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Abstract. The generation of Geodesic Acoustic Modes (GAM), oscillating poloidal shear

flows, has been studied in greater depth by three-dimensional turbulence simulations. A change

of the magnetic shear, in particular, a switch to negative shear profoundly affects the amplifica-

tion mechanism of the GAMs. Negative shear reverses the symmetry of the turbulence modes

with respect to the shear flows, altering the sign of the Stringer-Winsor forces. The phenomenon

readily suggests an experimental test, which would quantify the role of the Stringer-Winsor ef-

fect in comparison to the Reynolds stress in exciting the GAMs. The safety factor q controls

the coupling of the GAMs to the parallel velocity, i.e., sound waves. Lowering q increases this

coupling. Since the parallel sound waves in turn are heavily damped by the turbulence they act

as a loss channel. Thus sufficiently low q cause a quench of the GAM activity, as has been found

in recent experiments, too. Finally, the shape of the flux surfaces has great influence on the

frequency of the GAMs and the relative strength of the Stringer-Winsor force. Elongation of the

plasma column reduces the GAM frequency, and simultaneously increases the energy transfer

term due to the up-down asymmetry of the anomalous flux, which can have a dramatic impact

on the shear flow level and transport. Again, the results suggest a relatively straightforward

comparison with experiments.

1 Introduction

Geodesic Acoustic Modes (GAM), oscillating poloidal shear flows at the characteristic
acoustic frequency of a tokamak, are an ubiquitous edge plasma phenomenon in magnetic
fusion devices [1,2], and are rapidly gaining attention with progressing experimental de-
tection capabilities [3-5]. The generation of GAMs has been studied in greater depth by
three-dimensional turbulence simulations for varying magnetic shear, safety factor, and
flux surface geometry.

Thereby the focus has been on the drive mechanisms by either the Reynolds-stress
or indirectly by the asymmetric anomalous transport via the Stringer-Winsor-force-term,
and on damping by either linear effects or anomalous diffusion of components of the GAM,
the pressure perturbations, and the parallel velocity.

GAMs are foremost the rotation of a flux surface about the magnetic axis. Due
to the magnetic inhomogeneities and the fact that the magnetic flux is frozen in the
plasma, such a motion leads to compression and expansion of individual fluid elements
proportional to the change in their ambient B2. The resulting pressure perturbations
are localised predominantly in the upper and lower half of the torus. The free energy
[6] necessary to create these pressure perturbations has to come out of the rotation,
and the corresponding restoring force term is the Stringer-Winsor-force. (It can also
be computed directly from the imbalance in radial magnetic drifts currents due to the
up-down asymmetry of the pressure perturbations). Plasma inertia together with the
restoring force are all the required ingredients of an oscillator. In a circular tokamak
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with concentric flux surfaces, the corresponding oscillations for fluid ions and adiabatic
electrons have the frequency ωGAM =

√

16/3T/mi/R. Since the regions of opposing
pressure perturbations are connected by magnetic field lines, parallel gradients in density
and pressure result, which give rise on one hand to parallel sound waves and on the other to
parallel dissipation. Both of these depend on the intricacies of the connection by field lines
and the flux surface geometry. Moreover, there are also local dissipation mechanisms, such
as magnetic pumping, in the edge region of the plasma, where the GAMs are prevalent.
The mentioned coupling of sound waves and GAMs makes it sometimes hard to distinguish
between the two: A particular mode has the more the character of a GAM, the larger its
mean perpendicular kinetic energy is in comparison to the parallel kinetic energy.

The free energy density of the geodesic acoustic mode (assuming adiabatic electrons,
singly charged ions and equal electron and ion temperature) may be written as
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where κ = 5/3 is the adiabatic exponent, and n, T are background electron density and
temperature, mi is the ion mass, and v is the fluid ion velocity. Likewise, the free energy
input into the geodesic acoustic mode by Reynolds stress, the Stringer-Winsor term, and
its reduction by dissipation may be formally written as
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δn′(ñṽE,r) +

1

κ− 1

n

T
δT ′
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where X ′ expresses the radial derivative of X, vE,r is the advective radial turbulent E×B-
velocity, R⊥, R‖ are the perpendicular and parallel Reynolds stress, and the dissipation
rate −µF represents the appropriate linear damping of all the components of the GAM.
The quadratic quantities (ñṽE,r), n/(κ−1)(T̃iṽE,r) are thus the local turbulent radial flows
of particles (Γ) and ion heat (Q).

