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In tokamak disruptions the Ohmic current is often replaced by a current of run-

away electrons, which is likely to be more peaked in the centre of the discharge than

the pre-disruption current. This raises the question of the resistive stability of the

post-disruption plasma, where the equilibrium current is entirely carried by the run-

away electrons while the cold (∼ 10 eV) background plasma is relatively resistive. It

is found that the linear properties of the classical tearing mode are essentially deter-

mined by the cold bulk plasma, and the growth rate is approximately the same as in a

plasma without runaways but with the same current profile. The nonlinear saturation

amplitude is different however. In a symmetric plasma slab, the saturated island size

is larger when the current is carried by runaway electrons than in the Ohmic case, and

undergoes a nonlinear bifurcation when the stability index ∆′ exceeds a critical value.

PACS numbers: 52.35.Py, 52.55.Tn, 52.55.Fa
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I. Introduction

When a tokamak plasma undergoes a disruption, it is quickly cooled to a temperature

of around 10 eV and a significant fraction of the pre-disruption current is converted to

a current of highly relativistic “runaway” electrons. This fraction is typically around

1/2 in the Joint European Torus (JET), for reasons that have only recently been un-

derstood theoretically [1]. The runaway electrons are produced by the toroidal electric

field which is induced as the plasma cools down during the thermal quench of the dis-

ruption. Because the resistive diffusion time after the thermal quench is comparable

to the generation time for runaways (the inverse runaway avalanche growth rate [2]),

some of this electric field diffuses to the wall and leaves the plasma before producing

any runaways. How much of the pre-disruption current is converted to runaways is

thus governed by a competition between resistive diffusion of toroidal electric field and

runaway avalanche growth. More runaways are predicted to be produced in ITER than

in JET, since the avalanche is stronger and the skin time is longer.

Another prediction of the theory in Ref. [1] is that the post-disruption runaway

current profile could be more strongly peaked in the centre of the discharge than the pre-

disruption current. This occurs because runaway electrons are most quickly produced in

the hottest part of the plasma, i.e., in the centre, and once this has happened the radial

profile of the toroidal electric field becomes hollow, causing inward diffusion of this field

and resulting in more runaway production in the centre of the discharge and less further

out. It appears that this phenomenon may have been observed experimentally on JET

[3], although it was not recognised at the time.

Plasmas with steep current profiles are more prone to tearing-mode instability,

which provides the motivation for the present paper – to investigate the resistive sta-

bility of a post-disruption plasma with runaway electrons. After a few skin times, there

is very little toroidal electric field left in the plasma and practically all the current

is carried by essentially collisionless runaway electrons. In contrast, the background

plasma is highly resistive, and it is not immediatly clear what component determines

the resistive stability properties, the collisionless runaways or the resistive bulk. We

focus on the simplest case of an ordinary cylindrical tearing mode with poloidal mode

number m > 1 and completely collisionless runaway electrons, with no cross-field mag-

netic drift, traveling at the speed of light along the magnetic field. At least in this
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simple case, it turns out that it is the cold bulk plasma that controls the linear proper-

ties of the resistive layer. The linear instability threshold, mode structure and growth

rate are approximately the same as if the current had been carried by thermal electrons.

If ∆′ > 0 [defined in the usual way, see Eq. (31)] the mode is thus expected to grow

rapidly in a 10 eV plasma since the resistivity is very high. When the magnetic island

associated with the instability has grown to a size much larger than the linear tearing

layer width, it enters a stage of slower (algebraic rather than exponential) growth [8]

before finally saturating at some finite amplitude. We find that the saturated width of

the island is different from that in a purely thermal plasma. This is because the final

size of the island is sensitive to the form of Ohm’s law that governs the steady-state

plasma current, and this is very different in a plasma with runaway electrons. Unlike

the currents that arise during the growth of the instability, the final current is non-

inductive in nature and is exclusively carried by runaway electrons. Our calculation

follows the general method laid down in Ref. [9], modified appropriately to allow for

the fact that it is runaway electrons that carry the current determining the final shape

and size of the island. These analytical predictions are borne out by the numerical

calculations presented in Sec. V, where it is also found that there is a nonlinear bifur-

cation in the saturated island size at a critical value of ∆′. In principle this bifurcation

could be calculated by the same analytical method by going to higher order in the

∆′-expansion. However, this calculation is sufficiently tedious that we have not carried

it out but instead present a more approximate estimate of the critical island width at

which the bifurcation occurs.

