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Abstract We derive the bounce-averaged quasilinear operator in axisymmetric toroidal geometry using
the standard quasilinear formalism. When specialized to resonant ion cyclotron harmonic interactions,
this operator predicts the same radio-frequency-induced radial diffusion as the orbit-averaged operator
(L.-G. Eriksson and P. Helander, Phys. Plasmas 1 (1994) 308) obtained using action-angle variables. By
assuming the wave field known as a superposition of toroidal and poloidal Fourier modes, the quasilinear
diffusion coefficients are written in a form which can be directly evaluated using the output of a spectral
full-wave solver of Maxwell equations in toroidal plasmas.

1 – Introduction. The fact that in toroidal geometry resonant cyclotron interactions inevitably cause
radial diffusion of the heated ions is known since a long time [1]. As pointed out by Ryopulos et al. [2]
and Hellsten [3], this is a consequence of the fact that the variation of the magnetic moment µ suffered
by an ion transiting through a cyclotron resonance also causes a variation of its toroidal momentum Pϕ.
This, in turn, causes the mean radius of the drift orbit to shift radially outwards or inwards, depending
on the sign of the toroidal wavenumber of the hf wave. The effect has been demonstrated experimentally
in the JET tokamak by launching a toroidally asymmetric spectrum of fast waves [4].

An elegant form of the quasilinear (QL) kinetic equation including a term describing rf-induced radial
diffusion has been derived by Eriksson and Helander [5]. A Monte Carlo method for its solution has been
developed [5-7], and has since been successfully used for the interpretation of high-power ion cyclotron
(IC) heating experiments in JET [8-9]. A review of recent work along these lines can be found in [10].

The derivations of [1] and [5] are based on the action-angle variables formalism of Kaufman [11]. This
approach has been called ‘orbit-averaging’, to distinguish it from conventional ‘bounce-averaging’ [12],
which is thought to be valid only in the limit of thin banana orbits. In this note we show, however, that
the standard bounce-averaging procedure predicts just the same radial diffusion as orbit-averaging, unless
it is explicitly or tacitly assumed that all charged particles are tied to magnetic field lines. We argue,
therefore, that the real difference between orbit and bounce averaging lies in the treatment of collisions,
which in Montecarlo codes, but not in bounce-averaged Fokker-Planck solvers, can be evaluated at the
true position of the ions, independently from the shape and thickness of their orbit.

Our derivation differs from previous ones also in an other minor technical aspect, which is, however, of
practical relevance. Most derivations of the QL operator assume that the wave field in the vicinity of
IC resonances can be represented in Eikonal form. Here the wave electric field is supposed instead to be
given as a superposition of toroidal and poloidal Fourier modes. This is the representation used to solve
Maxwell equations in tokamak plasmas with spectral full-wave codes, e.g. TORIC [13]. In this way we
obtain the quasilinear diffusion coefficients in a form suitable to be coded using the output of the code
which solves the wave equations.

The rest of this note is organized as follows. In the next section we sketch the derivation of the QL
operator from Vlasov equation, with the formalism we have previously used to obtain the constitutive
relation of axisymmetric toroidal plasmas [14]. In section 3 bounce averaging is performed and briefly
discussed. In section 4 the general results of the previous sections are specialized to cyclotron harmonic
resonant interactions of ions, and the equivalence between bounce and orbit averaging is demonstrated.
The last section contains some additional comments and the conclusions.
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2 – The quasilinear operator. In the quasilinear approximation, the quasi-steady-state distribution
function is assumed to evolve slowly (compared to the frequency of the waves) under the effects of the
time-average of the nonlinear term of Vlasov equation and of collisions,

dFα
dt
≡ ∂Fα

∂t
+ (~vD + v‖~b0) · ~∇Fα +

Ze

m
E0‖~b0 ·

∂Fα
∂~v

= C(Fα) + Q(Fα) (1)

On the lh side ~vD is the drift velocity, ~b0 = ~B0/B0 is a unit vector in the direction of the static magnetic
field, and E0‖ is the ohmic field, which is important for the electrons but normally negligible for the ions.
On the rh side, C(Fα) is the Landau collision operator, and Q(Fα) the quasilinear operator, formally

Q(Fα) = − Zαe

2mα
Re
〈

∂

∂~v
·
[(

~E +
~v

c
× ~B

)∗
fα

]〉
t,φv

(2)

where fα is the solution of the linearized Vlasov equation driven by the h.f. fields, and the average is to
be performed over time and over the gyration angle φv.