2 Magnetic Shear

In the literature, the excitation of GAMs is thought to be either caused by Reynolds stress
[7] or indirectly by asymmetric anomalous transport enhancing the pressure perturbations
associated with the GAM [2,8]. While the former effect is basically independent of the
magnetic shear (except to the degree the turbulence itself is susceptible to it), the latter
can even change sign and brake it. Numerical experiments varying the magnetic shear –
all other paramters identical to reference [2] – have been performed. It turns out that the
shear flow (i.e., GAM) level is substantially smaller in the case with negative magnetic

shear at |v2

θ | = 0.2 compared to |v2

θ | = 0.8 with positive shear. The overall transport level
is in both cases at Q = 0.23 owing to the stabilising influence of the negative shear on the
turbulence. The decrease is concomitant with a flip in sign of the asymmetric transport
drive, whereas the Reynolds stress continues to drive the mode even for negative magnetic
shear. Moreover, it is found that the up-down asymmetric transport flips sign in relation
to the sign of the shear flow (Fig. 1).
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(a) (b)

Fig. 1. Up-down asymmetric component of the turbulent radial heat flux profile 〈2/3T̃ vE,r sin θ〉
as function of time in case of negative shear and an artificial flow pattern (a), and positive shear

and a self-consistent flow pattern (b). Note the reversed polarity of the transport asymmetry

with respect to the local shearing rate

This effect may be understood in a simple model of the mode structure [8] (which could
straightforwardly be generalised to more complex geometry). To good approximation we
can assume the electric potential perturbations of a turbulence mode to be field aligned,
i.e., a particular wave packet may have the form

δφ = A(r, θ, φ) exp(i(kr + sθkθ)r + ikθr(θ − φ/q)), (3)

where A is a slowly varying envelope (typically concentrated near the outboard midplane),
r, θ, φ are the minor radial, poloidal and toroidal co-ordinate, respectively, kr, kθ are the
respective wavenumbers at the outboard-midplane (at θ = 0), s is the magnetic shear,
and q is the safety factor. Note that all the fast variation is restricted to the exponential
factor. After the (growing) GAM has had time to shear the wave packet for a turbulence
decorrelation time τd ≪ 1/ωGAM, the wavepacket has the form

δφs = As(r, θ, φ) exp(i(kr + (sθ − v′Eτd)kθ)r + ikθa(θ − φ/q)), (4)

where for simplicity the shear of the GAM velocity field has been assumed to be constant
over the radial extent of the wavepacket. From (4) it is clear that for an originally
symmetric mode with kr = 0 at the outboard midplane, the absolute value of the radial
wavenumber is now asymmetric about the midplane, depending on the relative signs of
magnetic shear (s) and velocity shear (v′E). To compute the power input into the GAM
we consider circular flux surfaces, which result in density and ion temperature fluctuation
amplitudes of the form, δnGAM = δnGAM,0 sin θ, and δTGAM = δTi,GAM,0 sin θ. For the sake
of the argument, let us assume the transport fluxes to be proportional to the turbulence
intensity δφ2 by means of proportionality constants γ and q. Then one obtains for the
flux surface averaged power density

∂t〈F 〉 =
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n
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)

〈sin θ(As)2(r, θ, φ)〉, (5)

where 〈〉 indicates the flux surface average, whereby θ varies over all real numbers, as the
envelope As stems from a ballooning representation. With the other factors independent
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of magnetic shear, (except for potential subtle alterations of the turbulence itself), the
term determing the GAM-drive is 〈sin θ(As)2(r, θ, φ)〉. To exemplify the effect of the
mentioned asymmetry of As, we take the symmetric mode with kr = 0 at θ = 0, which
results in a local radial wavenumber of kr(θ) = (sθ − v′Eτd)kθ. From drift wave theory it
is known that A2(1 + ρ2

s(k
2
r + k2

θ)) (ρs ≡
√
mT/(eB)) is an adiabatic invariant, thus we

have (for small v′E):
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With k2

