Deconvolution using thin-plate splines
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The ubiquitous problem of estimating 2-dimensional profile informatiomfeoset of line integrated mea-
surements is tackled with Bayesian probability theory by exploiting prior inédion about local smoothness.
For this purpose thin-plate-splines (the 2-D minimal curvature analofycgbic-splines in 1-D) are employed.
The optimal number of support points required for inversion of 2-Dagraphic problems is determined using
model comparison. Properties of this approach are discussed agddkgon of suitable priors is addressed.
Finally, we illustrated the properties of this approach with 2-D inversionlteessing data from line-integrated
measurements from fusion experiments.

PACS numbers: 42.30.W, 02.50.F, 02.50.P

I. INTRODUCTION

The problem of the reconstruction of a two-dimensional eiais profile from line-integrated measurements is an ulbogsi
one. In the original paper by Radon [1] it was shown that tli@mstruction can be done by means of the Radon transform.
However the presence of measurement noise and limited @motidata prevent a straightforward deconvolution of the-i
integrated measurements, leading to meaningless rediliexrefore a large number of regularized methods for thergime
procedure have been proposed [2-5]. In most cases the piodfidereconstructed is expanded in orthogonal functioresysup
to a given order and adapted to predefined boundary conslitidmese approaches give reasonable results - provideddfile p
to be reconstructed is sufficiently symmetric. In irregglaometries or for localized intensity peaks the requirgzhagion order
is too large to provide regularization. However, examptesifthe field of fusion research which display these propsdre soft
X ray imaging systems and the bolometry diagnostic. Here nopgse to exploit the favorable property of local smootkrafs
minimal curvature surfaces together with an adaptiveibiigiion of support points to tackle the underdeterminedifismbsed
inversion problem.

II. TOMOGRAPHIC DIAGNOSTICSIN FUSION EXPERIMENTS

a. Bolometry The precise measurement of power balance in fusion expetsnhas always been of utmost importance for
a understanding of particle and energy transport. Prgsemtly one technique for measuring the total radiated pasveridely
used in fusion experiments with magnetically confined pksBolometry. Usually the temperature change induced by the
plasma radiation is detected using the temperature deptodeductivity of small wires attached to an absorbing ésihosed
to the plasma. Recently also silicon photodiodes have bsed which have the advantage of a much better time resolotion
about 108s compared to 2 10-5s of foil based systems but on the expense of sensitivity. Ensar arrays are located a few
mm behind precision pinholes, so that each detector is tileges defined conic section of the plasma. The signal levéhef
detectors is around 1A for IMW total radiated power [6] and approximately 100 kraf sight are available for deconvolution.
A typical setup is shown in Fig. la.

b. Soft-X-Ray The X ray emission from a plasma yields informations on aetgrof parameters such as temperature,
density and impurities. Since typical plasmas of interestaptically thin in the soft X ray region of the emission sjpem,
reabsorption of the emitted radiation can be neglected p&#y set-up (the one shown in Fig. 1b is a setup developed/iiX)
consists of several sets of imaging diode arrays. Everyctateiode, usually ion-implanted silicon diodes, sampsatiation
from a plasma region located in the viewing cone formed bydtbde and the collimator aperture. One advantage of theXSoft
ray diagnostic is the combination of a good spatial resotufiarge number of viewing chords) with a very good timeshagon
(sampling rate;, 8-1). Therefore the soft X-ray diagnostic provides importaribimations about the magnetohydrodynamic
phenomena in fusion experiments.

I11. THE TOMOGRAPHY PROBLEM

To calculate spatial profiles from the line integrated mearments the inversion of the Radon transform is requiredvavyer
the direct inversion will not provide useful profiles becatise measured data contains noise and the amount of daterisrefy
limited. Consider the following discretized tomographydabwheres is a K-dimensional vector of observed signals recorded
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FIG. 1: a) Sensor configuration of the bolometry line integrating sensaysat ASDEX Ugrade(left). b) On the right hand side the intended
design of the sensor configuration of the soft x-ray line integratingosemsays at W7-X is shown.

by detector k:

s =O[E] =} QjEj+s, 1)
]

whereQ is a (IxJ) known matrix of the proportion of the emissigj accumulated in detector E is a vector of J unknown

emission intensities to be recovered with the property Ehat 0, and the signal recorded by sensor i is distorted by Gaussia
noiseg. The objective is to recoveE from the noisy data. Since the number of unknowns J outnumbers the number of
data points K this problem is underdetermined and a regaloin criterion is needed to reduce the problem to a wededo

one. In Ertl et al[7] the classical maximum-entropy formaliwas chosen and subsequently Golan and Dose[8] developed a
generalized maximum-entropy based approach. Howeveramynomographic problems there is additional prior infotiora
available: The profile to be reconstructed is locally smaatkexhibits local spatial correlations. These properéissexplicitly

not captured by entropic priors which are invariant undemgations. Therefore we propose a different approachdoais¢he
property of local smoothness.