The velocity derivative in eqn (2) is a divergence in velocity space. In axisymmetric configurations it
must be written in terms of the (adiabatic) constants of the motion εv = v2/2 and µv = v2

⊥/2B0, and
the third adiabatic invariant Ψ̄p [15]

Ψ̄p = Ψ̄g −
mc

Ze

[
Rv‖(~b0 · ~uϕ)− ωB

∮
R(~b0 · ~uϕ) ds

]
(3)

where Ψ̄g is the poloidal flux at the guiding center, and ωB the transit or bouncing frequency. The
integral on the r.h. side vanishes in the case of banana orbits, while in the case of passing particles
it nearly cancels the first term. Referred to the poloidal flux at the radial position ψ of the particle,
therefore, we will approximate

Ψ̄p ' Ψp(ψ) +
(~b× ~∇Ψp) · ~v⊥

Ωg
−Htp B0R

v‖
Ωcα

cosΘ (3′)

where tanΘ = Bpol/Btor, and the Heavyside function Htp is unity for trapped and zero for passing
particles (this amounts to neglect the radial excursions of passing particles from the average magnetic
surface). In the collisionless limit, sufficient to evaluate the perturbed distribution function fα, Fα will
be a function of εv, µv, and Ψ̄p. Taylor expanding Fα around the position of individual particles, we then
obtain

Fα(εv, µv, Ψ̄g) ' Fα(εv, µv, ψ) +
~KB · ~v
Ωg

∂Fα
∂ψ

(4)

where ~KB is a vector with the dimension of an inverse length, with components

KBψ = 0 KBη =
Nϑ

Jp
KBζ = −Htp

B0R

FP
cosΘ (5)

(here RJp is the Jacobian, N2
ϑ = gϑϑ, and F(ψ) = dΨp/dψ, cfr. [14]). The term of ~KB · ~v proportional

to KBη is the familiar diamagnetic contribution, which exists also in the straight limit. The other term
is a ‘neoclassical’ correction due to toroidicity, which is predominatly (entirely in our approximation)
contributed by trapped particles. The formal solution of the linearized Vlasov equation can then be
written

fα(~r, ~v, t) = −e−iωt
eZα
mα

∫ t

−∞
dt′ eiω(t−t′)

[(
~E(~r′) +

~v′

c
× ~B(~r′)

)
·

·
(

~v′
∂Fα
∂εv

+
~v ′⊥
B′0

∂Fα
∂µv

+
~K ′B
Ω′α

∂Fα
∂ψ

)] (6)
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Inserting fα into (2) and using the rule of chain derivatives, we can write Q(Fα) as a diffusion operator

Q(Fα) =
v‖
B0

{
∂

∂εv

[
B0

v‖

(
Dεvεv

∂Fα
∂εv

+Dεvµv
∂Fα
∂µv

+Dεvψ
∂Fα
∂ψ

)]

+
∂

∂µv

[
B0

v‖

(
Dµvεv

∂Fα
∂εv

+Dµvµv
∂Fα
∂µv

+Dµvψ
∂Fα
∂ψ

)]

+
1
v‖

∂

∂ψ

[
B0

v‖

(
Dψεv

∂Fα
∂εv

+Dψµv
∂Fα
∂µv

+Dψψ
∂Fα
∂ψ

)]} (7)

Here the quasilinear diffusion coefficients (QLDC) of the terms involving only velocity space dervatives
are

Dεvεv =
e2Z2

α

2m2
α

∫ 2π

0

dφv
2π

Re
[
~v · ~E ∗(~r)

∫ t

−∞
dt′ eiω(t−t′) ~E(~r′) · ~v′

]

Dεvµv =
e2Z2

α

2m2
α

∫ 2π

0

dφv
2π

Re
[
~v · ~E ∗(~r)

∫ t

−∞
dt′ eiω(t−t′)

(
~E(~r′) +

v′‖
c

~b ′0 × ~B(~r′)
)
· ~v
′
⊥

B′0

]

Dµvεv =
e2Z2

α

2m2
α

∫ 2π

0

dφv
2π

Re
[
~v⊥
B0
·
(

~E(~r) +
v‖
c

~b0 × ~B(~r)
)∗ ∫ t

−∞
dt′ eiω(t−t′) ~E(~r′) · ~v′

]