Before proceeding with the formal analysis, it is useful to make some simple esti-

mates. The parallel resistivity of a 10 eV hydrogen plasma with the number density

ne = 5 · 1019 m−3 is

η‖ = 1.96nee
2τei/me ≃ 18 µΩm,

which is 103 times that of copper and 50% larger than that of graphite. If the magnetic

field is B0 = 3 T, the Alfvén velocity is substantially smaller than the speed of light,

vA = B/
√
µ0mine ≃ 0.02c,

so the runaway electrons travel effectively infinitely fast along the magnetic field. The
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normalized resistive tearing mode layer width is

w = (γη)1/4/k
′1/2
‖ (1)

where η = η‖R0/µ0vAa
2 is the normalized resistivity, γ the growth rate normalized

to the Alfvén time τA = R0/vA, with R0 the radius of the magnetic axis, and k′‖ =

ns/r, with n the toroidal mode number, s the magnetic shear, and r the minor radius

normalized to a, which denotes the radius of the plasma column. For a conventional

m > 1 tearing mode the growth rate is

γ

τA
=
η3/5k

′2/5
‖

τA

[

Γ(1/4)a∆′

2πΓ(3/4)

]4/5

≃ 2 · 103 s−1, (2)

and the layer width becomes

wa ≃ 1 cm,

where we have used JET-like parameters: R0 = 3 m, a = 1 m, s = 0.5, r = 0.2, and

assumed n = a∆′ = 1. The layer is thus much wider than the ion gyroradius and can

be expected to be well described by resistive MHD.

II. Basic equations

The plasma is taken to consist of two distinct components: a cold bulk governed by

reduced resistive MHD equations, and a population of highly relativistic runaway elec-

trons moving at the speed of light along the magnetic field. The usual reduced MHD

equations are at low beta [4]

∂ψ

∂t
+ ∇‖φ = η∇2

⊥ψ, (3)

∂∇2
⊥φ

∂t
+ [φ,∇2

⊥φ] + ∇‖∇2
⊥ψ = 0, (4)

where ψ and φ are the normalized magnetic and electric potentials

ψ =
Az
ǫB0a

, (5)

φ =
Φ

ǫB0avA
, (6)

ǫ = a/R0 and time has been normalized to the Alfvén time τA = R/vA. The Poisson

brackets in Eqs. (3) and (4) are defined in the usual way,

[A,B] =
∂A

∂x

∂B

∂y
− ∂B

∂x

∂A

∂y
, (7)
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and

∇2
⊥A =

∂2A

∂x2
+
∂2A

∂y2
, (8)

∇‖A =
∂A

∂z
− [ψ,A], (9)

where x = (R − R0)/a, y = Z/a, z = −ζ, and (R, ζ, Z) are cylindrical coordinates

defined relative to the symmetry axis of the torus.

In a plasma with runaway electrons, Ohm’s law (3) must be modified to account

for the runaway current. The latter needs to be subtracted from the right-hand side,

so that the resistive term only contains the current carried by thermal electrons. Thus

we replace Eq. (3) by
∂ψ

∂t
+ ∇‖φ = η(∇2

⊥ψ + j), (10)

where j is the normalized runaway current density. In the zero-gyroradius limit, the

runaway electron distribution function f is governed by the drift kinetic equation

1

τA

∂f

∂t
+

(

v‖B

B
+

E × B

B2

)

· ∇f = 0. (11)

The runaways move practically at the speed of light along the magnetic field, so it is

straightforward to integrate over velocity space and obtain an equation for the normal-

ized runaway current density j,

∂j

∂t
+ [φ, j] − c

vA
∇‖j = 0, (12)

which closes the system of equations. Here we have taken the current to be positive,

so that the runaway electrons move in the negative direction, v‖ = −c.
We now proceed to linearize these equations around an equilibrium described by

ψ = ψ0(r), φ0 = 0 and j0(r) = −∇2
⊥ψ0, where r2 = x2 + y2. Note that all the equilib-

rium current is carried by the runaway electrons. The normalized poloidal equilibrium

magnetic field is equal to −ψ′
0(r) and the safety factor becomes q(r) = −r/ψ′

0(r). A

Fourier transform of the perturbations is taken in the poloidal angle, θ, the torodial

angle, z, and in time, t, so that

ψ1(r, θ, t) = ψ̂(r)eγt+i(nz−mθ), (13)

and we identify the parallel wave vector k‖(r) = n−m/q(r). Dropping carets over ψ,

φ and j, and writing

∇̂2
⊥A(r) =

1

r

d

dr

(

r
dA

dr

)

− m2A

r2
, (14)

5



we then obtain the equations

γψ + ik‖φ = η
(

∇̂2
⊥ψ + j

)

, (15)

γ∇̂2
⊥φ+ ik‖∇̂2

⊥ψ = − imj
′
0

r
ψ, (16)

(

k‖ + iγvA/c
)

j =
mj′0
r

(ψ + vAφ/c) , (17)

which define our linear problem. Note that after Fourier transformation the equation

(17) for the runaway current is no longer a differential equation.

