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Abstract

Based on the earlier work for a single magnetic island and a weak stochastic magnetic field (Yu 2006 Phys. Plasmas
13 062310), the heat diffusion across a local fully stochastic magnetic field is studied numerically and compared
with the analytical theories. The ratio between the parallel and the perpendicular heat diffusivity, x/x., is found
to be an important parameter in characterizing the transport. With the increase in x/x ., the transport is dominated
first by the additive effect of individual islands and then by the field ergodicity and .

PACS numbers: 52.25.Fi, 52.65.Kj, 52.55.Dy, 52.35Vd

1. Introduction

Magnetic islands generally exist in tokamak plasmas, caused
either by the tearing mode type instabilities or by the externally
applied resonant helical field [1-9]. When there are magnetic
perturbations of different helicities and their corresponding
rational surfaces are sufficiently close, the local magnetic field
becomes stochastic. In this case strong interaction between
these perturbations and the subsequent change in the plasma
energy confinement have been observed [3,4]. In addition,
the transport across the stochastic magnetic field boundary in
stellarators and tokamaks is also an important topic and has
attracted extensive studies [6-9], and the field stochasticity
could even lead to anomalous radial heat transport [10-16].
Therefore, the heat diffusion across the stochastic field is of
general interest in plasma physics.

The degree of the field stochasticity is usually described
by the parameter

A=W+ Wy)/Q2lr — ), (1

where W and W, are the widths of two neighbouring islands
and | and r; are the minor radius of the corresponding rational
surfaces. The field stochasticity starts approximately from
A = 1[10,11]. Assuming the original electron temperature in
the absence of the stochastic field, T, has a radial gradient
being perpendicular to the original magnetic surface, the
effective radial heat diffusivity in a fully stochastic field, .,
can be defined by the relation

g =—x1TH = _XeT(;/o ()

due to the conservation of the radial heat flux ¢,, where x,
is the perpendicular heat diffusivity, the prime is for d/dr
and Tj /0 is the averaged (along the poloidal and the toroidal

directions) electron temperature gradient in the stochastic field.
The enhanced radial heat conductivity due to the magnetic field
ergodicity is then given by

Xr = Xe — X1 = 1T/ To)0 — D). (3)
It was shown by Rechester and Rosenbluth that [10] x,
equals Dyvre in the collisionless regime (the electron
mean free path L, is longer than the Kolmogorov length
L, = [Lg/(kiDM)]l/3 [10-16]), where vr. is the electron
thermal velocity, k, is the perpendicular wave vector of the
perturbations, L, = Rq?/rq’, q is the safety factor, Dy =
Ly Z(b,,k/BOt)ZS(mk/qk — ng), by, my and ny are the radial
magnetic field perturbation, the poloidal and toroidal mode
numbers of the kth Fourier component, respectively, By, is the
toroidal magnetic field, Ly & 7 R and the summation is over k
to include contributions from all resonant components. While
in the collisional regime L, < L,,

Xxr = Dmx/Les, 4

where L. = L.In[(r/mL)(x/x)"?] and L. =
7R/ In(wA/2) [10].

Krommes et al later showed that the collisional regime
consists of three sub-regimes [11]. With the decrease of L
they are

(a) the Rechester—Rosenbluth regime (valid for 7; < 7 <
T1):
xr = Dmx/ Lk, (5)

where 7] = L3/x, e = L/ and T, = 1/(k? x1),
(b) the Kadomsev—Pogutse regime (valid for 1) < 7, < 7):

xr = Dv(xx2)"?/ k) and (6)
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Figure 1. g(z) versus z. g(z) = 1 for z = 0 and approaches zero for
z>2.

(c) the fluid regime (valid for 7, < 7)) < &):
Xxr = DMy /Lo (7

Equations (4)—(7) are the conventional formulae for x, in
the collisional regime [15, 16]. For obtaining these results,
various assumptions have been made [10-13], leading to
the difference between these results, such as the difference
between equations (4) and (5) [10-16].

