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The conditions under which rapid plasma rotation may occur in a general three-

dimensional magnetic field with flux surfaces, such as that of a stellarator, are in-

vestigated. Rotation velocities comparable to the ion thermal speed are found to be

attainable only in magnetic fields whose strength B depends on the arc length l along

the field in approximately the same way for all field lines on each flux surface ψ, i.e.,

B ' f(ψ, l). Moreover, it is shown that the rotation must be in the direction of the

vector ∇ψ ×∇B.
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Magnetic confinement schemes aim at insulating the plasma from the surroundings

by means of a strong magnetic field. In the limit of infinite field strength, B → ∞,

the transport across magnetic flux surfaces (if such exist) vanishes, while that within

flux surfaces remains finite. This is true regardless of whether the cross-field transport

is due to collisions or turbulence. In the former case the diffusivity scales as B−2 (in

most regimes), while turbulent transport can have various dependencies, including B−1

(Bohm) and B−2 (gyro-Bohm, Rechester-Rosenbluth etc.) In any case, the cross-field

transport disappears in the limit B →∞ since the gyro-radius ρ and cross-field drifts

then vanish. Magnetic fusion experiments approximate this limit in the sense that the

transport across flux surfaces is many orders of magnitude slower than that within

them.

Transport theory for magnetized plasmas usually relies on an expansion in the

smallness of δ = ρ/L � 1, where L is the macroscopic length scale. In zeroth or-

der transport occurs only within, and not across, flux surfaces, as noted above, and

one usually proceeds quickly to first order, where a drift- or gyro-kinetic equation is

derived and solved for the kind of transport under consideration, be it collisional or

turbulent. However, already the zeroth-order kinetic equation implies some funda-

mental constraints on the spatial dependence of plasma parameters. For instance, the

temperature must be constant on each flux surface because heat conduction eliminates

any temperature variation within flux surfaces. For a similar reason, the rotation is

constrained to be purely toroidal in an axisymmetric tokamak to lowest order in δ.

This is because parallel viscosity eliminates any poloidal rotation substantially greater

than the diamagnetic speed (which vanishes in the limit δ → 0). The only rotation

comparable to the ion thermal speed that is allowed is in the toroidal direction.

These results are well known in the tokamak, but it appears that the consequences

have not been worked out in the case of a general, three-dimensional field, such as that

of a stellarator. This is the aim of the present paper, where we find that rapid rotation

can only occur in a certain class of magnetic fields. If the magnetic field is written

(locally) as

B = ∇ψ ×∇α, (1)

then it turns out that plasma rotation comparable to the ion thermal speed can only

occur if the field strength in lowest order only depends on ψ and the arc length l along
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the field, i.e., if

B ' f(ψ, l) (2)

for some function f . Interestingly, such fields have attracted attention because of their

favorable confinement properties [1]. They are an important subclass of “omnigenous”

magnetic fields, which are fields where the time-averaged cross-field drift vanishes for all

particle orbits [2, 3]. Quasi-axisymmetric [4] and quasi-helically symmetric [5, 6] fields

are examples of fields having the property (2), but the latter is a weaker condition than

quasisymmetry. We also find that the the rotation velocity vector must point in the

direction∇ψ×∇B, so that the streamlines coincide with lines of constant magnetic field

strength. Since these contraints follow already in zeroth order, they are independent

of the cross-field transport and hold in all collisionality regimes (except extremely low

ones, it turns out).

We start from the ion kinetic equation

∂f

∂t
+ (V + v) · ∇f +

e

m

(
E′ + v ×B− ∂V

∂t
− (V + v) · ∇V

)
· ∂f
∂v

= C(f) + S, (3)

where v = u − V(r, t) is the velocity vector measured relative to velocity field V,

E′ = E + V × B the electric field in the moving frame, e and m the ion charge and

mass, respectively, C the collision operator and S represents any sources present in the

plasma. Although V is in principle arbitrary, we shall choose it to be equal to the

lowest-order mean ion velocity. As in MHD, the electic field is ordered to be so large

that the E×B velocity is comparable to the thermal speed, E ∼ vTB, while the collsion

frequency is taken to be comparable to the transit frequency, vT /L, in order to allow

for all conventional collisionality regimes. The dependent variables f = f0 + f1 + . . .,

E = E0 + E1 + . . . and, unconventionally, also the magnetic field B = B0 + B1 + . . .

are expanded in the smallness of δ = vT /ΩL � 1, where Ω = eB/m. In order to

study equilibrium (rather than the approach to it), the time derivatives of zeroth-order

quantities are assumed to be small, ∂f0/∂t� (vT /L)f0, whilst higher-order quantities

may vary more rapidly (to allow for turbulence, for instance). The electric field is thus

electrostatic in lowest order, E0 = −∇Φ0.