θρ
2
s ≪ 1 the variable asymmetry term from Eq. (5) turns into
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For the normal case of strongly ballooned turbulence modes, λ ≡ 〈θ sin θA2(r, θ, φ)〉 is a
positive number of order 〈A2〉. The complete average energy transfer is then
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wherein X expresses the time average of X over a GAM oscillation. The density and
temperature perturbations lag π/2 behind the velocity of the GAM. Therefore, the time
averages on the right hand side of Eq. (8) nearly vanish except for the fact, that v′E in
Eq. (4) has to be taken a time τd/2 in the past, since the shearing action is not strictly
instantaneously but occurs over a turbulence decorrelation time. Therefore δn′

GAM,0v
′
E ≈

sin(ωGAMτd/2)
√
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′2
E , and, with sin(ωGAMτd/2) ≈ ωGAMτd/2,
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The sign of this expression is determined by that of the magnetic shear, and a change of it,
in particular a switch to negative shear, profoundly affects the amplification mechanism
of the GAMs. At positive magnetic shear, the phase of the GAM oscillation with positive
flow shear amplifies the turbulence above midplane and reduces it below. When the
oscillating flow reaches its turning point, the thus biased turbulence tends to increase the
energy stored in the pressure perturbations of the GAM. As a result the flows are growing
over an oscillation [6], until higher order effects lead to a saturation. (For the negative-
flow-shear phase, the turbulence bias is reversed, as are the pressure perturbations at
the turning point. Hence, the effect on the GAM is identical.) Negative magnetic shear
reverses the symmetry of the turbulence modes with respect to the shear flows; under
otherwise identical circumstances the anomalous transport acts now to brake the GAMs,
which results in significantly reduced shear flows. In cases where the GAMs are controlling
the turbulent transport level, the effect of negative magnetic shear on the GAMs actually
tends to increase the anomalous fluxes. (This action is offset by the well-known stabilising
influence of reversed shear on the turbulence itself; whether negative shear is beneficial
depends on the balance of the two effects.) The phenomenon suggests an experimental
test, where the bias in the turbulence above and below midplane in response to the
shear flows is measured. This would quantify the role of the Stringer-Winsor effect in
comparison to the Reynolds stress in exciting the GAMs.
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3 Safety Factor

Discounting for flux surface shape effects, the safety factor q controls the coupling of the
GAMs to the parallel velocity, i.e., sound waves. Lowering q reduces the connection length
between the regions of opposing pressure perturbations of the GAM, which increases the
parallel pressure gradient, and thus increases this coupling. Since the parallel sound waves
in turn are heavily damped by the turbulence – with the parallel velocity basically playing
the role of a passive scalar [9] – they act as a loss channel. In general a full Eigenvalue
computation is necessary to determine the amount of coupling to the parallel sound waves.
However for the case of relatively small coupling, one can set ρ∂tv‖ = −∂‖p̃, which yields
in Fourier space

−iωGAMρv‖ = −ip̃/(qR) ⇒ v‖ = p̃/(ωGAMρqR). (10)

The parallel flow energy density is therefore

Fv‖ =
ρv2

‖

2
=

p̃2

2ρ(ωGAMqR)2
. (11)

On the other p̃ = 2T ñ + nT̃ = (1 + κ)T ñ, and with Eq. (1) the energy density of the
GAM pressure perturbation is Fp = (1 +κ)T/(2n)ñ2. The ratio of parallel flow energy to
pressure energy is thus for κ = 5/3 and the above GAM frequency

Fv‖

Fp

=
1

2q2
. (12)

Similarly, the parallel dissipation due to the parallel temperature gradient is ∂tFT =
ν‖(κ− 1)2ñ2/((qR)2), where ν‖ is the parallel heat conductivity.

From a collisionless stand point, these arguments have to be taken with the note
that now all gradients of even moments of the distribution function cause parallel flows,
which are subject to radial turbulent diffusion, and thus dissipation due to phase mixing.
In addition, linear Landau-damping due to resonant particles becomes possible for low
enough q [10]. Therefore, sufficiently low q cause a quench of the GAM activity, as has
been found in recent experiments [11], too.

The following table shows the effects of reducing q from 4 to 1 in turbulence simu-
lations again with the other parameters taken from the core-edge transitional regime in
ref. [2].

q = 4 q = 1 (for v‖ only) q = 1 (for v‖ and q‖ only)

|v2

θ | = 0.83 |v2

θ | = 0.67 |v2

θ | = 0.46

|v2

‖| = 0.06 |v2

‖| = 0.45 |v2

‖| = 0.18

It shows clearly that the parallel velocity component dramatically increases with decreas-
ing connection length, while the GAM amplitude decreases without quenching completely.
It must be born in mind, however, that the experimental results [11] were obtained in
shaped discharges, which add significant complexity, as is detailed below.