It was found recently that [17] in the limit x;;/x. > 1 but
Wi/ Wer < 1,

Xr = ZXL W4 gk(Zk) ZXH 32 o8k (z). 3)

where
Wi = 4[b,x Ly R/ Boni)]'? ©)

being the island width due to the kth component magnetic
perturbation, L, = q/¢’,

Wer =a(xi/xy)"*[8Ly/(sani)1'? (10

being the heat diffusive layer width at the kth rational surface,
e =a/R,

=22 —ry1)/ We (11)

being the normalized (to W, /23/%) distance from the kth
rational surface ryx. g(z) = [l + zf(2)] and f(z) =
—0.5z [ dy(1—y?)~"4exp(—z?y/2) with the integration from
0to 1 [17]. The function g(z) is shown in figure 1.

For a single island, equation (8) is also valid and reduces
to [17]

4 2

Xr = ngT,fg(z) = Xuﬁf&g(z)- (12)
Equations (8) and (12) indicate that x, is dominated by the
additive effects of these individual islands when W,/ W, ; < 1.

Differing from equations (4)—(7), the x, given by
equation (8) is a local enhanced radial heat conductivity due
to magnetic field ergodicity and is dominated by the additive
effects of these individual islands satisfying z; < 2, since
8k (zx) varies along the minor radius and approaches zero
for z; > 2 as shown in figure 1. While the y, given by
equations (4)—(7) includes contributions from all resonant
perturbations. Only in the limit of a sufficiently small z; such

that g¢ (zx) = 1, equations (8) reduces to the fluid regime result,
equation (7), except for a factor of 1/2.

The valid regime of equation (8) is even more different
from those of equations (5)—(7). To be self-consistent,
equation (8) requires

Z Ay <2, (13)
where
Ar = (xX1/x) (bri/ Bo)? (14)

describes the radial contribution of the parallel heat conduction
along the wiggling field lines relative to perpendicular
transport. The fluid regime is valid for 7, < 7 < 7w,
leading to

D Ak < A (15)
and

Y (bri/Bo)® < As, (16)
where Ay = (k1 Lo)* Y (brx/Bo)*and Ay = [RqL,/(mL)]?

The Kadomsev—Pogutse regime is valid for 7, < 7, < 7,
corresponding to

Ar <Y A < As,

where Az = [()_ b,,k/BOI)(quLsm)/(nr3)]2/3.
The Rechester—Rosenbluth regime is valid for 7, < 7
(and 7| < 71), leading to

ZAk > A3

and (16).
Assuming that the neighbouring islands have the same
width, it is found from equation (9) that

a7)

(18)

bri/Boe = m(q1 — q2)* A*/[16Rq%q'1, (19)

where g; and g, are the g values at the two rational surfaces.
With the following parameters, A = 1, R/a = 3, m = 3,

=q/q =a,q1 =3/2,q, =4/3,and ry; = 0.6a, one finds
Y boi/Bo=64x 1075, A =58x107%, 4, =2.9x107*
and A; = 0.061. By comparing (13) with (15) it is seen that,
equations (8)is valid foramuch higher x; / x than equation (7)
is, since A; is very small. The condition given by (16) is
usually satisfied for tokamak plasmas. By comparing (13) with
(17) and (18) it is found that the valid regime of equation (8)
covers the Kadomsev—Pogutse regime and well extends into
the Rechester—Rosenbluth regime.

With these different analytical results given by equa-
tions (4)-(8) as well as their different valid regimes, it is very
necessary to have a comparison between them and the numer-
ical modelling results. Basing on the earlier work of [17] for
a single island and two islands (weak stochastic field), in the
present paper numerical results on the heat diffusion across a
local fully stochastic field are presented, to compare with the
analytical result for a better understanding on the ¥, in the col-
lisional regime. The effect of the perturbation amplitude and
the magnetic shear on yx, are also studied.
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Figure 2. Local magnetic surface on the r—6 plan at ¢ = O for five
components magnetic perturbations, m/n = 3/2, 4/3, 7/5, 10/7 and
11/8, with r3p = 0604&1, V43 = 0569&, ry4 = 0584&1,

rioy7 = 0.590a and ry;,3 = 0.578a. The perturbed field amplitude
Yo = 6 x 107*. The local magnetic field becomes stochastic.

2. Model and numerical modelling results

Here the large aspect-ratio tokamak approximation is utilized.
The magnetic field is defined as B = Bye, + Boy(r)e, + By,
where By, is the equilibrium poloidal field, By = Vi x e is
the perturbed field, ¥ = > ¥ (r) cos(mib + ny¢) and 6 and
¢ are the poloidal and toroidal angles.

The following electron energy transport equation
3 dT.