The largest terms in Eq. (3) are of order Ωf , and the others of order δΩf = vT f/L

or smaller. In lowest order, then, our kinetic equation becomes simply

e

m

(
E′0 + v ×B0

)
· ∂f0

∂v
= 0,
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and can only hold for all v if

(v ×B0) · ∂f0

∂v
= 0, (4)

and E′0 = 0, so that

V⊥ = V −V · bb =
B0 ×∇Φ0

B2
0

(5)

and b · ∇Φ0 = 0, where b = B0/B0. We shall assume that the magnetic field at least

approximately (i.e., in lowest order) possesses flux surfaces, which we label by ψ, so

that Φ0 = Φ0(ψ, t).

A drift kinetic equation can now be derived in the conventional way by averaging

over the gyro-angle [7, 8, 9, 10], and there is no need to repeat this well-know calculation

here. If the velocity space coordinates are chosen to be w = mv2/2 and µ = mv2
⊥/2B0,

the result is in lowest order

∂f0

∂t
+ (v‖b + V) · ∇f0 + ẇ

∂f0

∂w
+ µ̇

∂f0

∂µ
=
∂f0

∂t
+ Λ̄(f0) = C(f0), (6)

where µ̇ = 0 and

ẇ = eẼ‖v‖ −mv‖V · ∇V · b−mv2
‖b · ∇V · b + µB0V · ∇ lnB0,

with Ẽ‖ = b ·E′1 = b · (E1 + V ×B1).

In equilibrium, the source term balances transport losses and is therefore also rel-

atively small, usually of order δ or δ2 as mentioned in the introduction. The solutions

to the resulting equilibrium equation are found from a familiar H-theorem argument

[9]. Multiplying the equation by ln f0 and integrating over velocity space gives

∇ ·G = −
∫

ln f0C(f0) 2πv⊥dv⊥dv‖, (7)

where

G = −
∫

(V + v‖b)f0(ln f0 − 1) 2πv⊥dv⊥dv‖

is the entropy flux. The left-hand side of Eq. (7) is annihilated by a flux-surface average,

defined as the volume average between two neighboring flux surfaces, and it follows that

f0 must be a Maxwellian, whose density n and temperature T may vary over each flux

surface. Substituting this Maxwellian into Eq. (6) without the time-derivative gives an

equation which can only be satisfied if the following relations are satisfied [9, 10]:

b · ∇ lnn−
eẼ‖
T

+
m

T
V · ∇V · b = 0,
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b · ∇T = 0,

V · ∇
(

lnn− 3
2

lnT
)

= 0,

∇ · (nV) = 0,

b · ∇V · b− 1
3
∇ ·V = 0.

The first of these equations relates Ẽ‖ to the density variation on each flux surface and

will be of no concern to us. The second equation implies that irrational flux surfaces

(and, by continuity, also rational ones) are isothermal. Since V · ∇ψ = 0, the third

equation thus implies

V · ∇n = 0.

This reduces the fourth equation to an incompressibility condition,

∇ ·V = 0, (8)

and the fifth one to

b · ∇V · b = 0. (9)

We now recall Eq. (5) and note that

0 = ∇× (V ×B0) = B0 · ∇V −V · ∇B0,

which combined with Eq. (9) leads to

V · ∇B0 ·B0 = 0.

Since (∇B0) ·B0 = B0∇B0 we thus conclude that

V · ∇B0 = 0.

In other words, the streamlines of the flow are given by the intersection between flux

surfaces and surfaces of constant B0. This means that the velocity field can be written

as

V(r) = g(r)∇ψ ×∇B0

for some function g(r) of the spatial coordinates r. The parallel component of the flow

is thus

V‖b = g(r)∇ψ ×∇B0 −
dΦ0

dψ

b×∇ψ
B0

.
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Taking the scalar product of this equation with b×∇ψ gives an expression for g,

gb · ∇B0 +
1
B0

dΦ0

dψ
= 0,

and thus enables us to write down an explicit expression for the lowest-order flow

velocity,

V = −dΦ0

dψ

∇ψ ×∇B0

B0 · ∇B0
. (10)

If B0 is written in Clebsch coordinates (1), then V becomes

V =
∇Φ0 ×∇B0

(∇ψ ×∇B0) · ∇α
.

The requirement (8) that this flow field should be incompressible now implies a

constraint on the spatial variation of the magnetic field strength,

(∇ψ ×∇B0) · ∇(B0 · ∇B0) = 0. (11)

If B0 is expressed in coordinates (ψ, α, l), where l is the arc length along B0 then it

follows from Eq. (11) that

(∇ψ ×∇B0) · ∇Ḃ0 = 0,

where Ḃ0 = ∂B0/∂l. This relation already indicates our desired result: the parallel

variation of B should not change when moving along a curve of constant B. We note

that
∂B0

∂α

∂Ḃ0

∂l
− ∂B0

∂l

∂Ḃ0

∂α
= 0, (12)

and it follows that Ḃ0 must be expressible as a function of ψ and B0, i.e., Ḃ0 =

Ḃ0(ψ,B0), at least locally. This implies, in turn, that B0 must satisfy the requirement