Dµvµv =
e2Z2

α

2m2
α

∫ 2π

0

dφv
2π

Re
[
~v⊥
B0
·
(

~E(~r) +
v‖
c

~b0 × ~B(~r)
)∗

∫ t

−∞
dt′ eiω(t−t′)

(
~E(~r′) +

v′‖
c

~b ′0 × ~B(~r′)
)
· ~v
′
⊥

B′0

]

(8)

while the QLDC involving also radial derivatives are

Dεvψ =
e2Z2

α

2m2
α

∫ 2π

0

dφv
2π

Re
[
~v · ~E ∗(~r)

∫ t

−∞
dt′ eiω(t−t′)

(
~E(~r′) +

~v′

c
× ~B(~r′)

)
·

~K ′B
Ω′g

]

Dµvψ =
e2Z2

α

2m2
α

∫ 2π

0

dφv
2π

Re
[
~v⊥
B0
·
(

~E(~r) +
v‖
c

~b0 × ~B(~r)
)∗

×
∫ t

−∞
dt′ eiω(t−t′)

(
~E(~r′) +

~v′

c
× ~B(~r′)

)
·

~K ′B
Ω′g

]

Dψεv = −e2Z2
α

2m2
α

∫ 2π

0

dφv
2π

Re
[ ~KB

Ωg
·
(

~E(~r) +
~v⊥
c
× ~B(~r)

)∗ ∫ t

−∞
dt′ eiω(t−t′) ~E(~r′) · ~v′

]

Dψµv = −e2Z2
α

2m2
α

∫ 2π

0

dφv
2π

Re
[ ~KB

Ωg
·
(

~E(~r) +
~v⊥
c
× ~B(~r)

)∗
×
∫ t

−∞
dt′ eiω(t−t′)

(
~E(~r′) +

v′‖
c

~b ′0 × ~B(~r′)
)
· ~v
′
⊥

B′0

]

Dψψ = −e2Z2
α

2m2
α

∫ 2π

0

dφv
2π

Re
[ ~KB

Ωg
·
(

~E(~r) +
~v⊥
c
× ~B(~r)

)∗
×
∫ t

−∞
dt′ eiω(t−t′)

(
~E(~r′) +

~v ′⊥
c
× ~B(~r′)

)
·

~K ′B
Ω′g

]

(9)

The presence of radial derivatives in Q(Fα) illustrates the fact that in nonuniform configurations diffusion
in velocity space and in real space are not independent. According to the quasilinear picture, resonant
wave-particle interactions act somewhat like collisions, by modifying in small random steps the value of
the adiabatic constants of the unperturbed motion. Since in toroidal geometry these constants depend
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on the radial coordinate, radial diffusion necessarily follows. The elementary step of the classical term
is the Larmor radius, resulting in a diffusion which is negligible in practice. Neoclassical radial diffusion
induced by resonant interactions with rf waves, by contrast, can be quite important for energetic trapped
particles, for which the elementary step is a fraction of the radial width of the banana orbit. In the
following, therefore, we will retain only the neoclassical term.

Introducing the spectral representation of the fields [14] ~E(~r, t)

~B(~r, t)

 =
∑
m,n

∫
dκ

 ~E mn(κ)

~Bmn(κ)

 ei(κψ+mϑ+nϕ−ωt) (10)

we can rewrite (7) as

Q(Fα) =
v‖
B0

[
∂

∂εv

(
B0

v‖
Γεv
)

+
∂

∂µv

(
B0

v‖
Γµv

)
+

1
v‖

∂

∂ψ

(
B0

v‖
Γψ
)]

(11)

where
Γεv = Dεvεv

∂Fα
∂εv

+Dεvµv
∂Fα
∂µv

+Dεvψ
∂Fα
∂ψ

Γµv = Dµvεv
∂Fα
∂εv

+Dµvµv
∂Fα
∂µv

+Dµvψ
∂Fα
∂ψ

Γψ = Dψεv
∂Fα
∂εv

+Dψµv
∂Fα
∂µv

+Dψψ
∂Fα
∂ψ

(12)

Some lengthy but straightforward algebra, best performed in rotating components, gives