Ene? =neV - (XHVTe) +n.V - (XJ_VTC) + P(r)
is solved, where T, n. and P are the electron temperature, the
density and the heat source, respectively. Here ne, x; and x
are assumed to be constant for simplicity, and the convective
transport is neglected being valid for slowly changing islands
such as tearing modes [1-4].

The 3D numerical calculation in this case is however
quite challenging for high ratios of y/x.. Recently a new
numerical method was developed for such a purpose, showing
the required high numerical accuracy at high x/x. [18].

Equation (20) is solved numerically with ¢g(r) =
qoexp(r/Ly) to have a constant magnetic shear along the
minor radius. Y (r) = Yo(r/a)’(1 — r/a)*aBy changing
smoothly along the minor radius, which is typical for the
tearing modes [1-4]. By is assumed to be a constant. The
heat source P(r) = Py[1 — (r/a)?]'® peaking at the magnetic
axis. The boundary conditions are T.(r = a) = T (r = a)
and T/(r =0) = 0.

The local magnetic field becomes stochastic when islands
of different helicity overlap. In figure 2 an example of the local
magnetic surface on the r—6 plan at ¢ = 0 is shown for a case
with five components magnetic perturbations, m/n = 3/2,
4/3, 7/5, 10/7 and 11/8, with the rational surfaces at r3, =
0.6040, r43 = 056961, 4 = 0584(1, ros = 0.590a and
ri1/8 = 0.578a. The perturbed field amplitude /g = 6 x 1074,
leading to a local stochastic magnetic field.
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Figure 3. Corresponding to figure 2, radial profiles of x = T,/ Ty,
for Yo = 6 x 107* and y;/x. = 3 x 10%, 108 and 3 x 107. A larger
X1/x1 leads to a larger x in the local region.
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Figure 4. Log(x,/x.) (solid) and log(x30,20 + x30,21) (dotted) versus
log(x)/x1) for o =9 x 10~* and m/n = 30/20 and 30/21. The
value of x is taken at the middle between these two rational
surfaces. The dashed curve is log(x,/ x1)|,=0.579, for the five island
case withm/n = 3/2,4/3,7/5, 10/7, and 11/8. The upper horizontal
axis shows the log(W/W.),/n=3/2-

Defining an normalized effective radial heat conductivity
to be

X=Xe/XL=x+1, 21

corresponding to figure 2, in figure 3 radial profiles of yx are
shown for y/x. =3 x 108, 10® and 3 x 107. As expected,
a larger x;/x. leads to a larger x in the local stochastic field
region, and x = 1 ((or x, ~ 0) away from this region. x, is
kept constant in all our calculations.

In figure 4 log(x,/x1) versus log(x;/x.) is shown for
L, = 0.3a and ¥y = 9 x 107* by the solid curve (with solid
circles) for a two island case, m/n = 30/20 and 30/21, leading
to the island width of W30,20 = W3¢,21 = 0.045a. The rational
surfaces are at 730,20 = 0.604a and r30/2; = 0.589a, and the
parameter A characterizing the ergodicity is 3.0. The value of
x is taken at the middle between these two rational surfaces.
The upper horizontal axis shows the corresponding values of
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Figure 5. Numerical results (solid) and the analytical results of
equation (8) (dotted) of log(x,/x;) atr = 0.595a versus log(x;/x1)
for the five island case, with L, = 0.3a and vy = 1.5 x 1073, The
dashed curve shows [log(W/W.) — 6],,/,=11/3. The upper horizontal
axis is the log(W/ W.)u/n=3/2-

the log(W/ W,) for the m /n = 3/2 component, being equal to
that of the m/n = 30/20 component. The dotted curve (with
empty circles) shows log(x30,20 + X30/21)> Where x30/20 (X30/21)
is the (x,/ x.) obtained for a single 30/20 (30/21) island alone
at the same radial location, with other parameters unchanged.
For x/x. < 108(W < 0.7W,), x, o x) and the dotted curve
is the same as the solid one, as predicted by equation (8) that
is determined by the additive effects of the individual islands
for Wy < Wey. For x1/x1 > 3 x 108 (W > 3W,), x, also
approximately scales as x;. Between these two limits there
is a transition region where x, slowly increases with x;;. The
dashed curve with squares in figure 4 is the log(x,/x.) at
r = 0.579a for the five components magnetic perturbations,
m/n =3/2,4/3,7/5,10/7 and 11/8, with ¥y = 9 x 10~* and
A ranging from 1.6 to 3.8. It shows a similar behaviour as
the two island cases, x, scales as x| for a low or high ratio of
X1/, and between these two limits there is a transition region
around Wy ~ W, where x, slowly increases with ;.