III. Linear stability

The analysis of the linear stability properties is carried out in the customary way

by assuming that the dimensionless resistivity is small, η ≪ 1, and therefore only

matters in a small region around the resonance k‖(rs) = 0 which can thus be considered

separately from the “outer” region away from the resonance [5]. Resistivity can be

neglected in the outer region, where we obtain from Eq. (16)

k‖∇̂2
⊥ψ = −mj

′
0

r
ψ, (18)

if we anticipate that the growth is slow on the Alfvén time scale. Hence and from

Eqs. (15) and (17) with η = 0 we obtain

j = −∇̂2
⊥ψ =

j′0/r
n
m − 1

q

ψ, (19)

and we conclude that the runaway electrons do not affect the behaviour of the outer

region. Ideal MHD is oblivious of what plasma component carries the current as long as

the current-carrying species is tied to the magnetic field. Note that we have neglected

the magnetic drift of the runaway electrons.

The resistive layer, where x = r − rs ∼ w ≪ 1, is more interesting. Here we make

the usual approximations k‖ = k′‖x, ∇̂2
⊥ = d2/dx2 and obtain the equations

γψ + ik′‖xφ = η(ψ′′ + j), (20)

γφ′′ + ik′‖xψ
′′ = −ik′‖J ′ψ, (21)

(k′‖x+ iγvA/c)j = k′‖J
′(ψ + vAφ/c),
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with J ′ = mj′0/k
′
‖r = q2j′0/q

′r. It is immediately clear that if the equilibrium current

gradient vanishes at the resonance, j′0(rs) = 0, then the runaway electrons have no

effect on the problem since the runaway current perturbation j then vanishes in the

layer. On the other hand, if j′0(rs) 6= 0, then j becomes very large near x = 0 since

j =
J ′(ψ + vAφ/c)

x+ iγvA/k′‖c
,

or approximately

j ≃ J ′ψ

x
(22)

where we have anticipated that γvA/c ≪ w and vAφ/c ≪ ψ. In this approximation,

which we shall adopt henceforth, the runaway current density is infinite at x = 0.

Equation (20) indicates that the magnetic potential has a singularity of the form ψ ∼
ψ(0)(1 + J ′x ln |x|) at the origin.

It is useful to rescale the radial coordinate to the layer width (63) by writing x = wz

and to write Eqs.(20)-(22) as

d2ψ

dz2
=
δ

z

(

i
d2ϕ

dz2
+ ζψ

)

, (23)

d2ϕ

dz2
− z2ϕ = −izψ, (24)

where ϕ = φδ−1/2, ζ = −J ′η3/4k
′1/2
‖ /γ5/4 is expected to be of order unity, and

δ =
γ3/2

η1/2k′‖
≪ 1

is expected to be small (of order w) for m > 1 tearing modes since γ ∼ η3/5, see

Eq. (2). These equations are now solved by expanding ψ = ψ(0) + ψ(1) + · · · and

ϕ = ϕ(0) +ϕ(1) + · · · in the small parameter δ. The presence of runaway electrons gives

rise to the term involving ζ in Eq. (23), which is small in most of the resistive layer but

of order unity when z ∼ δ, i.e., in a sublayer of width w2 around the resonant surface.

The presence of this term also changes the equations in a qualitative way. Without

runaways, there are two modes of definite parity: the tearing mode with even ψ and odd

ϕ, and the twisting mode with odd ψ and even ϕ. The presence of runaway electrons

mixes these parities (weakly, as we shall see). As in the conventional treatment of this

problem, Eq. (23) yields in lowest order for z ∼ 1

d2ψ(0)

dz2
= 0 ⇒ ψ(0) = A+Bz, (25)
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which is the basis for the “constant-ψ approximation” of Ref. [5]. In the sublayer,

z ∼ δ, this solution needs to be modified. Here

d2ψ(0)

dz2
− δζψ(0)

z
=
δi

z

d2ϕ

dz2

∣

∣

∣

∣

∣

z=0

, (26)

so that

ψ(0) = 2
√

δζz
[

c1K1

(

2
√

δζz
)

+ c2I1
(

2
√

δζz
)]