Dγδ =
Z2
αe2

2m2
α

Re
[ ∫

dκ1

∫
dκ2

∑
m1,m2

∑
n1,n2

ei[(κ2−κ1)ψg+(m2−m1)ϑg+(n2−n1)ϕg]

×
∑
p

∆∗γ(p |~k1)
∫ t

−∞
G′p(~k2)∆′δ(p |~k2)

] (13)

with

∆εv(p |~k) =
v⊥√

2

[
Jp−1(νw) E+(~k) e−iδ + Jp+1(νw) E−(~k) e+iδ

]
+ v‖ Jp(νw) Eζ(~k)

= vthα

[
p

ν
Jp(νw)

~E(~k) · ~k⊥
k⊥

− i w J ′p(νw)
[~k⊥ × ~E(~k)] ·~b0

k⊥
+ u Jp(νw) (~E(~k) ·~b0)

]
∆µv (p |~k) =

v⊥√
2B0

[
Jp−1(νw)

(
E+(~k) + i

v‖
c
B+(~k)

)
e−iδ

+ Jp+1(νw)
(
E−(~k)− i

v‖
c
B−(~k)

)
e+iδ

]
=

vthα
B0

[
p

ν
Jp(νw)

( ~E(~k) · ~k⊥
k⊥

−
v‖
c

[~k⊥ × ~B(~k)] ·~b0

k⊥

)
− i w J ′p(νw)

(
[~k⊥ × ~E(~k)] ·~b0

k⊥
−

v‖
c

~B(~k) · ~k⊥
k⊥

)]
∆ψ(p |~k) = KBζ

[
Jp(νw) Eζ(~k)− i

v⊥√
2c

(
Jp−1(νw)B+(~k) e−iδ − Jp+1(νw)B−(~k) eiδ

)]
= KBζ

[
Jp(νw) ~E(~k) ·~b0 +

v⊥
c

(
p

νw
Jp(νw)

(~k⊥ × ~B(~k)) ·~b0

k⊥
− i J ′p(νw)

~k⊥ · ~B(~k)
k⊥

)]

(14)

where w = v⊥/vthα, ν = k⊥vthα/Ωcα, and δ = tan−1(kη/kψ). It can be useful to note that each ∆K has
the dimension of the rate of time variation of the corresponding adiabatic constant of the motion.

4



3 – The bounce-averaged quasilinear equation. Although Q(F ) depends explicitly on all three
coordinates ψ, ϑ, and ϕ, the time variation of Fα is expected to occur on a much slower time scale than
the bounce motion of most particles. This allows to ‘bounce average’ eqn (11), thereby eliminating the ϑ

and ϕ dependencies. To perform the averaging, let us write the convective term in r.h. side in symmetric
flux coordinates

∂Fα
∂t

+ ~vD · ~∇Fα +
FP
RJp

v‖
B0

(
∂Fα
∂ϑ

+ q
∂Fα
∂ϕ

)
= S(Fα) + Q(Fα) (15)

Because of axisymmetry, averaging over the toroidal angle is trivial: it eliminates the ϕ (toroidal angle)
derivative from the l.h. side, and reduces the expressions listed above for Dαβ to sums of independent
contributions from each toroidal Fourier component of the wave field. Symbolically,〈∑

n,n′

Dγδ(n, n′) ei(n
′−n)ϕ

〉
ϕ

→
∑
n,n′

Dγδ(n, n′) δ(n′ − n)→
∑
n

Dγδ(n) (16)

In the following the ϕ averaging step will not be explicitly indicated. To average eqn (15) over the
poloidal angle, on the other hand, we first multiply both sides by (RJp/FP )(B0/v‖) = (Nϑ/Bpol)(B0/v‖).
Integrating over ϑ then eliminates the convective term due to the bounce motion:

∂Fα
∂t

+
〈
vDψ

∂Fα
∂ψ

〉
= Savg(Fα) + Qavg(Fα) (17)

where

Qavg(Fα) =
1
〈λB〉

[
∂Γ̄εv

∂εv
+

∂Γ̄µv

∂µv
+

1
RJp

∂

∂ψ
(RNϑ Γ̄ψ)