The local value of x, at r = 0.595a obtained from
numerical calculations (solid curve) is compared with the
analytical results from equation (8) (dotted curve) for the five
island case in figure 5, where log(x,/x|) is shown as a function
of log(x)/x.) for Ly = 0.3a and ¥y = 1.5 x 1073, The
upper horizontal axis shows the corresponding values of the
log(W/W,) for the m/n = 3/2 component. The dashed curve
shows [log(W/W,)—6]forthem/n = 11/8 component, being
a little different from that of the m/n = 3/2 component due
to different mode numbers. The numerical results agree with
the analytical ones for W < W,. With increasing y;/x. (or
W/ W,), both the analytical and the numerical results decrease.
The decrease in the analytical x, is due to the decrease in W, for
larger x/x 1, leading to alarger z; and a corresponding smaller
gk, as seen from figure 1. The numerical results decrease by
about one order of magnitude from the region W < W, to the
region W ~ 3W,.

The above results shown in figures 4 and 5 are only for the
X at a few radial locations. Since x; is not constant across the
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Figure 6. « = (x,)/[0.5x) Z(b,_k/Bm)z] versus log(x;/x.) for
Yo =9x 1074, 1.2 x 1073 and 1.5 x 1073 (solid), « calculated
from equation (4) for ¥, = 1.5 x 1073 (dotted) and « for

Yo =9 x 107+ and m/n = 3/2 and 4/3 (dashed). The upper
horizontal axis is the log(W/ W), /n=32 for Yo = 1.5 x 1073,

stochastic field region as seen from figure 3, in the following
the radial averaged y,, (x,) = f x-dr/(rp — r,), is used for a
further comparison with analytical results. The integration is
taken from r, = 0.575a to r, = 0.600a where the magnetic
field is fully stochastic. Defining

k= ()7 0501 Y e/ B’

being the average radial enhancement relative to the ,
given by equation (8) by neglecting the function gi(zx), in
figure 6 « is shown as a function of log(x/x.) by the solid
curves with g = 9 x 1074, 1.2 x 1073 and 1.5x1073
for the five island case: m/n = 3/2,4/3,7/5,10/7 and
11/8. The upper horizontal axis shows the corresponding
values of the log(W/W,) for the m/n = 3/2 component with
Yo = 1.5 x 1073, For x;/x. ~ 10 — 10> (Wi/ W, < 1),
k = 1 for different ¥, as predicted by equation (8) in the
limit z; = 0. With the increase in x;/x., ¥ decreases and
approaches a steady value again at high x;/x. (Wiy/We i ~5)
for sufficiently large v (« oscillates for small ). This
differs from the prediction of equation (5) that k ~ 1/L; ~
D;,[B ~ 1//5/ 3. The faster decay of « with increasing x;/x.
for a larger ¥ is due to the corresponding larger W/ W, x
so that the transition region as shown in figure 4 is reached
at a lower x/x.. The dotted curve in figure 6 shows the
analytical result of Rechester—Rosenbluth from equation (4)
with ¥y = 1.5 x 1073, being different from the numerical
results. The dashed curve is the « for the two island case,
m/n = 3/2 and 4/3, with ¥y = 9.0 x 10~ and the radial
average from r = 0.58a to 0.59a, which shows a similar
behaviour as the five island case: k decreases by about one
order of magnitude from small to large W/ W, .

Increasing the magnetic shear by 3 times to L, = 0.1a,
k versus log(x/x.) is shown in figure 7 by the solid curves
for the five island case with ¥ = 1.5 x 1073,4.5 x 1073 and
7.5x 1073, The upper horizontal axis shows the corresponding
values of the log(W/W,) for the m /n = 3/2 component with

(22)
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Figure 7. « versus log(x;/x.) for L, = 0.1a and ¢y = 1.5 x 1073,
4.5 x 1073 and 7.5 x 1073 (solid), k from equation (4) for

Yo = 7.5 x 1073 (dotted) and « for L, = 0.3a and yp = 1.5 x 1073
(dashed). The upper horizontal axis shows the log(W/ W), n=3/2
with g = 4.5 x 1073 and L, =0.1a.