− i

ζ

d2ϕ

dz2

∣

∣

∣

∣

∣

z=0

(27)

for z > 0 and

ψ(0) = 2
√

−δζz
[

c3Y1

(

2
√

−δζz
)

+ c4J1

(

2
√

−δζz
)]

− i

ζ

d2ϕ

dz2

∣

∣

∣

∣

∣

z=0

(28)

for z < 0. Using small-argument expansions of the Bessel function and choosing the

coefficients to match across z = 0 gives

ψ(0) ≃ c0z + c1 (1 + δζz ln |δζz|) , (29)

This solution matches Eq. (25) in the overlap region δ ≪ z ≪ 1, if we choose c0 = B

and c1 = A. Note that the additional, logarithmic term in (29) is small everywhere in

the resistive layer but has a large second derivate in the sublayer, z ∼ w. As noted in

Eq. (22), the current density is infinite at x = 0 in the approximation we have adopted.

This singularity is resolved by the finite value of γvA/c.

This “inner” solution of the resistive layer should match smoothly to the outer MHD

region, where Eq. (19) implies

ψ ≃ a1
(

1 − J ′x ln |x|
)

+ a±x (30)

in the matching region, w ≪ x ≪ 1. The coefficient of the last term is, in general,

different for x > 0 and x < 0, the difference being

∆′ =
a+ − a−

a1
= lim

z→+∞

ψ′(z) − ψ′(−z)
wψ(0)

. (31)

It is reassuring that when the constant terms of Eqs. (29) and (30) are matched, a1 = c1,

the logarithmic terms match automatically [6, 7]. The requirement that the linear

terms should match implies that c1 must be small, c1 = O(δ). Although the presence

of runaways mixes parities, ψ is thus nevertheless approximately even. The jump ∆′

in the slope of the outer solution has no counterpart in the lowest-order inner solution

ψ(0) and is instead obtained from the next order layer equation (23), which is

d2ψ(1)

dz2
=
δi

z

d2ϕ(0)

dz2
, (32)

8



in the region z ∼ 1. Integrating this equation across the layer gives

∆′ =
δi

wA

∫ ∞

−∞

d2ϕ(0)

dz2

dz

z
. (33)

Here ϕ(0) is obtained from (24)

d2ϕ(0)

dz2
− z2ϕ(0) = −izψ(0) ≃ −iAz. (34)

Only the part of ψ that is even in z contributes to ∆′, so in order to calculate this

quantity we need to include the odd part of ϕ(0) on the right-hand side of Eq. (42),

and hence only the even part of ψ(0) in Eq. (34). According to Eq. (29) this even part

is a constant to the requisite order, and it follows that Eq. (34) reduces to that solved

in conventional tearing mode theory, with a solution that can be expressed in terms of

parabolic cylinder functions, see the Appendix and Ref. [10].

Thus we conclude that both the mode structure of the tearing layer, as described by

ψ(z) and ϕ(z), and boundary condition, encapsulated in ∆′, are only weakly affected

by the presence of runaway electrons in the plasma. The linear properties of the tearing

mode are thus similar to those in a plasma without runaways to leading order in the

smallness of η. It is well know in the conventional theory of tearing modes, however, that

the growth rate (2) is only attained at very small values of η, making it rather difficult

to reproduce this growth rate by direct numerical simulation. Since such simulations

are carried out at finite resistivity, higher-order corrections tend to be important [7].

One would think that these corrections are also relatively important in post-disruption

plasmas, because of their low temperature and resistivity. As shown in the appendix,

however, the leading-order correction due to finite resistivity is actually absent in a

plasma where the current is carried entirely by runaway electrons. This result will be

confirmed numerically in Sec. V.

IV. Nonlinear saturation

As is well known in tearing-mode theory, the exponential growth of a linearly unstable

tearing mode is followed by a stage of slower, algebraic growth [8], eventually leading

to saturation. We now consider the problem of calculating the nonlinear saturation

amplitude in a runaway plasma. Following early work on this subject [11, 12], there has

been a flurry of recent activity in this field [9, 13, 14, 15, 16]. All these works considered
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the question of what size the island grows to in the case when the equilibrium current

is Ohmic. Here we consider the corresponding problem when the equilbrium current

is instead carried by runaway electrons. For simplicity, we restrict our attention to

the simplest geometrical case of a symmetric slab equilibrium, which we describe in

Cartesian coordinates (x, y), assuming that the equilbrium current density j0(x) has a

maximum at the location of the resonant surface, x = 0.