(2). To see this formally, we note that Eq. (12) can be written as

∂ ln Ḃ0

∂l
=

∂

∂l
ln
(
∂B0

∂α

)
,

and integrated once, to yield

∂B0

∂l
= F (ψ, α)

∂B0

∂α
,

with F an arbitrary function. The general solution is

B0 = B0(ψ, l′),
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where l′ = l − l0(ψ, α) is an arc length coordinate with a different origin from l, con-

structed to that the origins on different field lines lie on mod-B surfaces. The function

l0 is a function of field line related to F by F∂l0/∂α = −1. We conclude that rotation at

a speed comparable to the thermal speed is only possible if the magnetic field strength

in lowest order only depends on ψ and the arc length l′. The converse is also true: the

flow field (10) satisfies the conditions (8)-(9) if B0 is independent of α, and our theorem

can thus be stated in the following way. The lowest-order drift kinetic equation admits

solutions where the mean flow velocity is comparable to the thermal speed if, and only

if, the magnetic field is approximately satisfies the requirement (2).

Another way of stating this result is that a sufficiently large radial electric field

is only possible in magnetic fields with the property (2). “Sufficiently large” in this

context refers to fields that are strong enough to produce flow velocities comparable

to vT (sonic rotation), and it is worth noting that this may occur for fields that are in

fact much smaller than E ∼ vTB (though formally of this order, in the sense of the

gyroradius ordering assumed). The result (10) can be written as

V
E/B0

=
n×∇B0

b · ∇B0
, (13)

where n = ∇ψ/|∇ψ| is the unit vector normal to the flux surfaces and E = −n · ∇Φ0

is the electric field. The point is that the right-hand side of (13) can be relatively large

[but not infinite in fields with the property (2)], in which case the parallel component

of the velocity (10) is significantly larger than the perpendicular one. In tokamaks,

for instance, |n × ∇B0|/(b · ∇B0) ∼ q/ε � 1, where q is the safety factor and ε the

inverse aspect ratio. As is well known, sonic rotation thus occurs already for radial

electric fields of order E ∼ εvTB/q. In a stellarator, a similar estimate tends to hold

approximately, but the details depend of course on the specific magnetic configuration.

Importantly, sonic rotation can occur at roughly the same electric field as when the

poloidal E × B drift cancels the poloidal component of v‖ for a thermal ion. This

“resonance” condition is thought to strongly affect neoclassical transport [11].

The result that the eletric field cannot be large unless the magnetic field satisfies (2)

suggests a paradox in the low-density limit, since any electric field strength is possible in

vacuum. The resolution lies in our ordering of the collision frequency, νi ∼ vT /L. This

is the standard neoclassical ordering, and is usually followed by a subsidiary ordering

where the collsion frequency is taken to be smaller or larger than the transit frequency,
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but usually not as small as ν ∼ δvT /L. At extremely low densities, this latter case must

be allowed, in which case the lowest-order drift kinetic equation becomes Λ̄(f0) = 0

and does not constrain f0 to be Maxwellian or B0 to satisfy Eq. (2).

Before concluding, we remark that the condition (2) is satisfied by quasi-helically

symmetric fields. By definition, the latter satisfy [6]

B = B(ψ,mθ − nϕ) = B(ψ, ϑ),

where (m,n) are integers and (ψ, θ, ϕ) are Boozer coordinates, so that

B = β(ψ, θ, ϕ)∇ψ + I(ψ)∇θ + J(ψ)∇ϕ = ∇ψ ×∇(θ − ιϕ).

It follows that

B · ∇B =
mι− n
ιI + J

B2∂B

∂ϑ

is a function only of ψ and mθ − nϕ, and hence Eq. (11) is satisfied. As one would

expect from their similarity to tokamaks, quasi-symmetric stellarator plasmas are thus

in principle capable of rapid rotation. We note, however, that in general the presence

of the centrifugal force modifies the usual force balance relation, so that j × B = ∇p

does not hold and Boozer coordinates, as usually defined, do not exist.

In conclusion, we have considered the question of plasma rotation in general three-

dimensional magnetic confinement systems, and found that sonic rotation is only possi-

ble in certain magnetic fields, and can only occur in the direction of constant magnetic

field strength. In the special case of a tokamak, plasma rotation must therefore be

purely toroidal in lowest order, as is well known both theoretically and experimen-

tally. (Although the poloidal rotation in experiments has been reported to exceed its

neoclassical prediction, it is still far smaller than the toroidal rotation [12, 13].) In

stellarators, the radial electric field and rotation velocity are set by the condition of

ambipolar cross-field transport, and is usually fairly slow in experiments, V � vT . It is

often the case that neoclassical transport dominates, and the magnitude and direction

of the rotation then depend on the collisionality and heating channel. Faster rotation

is only possible if the magnetic equilibrium satisfies the condition (2), and the flow is

then given by Eq. (13). These conditions are approximate in the sense that they only

need to be satisfied to lowest order in gyroradius, but are independent of the cross-field

transport. They therefore hold in all (conventional) collisionality regimes, and also in

the presence of gyro-kinetic turbulence.
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