IV. THIN-PLATE SPLINES

A thin plate spline is the functiofi(x),x € RY that minimises the curvature on a dom&i({9]):

[ax 3, (3) @0 @

wherev = (vi,...,Vy) is a d dimensional multi-index, arju| = zid:lvi. In two dimensionsd = 2) the thin plate spline (TPS)
can also be considered as generalization of the interpglatibic spline in one dimension [10]. It is a commonly usesida
function for modeling smooth coordinate transformatiansémputer vision and morphing applications. We indicate RS
with t(r), wherer = (x,y) corresponds to the position on the grid in the detector figle exposition of the basic thin-plate
spline theory is along the lines of Guglielmetti[11]. Theapk of the interpolating TPS surface will be given by the munin
curvature condition of eq.2. Ofteradial basis functions are used to represent f as they allow an tagalgolution. More
specifically, the TPS is a weighted sum of translations ofathdsymmetric basis functions augmented by a linear tesee (
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FIG. 2: The thin plate spline radial basis functign) = r2in (r?)

ref. [9], [12]), of the form
t(£)=K(£)+§Alf(£—£|), ref ®)
=1

whereK(r) = co+ c1x+ ¢y is the added planeé\ is the number of support points. The real-valued weight eratterized by
Ar. f(r—r,)) is aradial basis function, a real function of positive regles depending on the distance between the grid points
and the support points.

Given the scattered data poimtsand the data; = z(r;), the TPS satisfies the interpolation conditions

N
tr) =K@)+y Af(ri-r)=z i=1...N (4)
=1
with
f(r)=r2n(r?). ()
and it minimises
02 =110 = [ [ (B 283+ 15 ey ©)

the 2-d case of Eq.2]|t||? is a measure of the bending energy of t. In other words, giveataf data points, a weighted
combination of TPSs centered about each data point givastdrpolation function that passes through the points thxadile
minimizing the so-called “bending energy”. In order to fietliPS to the data, it is necessary to solve for the weightstand t
planes’ coefficients so that it is possible to compute thalld®S amplitude:

t([i):t(£i7N7{£|72h|:17"'3N}) (7)

which is a function ofz, the given emission intensity at the knot positionsThe TPS interpolant is defined by the coefficients,
¢; of the planeK(r) and the weightg, of the basis functions. Given the interpolation valaes(z,...,zy), we search for the
weightsA; andc; so that the TPS satisfies:

t(r) =z, I=1,...,N (8)

and in order to have a converging integral, the followingditians need to be satisfied:

N N N
I;)u = I;Am = I;)\M =0 9
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The coefficients of the TP3,, and the plane;;, can be found by solving the linear system, that may be writtenatrix form

590)-6)

where the matrix components are:

Fj=f(ri—r;)

z =(z1,...,zn)" 1x1wn
0 =000 o
A=A, AN)T 1 W
¢ =(co,c1,C2)"

After having solved for(A,c)T, the TPS can be evaluated at any point and total curvaftirés easily accessible using
the relation

It} =ATEA. (11)

A. TheBayesian Framework

Once the numbeN of support points, the location of the support poiRts- ([I, .. ,[L) and the respective intensigy/=
(z1,...,2n) is fixed the thin-plate spline modw! is completely determined and fully characterized by thé\s& z.
t(r)=t(rIN,R 2). (12)
To compute the probability for the different models we stath Bayes theorem:

_ p(M[D)p(DM,1) — p(M|I) fdzp(D|M,z1) p(zZM,I)
PMIPD =" om - p(DI1) | )

The likelihood termp(D|M, z,1) = p(D|t, ) for Ny measured data points is given by