]
(18)

where

Γ̄εv = D̄εvεv
∂Fα
∂εv

+ D̄εvµv
∂Fα
∂µv

+ D̄εvψ
∂Fα
∂ψ

Γ̄µv = D̄µvεv
∂Fα
∂εv

+ D̄µvµv
∂Fα
∂µv

+ D̄µvψ
∂Fα
∂ψ

Γ̄ψ =
Jp
Nϑ

(
D̄ψεv

∂Fα
∂εv

+ D̄ψµv
∂Fα
∂µv

+ D̄ψψ
∂Fα
∂ψ

) (19)

with

D̄γδ =
∮

RJp
FP

B0

v‖
Dγδ dϑ = q

∮
Rhs
v‖
Dγδ dϑ (20)

and 〈
vDψ

∂F

∂ψ

〉
=

1
〈λB〉

∮
RNϑ

v‖
vDψ

∂F

∂ψ
dϑ (21)

In these equations

〈λB〉 =
∮

RJp
FP

B0

v‖
dϑ = q

∮
Rhs
v‖

dϑ (22)

In eqns (20) and (22) the second expression, with h2
s = 1 + N2

ϑ/q2R2, holds only in flux coordinates, and
with hs ' 1 is an approximation valid to first order in the inverse aspect ratio in any coordinate system.
Recalling that the line element along a magnetic field line is d`s = R hs dϑ, it is seen that the surface
average is actually a time average: the integrand is weighted with the time spent by the particles in each
element d`s of their trajectory. Because of the approximate form used for Ψ̄p, the QLDC D̄ψβ weighted
with λB have an integrable singularity at the boundary between the trapping and passing domains.
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Strictly speaking, the surface-averaged quasilinear operator (18) is no more in the form of a divergence in
velocity space. Nevertheless, if rf-induced radial diffusion is neglected (i.e. if particles are assumed tied
to magnetic field lines), it preserves the density

n̄(ψ) =
2π

V̄ (ψ)

∫ 2π

0

RJp dϑ

∫ ∫
B0

v‖
Fα(εv, µv) dεv dµv (23)

where V̄ (ψ) = 2π
∮

RJp dϑ is the specific volume of the magnetic surface ψ. Indeed, interchanging the
order of integrations taking into account that, by definition, Qavg(Fα) does not depend on ϑ,

∂n̄

∂t
=

2π

V̄ (ψ)

∫ 2π

0

RJp dϑ

∫ ∫
B0

v‖
Qavg(Fα) dεv dµv

=
2π

V̄ (ψ)

∫ ∫
〈λB〉Qavg(Fα) dεv dµv = 0

(24)

In other words, 〈λB〉 dεv dµv can be be regarded as the ‘surface averaged’ volume element in velocity
space. In the same approximation, the quasilinear rate of change of the kinetic energy per unit volume
of species α, averaged over the magnetic surface, is

dK̄α

dt
=

2π

V̄ (ψ)

∫ 2π

0

RJp dϑ

∫
εv dεv

∫
B0

v‖
dµv Q̂avg(Fα)

= − 2π

V̄ (ψ)

∫ ∫ (
D̄εvεv

∂Fα
∂εv

+ D̄εvµv
∂Fα
∂µv

)
dεv dµv

(25)

Using the expressions for D̄αβ obtained above, and rearranging the order of the integrations, we can write
more explicitly

dK̄α

dt
= − πω

2V̄ (ψ)
ω2
pα

ω2

∫ 2π

0

RJp dϑ
B0

v‖
Im
{∫

dκ1

∫
dκ2

×
∑
m1,m2

∑
n

ei[(κ2−κ1)ψ+(m2−m1)ϑ]

∫
dεv

∫
dµv

∑
p

∆∗εv (p |~k1)

× (−iω)
∫ t

−∞
dt′ G′p(~k2)

[
∆′εv(p |~k2)

∂Fα
∂εv

+ ∆′µv (p |~k2)
∂Fα
∂µv

]}
(26)

It can be shown that this is identical with the wave absorption rate evaluated from the wave equations
in the same approximation (particles tied to magnetic field lines).

If the rf induced radial diffusion is taken into account, the averaged density is no more constant; instead

∂n̄

∂t
=

2π

V̄ (ψ)

∫ ∞
0

dεv

∫ εv/B0

εv/B0Max

∂

∂ψ

(
D̄ψεv

∂Fα
∂εv

+ D̄ψµv
∂Fα
∂µv

+ D̄ψψ
∂Fα
∂ψ

)
dµv (27)

Inside a volume containing all paricle orbits (i.e., neglecting direct losses due to orbits interscting the
wall), however, the total number of particles is conserved(1). In writing (27) we have neglected the
convective term on the lh side; this term has been evaluated by Chang [16] and by Chen et al. [17], who,
however, have missed the neoclassical part in the quasilinear operator itself.

