the plasma and the

coils). These effects can also result in poloidal variations of the signal amplitudes, as

demonstrated in figure 9, which shows a simulation of the poloidal magnetic field of a

perturbation with m = 13 in the vacuum region. The perturbation is modelled by a
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Figure 10. The maximum amplitudes of the high-frequency spectral lines on Mirnov
probes. The frequencies of the lines are given for t = 0.36 s. Left, array MIR-3. Right,
array MIR-5.

surface current with the density ∝ cos(mθ−nφ−ωt). One can see that the perturbation

field near the plasma is stronger at the inner circumference, which is explained by higher

|∇θ| resulting in higher current density. However, the smaller poloidal wave length at

the inner circumference leads to faster decay of the wave in the vacuum region. As a

result, the perturbation field on the coils is much stronger at the outer circumference of

the torus in figure 9. For small m, the decay in the vacuum region is not strong, and the

field at the coils is stronger at the inner circumference. Although the wave propagation

in the vacuum region is, in reality, more complicated than in this model, and surface

currents are not a perfect substitute for a MHD-mode, it seems that the geometrical

effects described above indeed take place.

However, the geometrical effects discussed above cannot completely account for

the observed dependence of the signal amplitude on the coil position. Figure 10 shows

the maximum amplitudes of the spectral lines on all Mirnov probes of the two arrays.

One can see that the perturbation is weak (for all spectral lines) at the coils 6 and

7 of the MIR-3 array, which are located at the inner circumference. At the same

time, the perturbation is weak at the coils 15 and 16 of the MIR-5 array, which are

located at the outer circumference. If one takes into account that the arrays are

positioned almost symmetrically in the toroidal angle (129◦ = 2 × 360◦/N − 15◦ and

303.5◦ = 4×360◦/N +15.5◦), the difference in the poloidal distribution at the two arrays

seems, at a first glance, to contradict the stellarator symmetry (note that amplitude

of any perturbation, the harmonics of which are coupled via periodic equilibrium

quantities, can be shown to obey the stellarator symmetry). As the Mirnov coils had

been calibrated, a strong difference in the coil sensitivity could not be an explanation.

In principle, the stellarator symmetry of the mode amplitude could be broken for an

EPM (energetic particle mode) if the distribution function of the fast particles exciting
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the mode is asymmetric (different in different field periods). However, it is hard to

expect strong aperiodicity of the fast ion distribution since the ions are produced by

tangential NBI (neutral beam injection), so that they are predominantly passing. A

possible explanation is that the observed amplitude of the perturbations on the wall

rapidly oscillates in the poloidal direction. The signal amplitudes shown in figure 10

support this explanation: The amplitudes on neighboring probes can be very different,

and, moreover, there is some obvious correlation between the intensities of all spectral

lines (see, e.g, the probes 4, 5 and 6). Because the poloidal positions of the probes are

different in the two arrays, such oscillations can produce a strong difference between

the poloidal distributions of the wave amplitude. The causes of such oscillations are

not quite clear, but they might include variations of the angle between the coils and the

wave polarization, which might be enhanced by field corrugations. Such corrugations

were typically observed in discharges with high ι > 0.5 (ι = 0.55− 0.58 at t = 0.36 s in

the discussed shot).

Thus, the poloidal dependence of the wave amplitude is obscured by rapid

oscillations, the nature of which is not completely understood. Nevertheless, some

spectral lines show clear signs of ballooning (320 kHz) or anti-ballooning (210, 250, and

410 kHz) behaviour. As shown above, due to geometrical effects the wave amplitude

on the probes may exhibit ballooning or anti-ballooning behaviour even if the wave

amplitude at the plasma boundary does not depend on θ. Since the geometrical

effects depend on m, we attempted to find m of the observed modes, using the Lomb

periodogram analysis described in [39]. The attempt was not quite successful. We

failed to find perturbation harmonics, for which the continuum branches have the same

frequency as the observed instabilities. However, k‖vA was not far from the observed

frequencies for some harmonics having m ∼ 10 − 15. As follows from figure 9, the

observed signals for such m must exhibit clear ballooning behaviour. Then the anti-

ballooning poloidal dependence of the signals with the frequencies of 210, 250, and

410 kHz cannot be attributed to geometrical effects and seems to reflect a variation of

the instability amplitude in the plasma.