4 Flux Surface Shape

Shape and local radial separation of the flux surfaces has great influence on the frequency
of the GAMs and the relative strength of the Stringer-Winsor force, i.e., the relative
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importance of pressure fluctuations and poloidal flow. The flux surface separation changes
the local poloidal velocity by means of

vE,θ ∝ Er =
dφ

dψ
|∇ψ|, (13)

where ψ is the flux surface label. The (major) radial velocity is

vE,R ∝ Ez =
dφ

dψ
|∂zψ|, (14)

where z is the vertical co-ordinate. For example, an elongation of the plasma column
leads to a larger distance between flux surfaces away from the midplane, reducing the
radial electric field of the GAM there relative to the outboard midplane. Nevertheless
the velocity at the outboard midplane is the quantity relevant to the modulation or
shearing of the turbulence. This leads to a reduction of the radial excursion and thus
lower pressure fluctuations associated with a fixed poloidal flow amplitude given at the
outboard midplane. Lowering the pressure fluctuations also reduces the Stringer-Winsor
force during the GAM oscillation, resulting in a reduced frequency compared to a circular
plasma column.

Discarding for simplicity the temperature fluctuations, one can write an effective GAM
system for large aspect ratio R/a as

∂tns =
√

2nC1

v0

R
, (15)

ρC2∂tv0 = −2
√

2TC1

ns

R
, (16)

where

ns ≡
〈ñ∂zψ〉

√

〈(∂zψ)2〉
(17)

is the amplitude of the density perturbations and v0 is the poloidal velocity at the out-
board midplane. The effective equations are controlled by two coefficients describing the
compression for a given poloidal velocity v0,

C1 ≡
√

2〈(∂zψ)2〉
|∇ψ(θ = 0)| , (18)

and the effective inertia of the flow,

C2 ≡
〈(∇ψ)2〉

|∇ψ(θ = 0)|2 , (19)

whose definitions are such that for circular geometry C1 = C2 = 1.
From (15,16) one obtains the modified GAM frequency

ωGAM = 2C1/
√

C2

1

R

√

T

mi

. (20)

Assuming that the combined drive terms due to Reynolds stress and asymmetric
anomalous transport have a limit in terms of the achievable pressure (here density) per-
turbation ns, the poloidal velocity is determined by

v2

0
=

2T

ρnC2

n2

s. (21)
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For a Miller equilibrium [12], it can be shown that for increasing elongation κ→ ∞ or
differential Shafranov shift dR/dr → −1 all C1, C2 and likewise ωGAM tend towards zero.

Further complications arise, if the interaction with the parallel sound waves is taken
into account, as on non-circular or shifted flux surfaces pressure perturbations other than
m = 1 can be exited. These have higher resonance frequencies, which even for edge
parameters can be resonant with the GAM, and have much reduced connection length
which enhances damping of the GAMs as discussed in the previous section.

To demonstrate the importance of flux surface shaping (in the absence of the mentioned
complications), figure 2 displays the oscillating shear flow patterns, and the transport
from two turbulence simulation runs with the GAM pressure perturbations reduced (a,c)
or increased (b,d) by a factor two in comparison to the flow velocity, corresponding to an
ellipticity of 2.5 and 0.66, respectively, at otherwise constant turbulence conditions.

(a)

(c)

(b)

(d)

Fig. 2. Anomalous radial heat flux profile as function of time in case of favourable (a) and

unfavourable (b) flux surface geometry; (c) and (d) show snapshots of poloidal E ×B-flow and

radial heat flux at t = 80 corresponding to (a) and (b), respectively. The strong correlation

between flows and radial heat flux is well understood [2].

The plasma parameters for the turbulence were in the transitional regime between core
and edge (drift parameter αd = 0.6, ǫn = Ln/(2R) = 0.08, q = 3.14, ŝ = 1, ηi = 3,
[2]). The dramatic difference in transport of about one order of magnitude demonstrates
that optimisation of the magnetic geometry with respect to the GAMs (in contrast to the
turbulence alone) is likely another tempting route to improved confinement. Again, the
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results suggest a relatively straightforward comparison with experiments.
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