Yo = 4.5 x 1073, 1In this case the rational surfaces are
closer, with 3, = 0.595a, r43 = 0.583a, r7,4 = 0.588a,
rios7 = 0.590a and ry 18 = 0.587a, and the radial average
is from 0.584a to 0.594a. It is seen that k approaches 1
for x;/xL ~ 10> (W « W,.) and a nearly steady value at
large x/x. (W = 10W,) for sufficiently large v, similarly
to figure 6. The dotted curve is the result from equation (4)
for o = 7.5 x 1073, being more different from the numerical
results for the large magnetic shear case. The dashed curve
is the result with a smaller magnetic shear, L, = 0.3a, and
Yo = 1.5 x 1073, When comparing figures 6 and 7 it is
seen that with a large magnetic shear « converges to a smaller
value at large x;/x1 for sufficiently large v, differing from

the prediction of equation (5), k ~ 1/L; ~ L;*°.

3. Discussion and summary

Using a numerical approach the heat diffusion across a local
fully stochastic field is studied in the collisional regime.
Comparing the numerical results with the analytical ones given
by equations (4)—(8), it is seen that the parameter Wj/ W, x
not considered in [10, 11] is important in characterizing the
transport even for a fully stochastic field. For Wk/Wc,k<1 the
analytical result given by equation (8) is found to agree with
numerical results, while for W, > W,_,, x, approximately
scales with x;;. These results extends the earlier work for a
weak stochastic field [17].

The fluid regime result is shown to be incorrect not only
in its form of yx, but also in its valid regime. The Kadomsev—
Pogutse regime is not found from numerical results. In fact,
the scaling x, ~ (x)/x.)"/? given by equation (6) is seen
from the numerical calculations only at the rational surface
for a single island satisfying W > W, [17]. As for the
Rechester—Rosenbluth regime, the scaling x, ~ yx; is found
for a sufficiently high x;,/x from the numerical results, but the

5

scaling with the magnetic shear and the perturbation amplitude
is different. Recent numerical studies have shown that the
magnetic field shear plays an important role in the spacial
diffusion of the field lines, and the excursions of field lines
significantly differ from Brownian motions [14]. On the other
hand it should be noted that in our model the local stochastic
field results from the overlap of several islands, whilein [10,11]
an infinite fully stochastic field is assumed. Future calculations
in a non-local stochastic field will be helpful for a further
comparison with the Rechester—Rosenbluth regime.

Equation (8) has an important implication in heat diffusion
across a stochastic field where y;/x is not large enough. For
typical tokamak edge parameters T, = 40eV, n. = 10" m~3,
L, =a,R/a=3n=2and x; = Im*s™! (assuming
the perpendicular heat transport to be anomalous), one finds
W, = 0.060a by using the classical parallel electron heat
conductivity xj = 3.16veA.. This means that for smaller
islands (W < 0.060a) the field ergodicity plays norole, and the
heat diffusion is determined by the additive effect of individual
islands. Only for sufficiently large islands or higher plasma
temperature the field ergodicity dominates the radial transport.

Here yx is taken to be a constant being valid for the
collisional regime. For the collisionless regime x|, = x[1 +
(3.16)\ek‘|)2]’1/2 could be used [19,20]. Such a x| reduces to
Xjje for Ak < 1 and to vr./ k| in the opposite limit. The heat
transport is studied here with given perturbed magnetic fields.
It was found recently that drift-tearing modes with high mode
numbers can be driven unstable by the electron temperature
gradient [5]. Further investigation on the nonlinear mode
saturation is necessary for calculating their effect on the
transport.

In summary, the heat diffusion across a local fully
stochastic magnetic field is studied numerically. It is found
that the numerical results agree with the analytical ones given
by equation (8) in the quasi-linear regime Wy < W, . For
Wi > Wy, the normalized (to x) and the square of the
radial magnetic perturbation) enhanced heat conductivity «
decreases by about one order of magnitude and is smaller for
a larger magnetic shear, and « is independent of x;; and the
magnetic perturbation amplitude if the perturbation amplitude
is sufficiently large, providing a simple way for estimating the
magnitude of the enhanced radial heat conductivity in a local
fully stochastic field.
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