We begin by noting that although Ohmic currents exist in the plasma during the

linear and nonlinear growth of the mode, in the final state all the current is again

carried by runaway electrons. As long as the mode grows, there is an inductive electric

field [the first term in Eq. (10)] driving a current in the resistive bulk plasma. But

when the mode has saturated and the plasma has settled down in a new equilibrium

(with a magnetic island), no inductive field or Ohmic current can exist and all that

remains is the runaway current. In order to calculate the size of the magnetic island,

we need to relate this final current profile,

j†(x, y) = −∇2
⊥ψ†(x, y), (35)

to the “initial” runaway current profile before the onset of tearing instability,

j0(x) = −∇2
⊥ψ0(x). (36)

Both these current densities are flux functions of the corresponding magnetic fields,

i.e., they can be written as j0(x) = F0[ψ0(x)] and j†(x, y) = F†[ψ†(x, y)], since Eq. (12)

implies ∇‖j = 0 to leading order in vA/c ≪ 1. We find the relation between ψ0(x)

and ψ†(x, y) by using two conservation laws. The first one is that of incompressibility.

Since we are operating in slab geometry with a strong guide field, the E × B velocity

is incompressible and the volume occupied by each fluid element is the same before

and after the island has formed. The second conservation law is the condition that the

runaway current remains “frozen into” the magnetic field during the evolution of the

island, implying that F0 = F†. The freezing-in condition follows from the circumstance

that the runaway electrons are convected by the E × B velocity, and is seen formally

by noting that Eq. (12) implies

∂j

∂t
+ 〈[φ, j]〉 = 0, (37)
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where we have performed an average over the perturbed flux surfaces, denoted by

angular brackets. This is defined as the volume average between two neighbouring flux

surfaces,

〈· · ·〉 =

∮
∣

∣

∣

∣

∂x

∂ψ

∣

∣

∣

∣

y

(· · ·)dy/
∮
∣

∣

∣

∣

∂x

∂ψ

∣

∣

∣

∣

y

dy, (38)

where the integral is taken over one period and thus annihilates the parallel derivative.

Hence, in Eq.(37)

〈[φ, j]〉 =
∂j

∂ψ
〈[φ, ψ]〉 =

∂j

∂ψ

〈

∇‖φ
〉

= 0, (39)

so that
〈

(

∂j

∂t

)

x,y

〉

=

(

∂j

∂t

)

ψ
+ u(ψ, t)

(

∂j

∂ψ

)

t

= 0, (40)

where u(ψ, t) = 〈∂ψ/∂t〉. The physical interpretation of this relation is that the run-

away current is “frozen” into the magnetic field.

It was found in Refs. [13, 14, 15] that, as long as the island is small enough, it

remains of approximately the same shape as the linear island, so we may write

ψ0(x) ≃
ψ′′

0x
2

2
, (41)

ψ†(x, y) ≃ ψ0(x) − ψ̃(cos ky − 1), (42)

reducing our task to that of calculating the nonlinear saturation amplitude ψ̃. It is

convenient to normalize the x-coordinate to the island width w,

X =
x

4

√

ψ′′
0

ψ̃
=
x

w
, (43)

and to introduce the flux-surface labels

Ω(x, y) =
ψ†(x, y)

ψ̃
− 1 = 8X2 − cos θ, (44)

m =
Ω + 1

2
, (45)

so that −1 < Ω < 1 and 0 < m < 1 inside the island, while 1 < Ω <∞ and 1 < m <∞
outside it. If the flux surface Ω is held fixed, the function

X(Ω, θ) = ±
√

Ω + cos θ

8
(46)

has the following averages over θ,

X̄ =
1

π
[E(m) − (1 −m)K(m)] , m < 1, (47)
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X̄ =

√
m

π
E(m−1), m > 1, (48)

inside and outside the island, respectively, where E andK are elliptic integrals. Because

of incompressibility, the runaway electrons that originally (i.e., before the island formed)

occupied the space −X0 < X < X0 end up within the flux surface Ω satisfying X̄(Ω) =

X0, see Fig. 1. Because of freezing-in, if the pre-island current profile was

j0 = j0(0) +
1

2
j′′0 (0)X2, (49)

then the final current profile becomes

j† = j0(0) +
1

2
j′′0 (0)X̄2. (50)

Before reconnection, the flux surfaces are straight, i.e., they are surfaces of constant

X, while after reconnection they are surfaces of constant X̄(x, y). The point is that,

because of incompressibility and freezing in, the runaway electrons intially on a flux

surface labelled by X are mapped to the post-reconnection surface for which X̄(x, y) =

X. The resulting current profile (50) is different from that arising in the corresponding

situation with Ohmic current, where the profile is instead determined by the flux-

surface-averaged Ohm’s law [9, 12, 13, 16]. The island saturation amplitude is therefore

also different.