(1) To put the last term of (18) in the form appropriate to obtain this result, however, it has been necessary
to bring the Jacobian (RJp)−1 outside the ψ derivation. This seems acceptable to lowest order in the
drift parameter.

6



4 – Quasilinear operator for IC harmonic interactions. For ions in the ion cyclotron (IC) frequency
range we can in the first place approximate

~B(~k) =
c

ω
~k × ~E(~k) (28)

Note that this approximation has nothing to do with an Eikonal ansatz: it only amounts to neglect some
logarithmic derivatives of the metrics compared to the wavevector, and must hold separately for each
Fourier component in eqns (10). To obtain a more explicit result, and to facilitate the comparison with
the QLDC obtained elsewhere, however, we next assume that IC resonances occur only with the Fast
wave (FW), and introduce for this wave the following generalized Eikonal Ansatz

~E(~r, t) =
∑
mn

~Emn
0 (εψ) exp i

[
Sm,n(εψ, εϑ)

ε
+ mϑ + nϕ− ωt

]
'
∑
mn

~Emn
0 (εψ) ei[κm,nψ+mϑ+nϕ−ωt]

(29)

where ε � 1 is a small parameter denoting quantities which vary slowly compared to the wavector;
it will be omitted in the following. In this case, for each Fourier mode m, n, the radial wavenumber
κm,n = ∂Sm,n/∂ψ is uniquely determined (except for the sign) by the local dispersion relation of the
FW. The ansatz (29), therefore, eliminates the integrations over κ1 and κ2 in the definition of D̄γδ. We
can now exploit the fact that by far the largest contribution to the QLDC comes from the immediate
vicinity of the points where the wave phase seen by the particle (the phase of the ‘propagator’ G′p(~k2)) is
stationary,

ω = pΩcα + ~k2 · (v‖~b0 + ~vD) (30)

This condition defines two (four in case of toroidally trapped particles) resonant angles, which, however,
can merge either because the resonances occurs near the equator of a magnetic surface (tangential reso-
nances), or in the case of trapped particles which happen to reverse the parallel motion close to resonance.
Disregarding for the moment these exceptional cases, the poloidal angle integration in eqn (6) can be
performed by developing the phase to second order around resonances, to obtain

D̄pγδ =
πZ2

αe2

2m2
αω

∑
res

{
RJp
FP

B0

v‖
Re

∑
m1,m2

∑
n

ei[(κ2−κ1)ψ+(m2−m1)ϑ]

×∆∗γ(p |~k1)Wp(~k2, ψ, ϑ)∆δ(p |~k2)
}
ϑ=ϑres

(31)

where
Wp(~k2, ψ, ϑ) =

ω∣∣∣∂ [~k2 · (v‖~b0 + ~vD) + pΩcα
]
/∂ϑ

∣∣∣ (32)

can be called the ‘resonance kernel’ of the QL diffusion coefficients. In eqn (31), ~k1 and ~k2 have the same
toroidal wavenumber n, and, according to the observation following the introduction of the ansatz (29),
κ1 = κm1,n, κ2 = κm2,n. If we also neglect the effects of the small parallel component of the wave electric
field, the three quantities ∆K can now be expressed in terms of a single one,

∆εv(p |~k) = Dp(~k, ψ) ∆µv (p |~k) =
1

B0
Dp(~k, ψ) ∆ψ(p |~k) = −KBζkζ

Ωcαω
Dp(~k, ψ) (33)

(the ψ dependency is reintroduced by the ansatz (29)), with

Dp(~k, ψ) = vthα

(
p

ν
Jp(νw)

~Emn
0⊥ (ψ) · ~k⊥

k⊥
− i w J ′p(νw)

[~k⊥ × ~Emn
0 (ψ)] ·~b
k⊥

)
=

v⊥√
2

(
Jp−1(νw)Emn

0+ (ψ) e−iδ + Jp+1(νw)Emn
0− (ψ) e+iδ

) (34)
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Finally, we note that the resonance kernel (32) has an integrable singularity in the exceptional cases
mentioned above. How to improve its evaluation in the case of merging resonances so as to avoid this
divergence is well-known [18-19], and we will omit this discussion here.