We used the AC code COBRA to calculate the AC at t = 0.36 s. The results

are shown in figure 11, where the frequency gaps in the continuum are labelled by the

corresponding coupling numbers (µ, ν). The frequency range of interest corresponds

to helicity-induced (µ 6= 0, ν 6= 0) and mirror-induced (µ = 0, ν = 1) gaps. In

particular, the 210 kHz and 250 kHz instabilities are in (2, 1)-gap (if they are excited

in the plasma core), whereas the 410 kHz instability lies coincides with the (−2, 1)-gap.

The latter arises as a combination gap (the (−2, 1) harmonics of the relevant equilibrium

quantities are too small) and results from joint action of other helical harmonics, the

largest of which are the harmonics with (µ, ν) = (2, 1) and (3, 1). We conclude that the

observed anti-ballooning behaviour of some instabilities agrees well with the theoretical

results presented in section 3, which predict the anti-ballooning localization of the

modes produced by the helical harmonics. The 320 kHz instability shows a ballooning

dependence on θ, which can be attributed to geometrical effects. It lies in a spectral
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Figure 11. The Alfvén continuum in W7-AS shot # 54937. Dots, the continuum;
the gaps are labelled with the corresponding numbers (µ, ν). The region where the
calculations are not reliable is hatched.

range of strong interaction of gaps with different values of ν (e.g., the (1, 1)- and (7, 0)-

gaps). Our calculations of the continuum in this range were not successful because of

the extremely complicated Fourier structure of continuum wave functions. This means

that the waveguides of this eigenmode could have a more complicated shape, which

would explain the absence of observable poloidal trapping.

Thus, the experimental observations indicate that some high-frequency instabilities

in W7-AS are trapped at the inner circumference of the plasma torus, as predicted

by our theory, although the observations are obscured by some factors causing rapid

poloidal oscillations of the observed wave amplitude.

5. Conclusions

We have found that the interaction of two Fourier harmonics of the plasma equilibrium

can result in trapping of the wave functions of the Alfvén continuum in certain

“waveguides”. The trapping occurs when the periods of the two harmonics along

the field lines are sufficiently close in comparison with the harmonic amplitudes (see

equation (39)) and is explained by the interference of the harmonics, which add at one

places and cancel at other ones. When the periods of the two harmonics exactly coincide

(which means that the continuum gaps produced by these harmonics cross), the wave

functions are localized at single field lines. This is shown to lead to “annihilation” of

the continuum gaps: the width of the joint gap at the crossing point is equal to the

difference of the widths of separate gaps.
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The trapping is typical in the high-frequency part of the Alfvén continuum (the

range of the helicity- and mirror-induced gaps), where the gaps (at least, in stellarators

with high N) are close enough. In the typical case when this part of the spectrum is

dominated by the harmonics (2, 1) and (3, 1) (the helical elongation and triangularity),

the waves are trapped at the inner circumference of the flux surface. In addition, the

trapping takes places near crossings of continuum gaps (one can expect that crossings

of major gaps are usual in low-N devices, like NCSX). Then the structure of the wave

guides is more complicated.

It is known that the oscillations of the continuous spectrum, in contrast to

eigenmodes, cannot be excited in practice since they are strongly damped (unless the

drive overcomes the damping, as occurs for the EPMs). Nevertheless, a change of the

structure of the continuum oscillations is important from practical point of view. The

trapping may affect the energy absorption of Alfvén waves since the angular structure

of an Alfvén wave is known to become similar to that of the continuum wave function

when the wave approaches the local resonance with the continuum [29]. In addition,

it is known that the structure of the Alfvén eigenmodes is closely associated with the

structure of the continuum. Indeed, we have shown that the eigenmodes produced

by two equilibrium harmonics with close periods are trapped in waveguides of the

same shape as the continuum wave functions. In particular, this means the high-

frequency eigenmodes produced by the (2, 1)- and (3, 1)-harmonics typically exhibit

“anti-ballooning” behaviour (i.e., they are trapped at the inner circumference of the

plasma torus), which is determined by the signs of the corresponding harmonics of the

metric tensor.

This prediction of our theory is compared with experimental observations made in

a W7-AS shot, in which high-frequency Alfvénic activity was observed. Although the

poloidal dependence of the wave amplitude was obscured by some factors (presumably,

by corrugations of the flux surfaces, which resulted in variations of the angle between

the wave polarization and the Mirnov coils), there are indications that anti-ballooning

behaviour of some instabilities was indeed observed.
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