In order to calculate this amplitude, we follow Ref. [9] and match the inner solution

(42) to the outer, ideal-MHD solution, by demanding that the function

M(x) =
1

πψ0

∫ x

−x
dx′

∫ π

−π

∂2ψ

∂x2
cos θdθ = − w

πψ0

∫ X

−X
dX ′

∫ π

−π
cos θ

(

j† +
∂2ψ†

∂θ2

)

dθ

(51)

should for X >> 1 match the corresponding quantity calculated using the exterior

solution. Using the current profile (50), we obtain

Minner = −wj
′′
0 (0)

πj0(0)

∫ Ω

−1
dΩ′

∫ θ0

−θ0

X̄2 cos θ

X
dθ, (52)

where θ0(Ω) denotes the maximum value of the angle θ ≤ π on the flux surface Ω, so

that cos θ0 = −Ω inside the island and θ0 = π outside the island. The contribution to

the double integral from the region inside the island is

∫ 1

−1
X̄2dΩ

∫ θ0

−θ0

cos θ

X
dθ =

16

π2

∫ 1

0
[2E(m)−K(m)][E(m)−(1−m)K(m)]2dm ≃ −0.0262,

(53)
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and that from the outside becomes

∫ Ω

0
X̄2dΩ′

∫ θ0

−θ0

cos θ

X
dθ =

32

π2

∫ 1

µ
E2(µ′)

[

E(µ′) −
(

1 − µ

2

)

K(µ′)

]

dµ′

µ′7/2
, (54)

with µ = 1/m. This integral diverges for µ → 0, i.e., when taken over an area much

larger than the island. In this limit

∫ Ω

0
X̄2dΩ′

∫ θ0

−θ0

cos θ

X
dθ → −0.297 +

3π

8
− πX, (55)

where the first term results from splitting off the dominant diverging dependence from

the integrand:

32

π2

∫ 1

µ

{

E2(µ′)

[

E(µ′) −
(

1 − µ

2

)

K(µ′)

]

+
π3µ′2

128

(

1 +
µ′

4

)

}

dµ′

µ′7/2
≃ −0.297. (56)

We thus conclude that the inner limit of the function (52) is

Minner →
wj′′0 (0)

j0(0)
(X − 0.272), (57)

which is to be matched to the outer limit, obtained from the ideal MHD equation

[ψ0,∇2
⊥ψ1] + [ψ1,∇2

⊥ψ0] = 0, (58)

where ψ1 = ψ† − ψ0. For ψ1 ∝ cos ky, this equation becomes

d2ψ1

dx2
+

(

dj0/dx

dψ0/dx
− k2

)

ψ1 = 0, (59)

and has for a symmertric equilibrium the solution [14]

ψ1(x, y) ∝
(

1 +
1

2
∆′|x| + k2 + b

2
x2 + . . .

)

cos ky, (60)

where

b =
ψ

(4)
0

ψ′′
0

∣

∣

∣

∣

∣

x=0

. (61)

Hence

Mouter → ∆′ + 2(k2 + b)x+ . . . , (62)

and matching with the inner solution implies that the saturated island size must be

w = − j0(0)

j′′0 (0)

∆′

0.272
. (63)

In contrast, the saturation amplitude in a purely resistive MHD plasma is [14]

w = − j0(0)

j′′0 (0)

∆′

0.411
, (64)
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which is smaller than (63). It comes as no surprise that these results are different

since the saturation mechanisms are different. In both cases, the island grows until the

magnetic energy of the system is no longer lowered by further growth, subject to the

constraints that the current must obey. In the runaway case these constraints come

from the requirement of freezing-in, while in the resistive case they originate from the

flux-surface average of Ohm’s law.

V. Numerical results

In order to confirm the analytical results of the two preceding sections, and to further

explore the growth of magnetic islands in plasmas with and without runaway electrons,

we have carried out direct numerical simulations of nonlinear equations (4), (10) and

(12). These equations were solved as an initial value problem in the geometry of a

sheared slab, with an equilibrium current profile proportional to cosx and no equilib-

rium electric field. The simulations were carried out with an initial value code, based on

a Fast Fourier Transform scheme for the space operations and on a third order Adams-

Bashfort scheme for advancing the equations in time. All the simulations reported here

were performed using a grid of 1024 × 64 points. The choice of this grid has been jus-

tified by convergence tests at higher resolution. The simulations were initialized with

a perturbation on the current density profile given by

j1(x, y) = Ĵ(x) exp (ikyy)

where Ĵ(x) is a function localized around the rational surface, within a width of order

of the linear layer and a typical amplitude of 10−4.