The QL operator obtained by substituting (31)-(34) into eqns (18)-(19) can alternativelt be written

Qavg(Fα) =
1
〈λB〉

∑
res

(
∂

∂εv
+

1
B0

∂

∂µv
− KBζkζ

Ωcαω

1
RJp

∂

∂ψ

)[
|Dp|2

×
(

∂Fα
∂εv

+
1

B0

∂Fα
∂µv

− KBζkζ
Ωcαω

1
RJp

∂Fα
∂ψ

)] (35)

with the convention that the coefficients for the derivatives inside the round brackets, except for the
metric factor (RJP )−1, have to be taken at resonance. In this form, it is easily seen to differ from the
orbit-averaged QL operator of reference [5] only because it is written in different phase-space variables
(and because of the approximate expression we have used for the third invariant). In particular, the
coefficients of spatial diffusion are proportional to the parallel component kζ of the wavevector, and will
cause inward or outward diffusion depending on its sign.

5 – Discussion and conclusions. The form (35) of the quasilinear operator (and even better the form
proposed in [5]) is advantageous for the development of the Montecarlo technique for the solution of the
QL equation [5-7]. This approach allows to take into account the effects of collisions at the true position
of the ions, even when their orbits explore a substantial fraction of the plasma radius. It also facilitates
the detailed discussion of the effects of resonant IC interactions on very energetic ions on large banana or
non-standard orbits [10]. The completely equivalent expression (18), in the form of the divergence of a
flux in phase space, on the other hand, has the advantage of being a straighforward generalization of the
QL operator used in standard solvers of the surface averaged Fokker-Planck (FP) equation. In such codes
the effects of collisions are less accurately evaluated at the average magnetic surface. In most situations,
however, this should be a sufficient approximation for ions at intermediate energies, which due to the
exponental decrease of the distribution functions with energy can neverteless be expected to build the
vast majority of the suprathermal population. Extending the capability of a FP solver to deal with the
radial dimension using the results of this note should be relatively straightforward, although demanding
from the point of view of computing resources. In this context, we can add two comments.

First we note that each component of the rf-induced flux (19) in phase space has a term proportional to
the radial gradient of the distribution function. In the few cases in which radial diffusion has been taken
into account in a FP solver, only the diagonal term has been considered, omitting the mixed terms.

The second comment concerns the use of the output of a spectral solver of Maxwell equations in the
plasma [13] to build the QLDC of eqns (31)-(34). In a full-wave code, the electric field is actually
obtained in the form

~E(~r, t) =
∑
mn

~Emn(ψ) ei(mϑ+nϕ−ωt) (36)

without introducing the Eikonal ansatz (29) for the radial dependence of the coefficients ~Emn(ψ). This
simply means that ~Emn(ψ) must replace ~Emn

0 (ψ) eiκmnψ in eqn (34), and eliminates the ambiguity in
this equation due to the fact that for each m and n the local FW dispersion relation allows two values
of κmn (hence of δ in eqn (34)) with opposite sign. The full-wave solver, on the other hand, does not
provide a value for k⊥ in the argument of the Bessel functions: this value has to be obtained by separately
solving the local FW dispersion relation. Thus the validity of an Eikonal ansatz in the radial coordinate
near IC resonances, as in eqn (29), has nevertheless to be assumed.
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In conclusion, using the standard quasilinear procedure, we have derived from Vlasov equation a bounce-
averaged QL operator which includes the description of rf-induced radial diffusion, and is equivalent to
the QL operator obtained in action-angle variables with the formalism introduced by Kaufman [11]. By
assuming the wave field to be known as a superposition of Fourier modes in the toroidal and poloidal
angles, we have put the QLDC in a form which can be naturally evaluated using the output of a spectral
solver of the wave equations in the plasma. This has actually more than a practical significance. As
mentioned in section 2, it can be easily shown that the expression (26) for the quasilinear heating rate is
identical with the wave absorption rate predicted by the wave equations derived in [14] by integrating the
linearized VLasov equation. This proves that the combination of a constitutive relation derived from the
linear Vlasov equation for the wave propagation and absorption with the quasilinear kinetic equation for
the slow evolution of the background distribution functions is a complete and internally consistent model
for the description of heating and current drive in toroidal plasmas, just as in the infinite homogeneous
limit [20].
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