Numerically calculated linear growth rates are shown in Fig. 2, where results are

included both for the case where the equilibrium current is Ohmic and where it is

carried by runaway electrons. Also shown are the analytical predictions of Furth-

Killeen-Rosenbluth [5], and the finite-resistivity correction due to Militello et al [7]. It

is clear that the former agrees with the runaway simulations and the latter with the

Ohmic simulations, as predicted analytically in the Appendix.

The nonlinear island growth is shown as a function of time in Figs. 3 and 4 in the case

of an Ohmic and a runaway plasma, respectively. The agreement with the analytical

predictions of the saturation amplitude, ∆′ = 0.411w in the Ohmic case and ∆′ =

14



0.272w in the runaway case, is good for small values of ∆′ and gets progressively worse

as this parameter increases. This is not surprising since the calculation of the saturated

state assumes that the island is small, i.e., w ∼ ∆′ ≪ 1. Analytical considerations

suggest that the next term in the w-expansion should be of order w3, and this term

can in principle be calculated along the lines laid out in Sec. IV and Refs. [9, 12, 13,

16]. However, this calculation is fairly lengthy as it involves determining the shape of

the island to higher accuracy than the single-harmonic approximation that we used.

Instead, we have determined the coefficient of the w3 term by fitting to our numerical

results, and obtained the saturation formula

∆′ = 0.27w − 0.013w3, (65)

which agrees well with the numerical simulations shown in Fig. 5.

However, this formula also leads to an interesting prediction, namely, that no satu-

ration should occur above a critical value of ∆′ ≃ 0.47. Figure 6 shows the numerically

determined saturation amplitude versus ∆′ and also suggests a nonlinear bifurcation

at this value of ∆′. When we perform simulations at larger values, we find that the

island grows quietly for a while, and then suddently enters a period of explosive growth

until it fills up the entire computational domain. An example of this behavior is given

in Fig. 7. When considering the final part of the island evolution in these calculations,

one must remember that the island is getting so wide that it becomes influenced by

boundary conditions. In the present example with an equilibrium flux proportional

to cosx, periodic boundary conditions apply. There are consequently neighbouring is-

lands at x = ±π, which interact with the one located at x = 0 when the island size is

of the order of the equilibrium shear length. The evolution of the island beyond the

bifurcation point is therefore uncertain and dependent on global aspects of the compu-

tational domain. It should be mentioned that a nonlinear bifurcation of the saturation

amplitude has earlier been found for Ohmic plasmas [17], where however the critical

value of ∆′ was much larger. We also point out that the bifurcation is sensitive to the

equilibrium geometry, and we have only considered the slab here. In a cylinder, one

expects a term of order w2 to be present in Eq. (65), which will of course change the

behaviour qualitatively.

It is also intersting to compare the runaway current denisity in the simulations with

the analytical prediction (50). Such a comparison is shown in Fig. 8, where the current
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density perturbation in the saturated state is shown as a function of x along a line of

constant y passing through the O-point of the island. The agreement is excellent inside

the separatrix (located at x = 0.37) but outside the island there is some discrepancy

(less than about 10%) for reasons we have not been able to identify. More importantly,

the result is very different from that obtained when the current is taken to be Ohmic

(not shown), in which case the perurbation is only about half is big.

VI. Conclusions

We have established that in a plasma where the current is carried by collisionless run-

away electrons but the bulk plasma is governed by resistive MHD, the linear properties

of the tearing mode are approximately the same as if there were no runaways and the

current were instead carried by thermal electrons. The linear growth rates are the

same in leading order, but corrections due to finite resistivity are different. The linear

analysis is valid when the magnetic island width is much smaller than the resistive

layer width (which is of order 1 cm in a typical post-disruption plasma). We have

assumed that all the equilibrium plasma current is carried by the runaway electrons,

which is true several resistive diffusion times after the thermal quench of a disruption.

In practice, islands may form before all the toroidal electric field has diffused out of the

plasma, so that some of the plasma current is still carried by thermal electrons. Since

the growth rate (2) is much larger than the inverse skin time of the plasma column,

such islands would quickly enter the nonlinear regime and then experience nonlinear

growth until the thermal plasma current has subsided.

Although the linear properties of magnetic islands are approximately the same in

plasmas with and without runaway electrons, the nonlinear saturation amplitude is

different. In the simplest case of a symmetric slab equilibrium, the saturated island

width is about 50% larger in a runaway plasma. Above a critical value of the stability

index, the saturation amplitude undergoes a nonlinear bifurcation and suddenly jumps

to a larger value.
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Appendix: Linear growth rate

In this Appendix, we calculate the linear growth rate for instability, in the case of

slab geometry, in a plasma where the current is either carried by thermal or runaway

electrons. The Fourier transform,

ϕ̂(0)(q) =

∫ ∞

−∞
ϕ(0)(x)e−iqxdx, (66)

of Eq. (34) is
d2ϕ̂(0)

dq2
− q2ϕ̂(0) = Aδ′(q), (67)

and has the solution

ϕ̂(0) ∝ U
(

0, q
√

2
)

(68)

for q > 0, where U denotes a parabolic cylinder function. For small q this solution

reduces to

ϕ̂(0)(q) ∝ 1 −
√

2Γ(3/4)

Γ(1/4)
q. (69)

and is to be matched to the exterior, ideal MHD region, where the perturbed magnetic

flux is given by Eq. (59). In order to retain the most important corrections due to finite

resistivity, we follow Ref. [7] and replace Eq. (20) by the more accurate relation

ik′‖xφ = η
(

∇2
⊥ψ + λj

)

− γψ ≃ A
[

η∆′δ(x) + ηb− γ
]

+ ληj, (70)

where we have used Eq. (59) in the second, approximate inequality, and where λ = 0

if the equilibrium current is Ohmic and λ = 1 if it is carried by runaway electrons. To

lowest order in vA/c≪ 1, the runaway equation (12) becomes in a symmetric slab

[ψ0 + ψ1, j0 + j1] = ikeiky
(

ψ′
0j − j′0ψ

)

= 0, (71)

where we have written ψ1 = ψ(x)eiky and j1 = j(x)eiky, i.e.,

j = −ψb, (72)

for resonance at x = 0. Hence

ik′‖xφ ∝ η∆′δ(x) + (1 − λ)ηb− γ, (73)

which we proceed to Fourier transform, obtaining

dϕ̂(0)

dq
∝ w [γ − (1 − λ)ηb] δ(q) − ∆′η

2π
, (74)
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where we recall that x = wz, with w = (ηγ)1/4/k
′1/2
‖ . Integrating this relation across

q = 0 and using the fact that ϕ̂(0) is odd gives

2ϕ̂(0)(q) = w [γ − (1 − λ)ηb] − ∆′ηq

π
. (75)

Finally, the growth rate is obtained by comparing this result with the inner solution

(69),

w [γ − (1 − λ)ηb] =
Γ(1/4)η∆′

2πΓ(3/4)
. (76)

If λ = 1, this gives the standard Furth-Killeen-Rosenbluth (FKR) growth rate [5], and

if λ = 0 it yields the correction calculated by Militello et al [7]. The latter is thus

absent in a plasma where the current is carried by runaway electrons.
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Figure captions

Fig. 1 (Color online) Two pre-reconnection field lines (dashed) and three post-reconnection

field lines (solid) are shown, the latter corresponding to Ω = 1/4, Ω = 1, and

Ω = 5/2, respectively. The runaway electrons are frozen into the field, and those

who were located between the two dashed lines (dashed region, yellow online)

before reconnetion end up in the area Ω < 1/4 after reconnection has occurred.

These regions have equal area.

Fig. 2 Numerically calculated linear growth rates for magnetic islands in a plasma

with (∗) and without (⋄) runaway electrons; analytical result of Furth-Killeen-

Rosenbluth (solid line) and Militello et al. (dashed line).

Fig. 3 Nonlinear growth of magnetic islands in an Ohmic plasma, for ∆′ = 0.2 and

∆′ = 0.3. The island widths have been normalized to the theoretical prediction

w = 2.44∆′.

Fig. 4 Nonlinear growth of magnetic islands in a plasma where the current is carried by

runaway electrons, for a range of different values of ∆′. The island widths have

been normalized to the theoretical prediction w = ∆′/0.27

Fig. 5 Nonlinear island growth in a runaway plasma. The quantity (0.27w−0.013w3)/∆′

is plotted as a function of time.

Fig. 6 Saturated island width vs ∆′. Note that the slope becomes infinite at ∆′ ≃ 0.44

Fig. 7 Island width vs time in a runaway plasma with ∆′ = 0.48.

Fig. 8 Runaway current density perturbation in the saturated state along a line of con-

stant y through the island O-point, ∆′ = 0.2.
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