1 1/d—0it]?
\/ZTO] eXp<—2 <U| ) > y (14)

for Gaussian distributed noise with zero mean and variarfce The functionO; describes the weighted summation of the
intensities of the thin-plate spline within the viewing eoof sensor (cf. Eq. 1). The first term in the nominator of Eq. 13 is the
prior probability for the modeM. It factors into the prior for the number of support poiNtsnd the prior for the support points
p (B\N, I). The discretized grid for the support points provides a maxn numbeilNg of possible locations (see Fig.3), which
cannot be exceeded. The uninformative prior is thereforei@mum number of 4 support points is needed to define a TPS)

1
(No—3) (%)
Finally we need to assign the prior for the z-values of thepsutppoints. As testable information we use the global cumea
[[t] of the TPS. The maximum entropy principle yields as priotatuility

Ny
pP(DIt,1) = i|1

P(M[I) =p(BIN,1) p(N[I) = (15)

1
t|p, 1) = ——exp(—pul|t]), 16
p(tlu,1) Z0 p(—plt]) (16)
where we had to introduge as scale parameter with a Jeffreys’ prgpt|l) O 1/u. However, sinceé is completely determined
by the selN, R,zwe can rewite the previous equation as priorZor

ot
Z(uN,R
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FIG. 3: The grid indicating the possible support point locations is adaptdtetshape of the plasma vessel and the best distribution of the
support points is indicated by stars.

The normalizatiorz (u, N,B) along with the prior probability of the model M tends to kekp humber of support points as small
as possible. Since we use optimization algorithms to coeng most likely vector we avoid the cumbersome marginalization
of the hyperparameter (which is more easily accessiblgudi@MC methods) and instead look for the most likely vajuieof
the hyperparameter using

P(HID.M.1) = p(ull) P(DIHM.1) = p(ll) [z p(DI.zM.1) p(Z,M.1). 18)
followed by an approximation with a multi-variate Gaussiistribution around the maximum :
P(D |24, M,1) p(@HM.1) ~ P(D | Z,14,M,1)p(Z |, M, exp( - 582" HAZ) (19

whereAz = z— Z*, z* being the position of the maximum of the integrand in eq. 1#} the Hessian matrix elemeritl; .=

_52|n[p(D|;5%l_Vll7;j)P(Z\“v'\"">]. Using this approximation the integration in Eq.18 can beied out, yielding

(2m"
det(H)

p(uD,M,1) = p(u[l) p(DIu,Z",M,1) p(Z'|u,M, 1) (20)

followed by an 1-D line scan ip to determineu™. Using u* in Eq.17 we have all the necessary quantities to evaluatedl &q.
and to obtain the model probabilin/M|D, I). As final step simple sampling over different model ordens (tumber of support
points is varied between 4 amds) and the locations of the support points is performed ragpin a distribution of model

probabilities depending oN andR.

V. APPLICATIONS

The TPS approach has successfully been applied to a numbidfesént soft X-ray and bolometry tomographic measure-
ments. Here we display mock data which closely resemblexihberenental observations and the measurement unceesimts
can be seen in Fig. 4a two high emission spots are locateé iowrer parts of the plasma vessel (the divertor) where thenph
touches the wall. The intensity in the main chamber varidg slightly but at the top of the plasma vessel there is anreled
area, emitting slightly more than its environment. Addiadly there is a hot spot visible slightly below the midplasethe
right hand side. The reconstruction, displayed in Fig. 4diisplaying all the key features and does not introduce anyicyps
ringing despite the peaked intensity profile and the edgatime of most of the emission maxima. The difference betvtaen
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FIG. 4: a) On the left: Mock 2-D intensity profile in aareement with expernitakobservations b) Mid dle: reconstructed intensity profile using
thin-plate splines as basis fur » absolute scale).
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FIG. 5: Sensor data and intensities obtained from the reconstruction

mock profile and the reconstruction is mostly due to the #ijggmoother reconstruction of the profiles. In Fig.5 the suead
line-integrated signal is compared to the intensity derifrem the reconstructed profile. The agreement is withirstaéstical
uncertainties without overfitting tendency. The undedyapatial distribution of the support points is displayedFig.3. Most
support points are in or close to the divertor therefore tidely enhancing the flexibility of the reconstruction whéhe profile

has the largest variations.

VI. SUMMARY

We presented a Bayesian analysis for the 2-d profile reaarigtn from line-integrated chord measurements which argm
the usual approaches by the concept of data dependentediasblution and local smoothness. All structures in themstruc-
tion are supported by data constraints. This has been deérat@tsby a mock bolometry example with realistic uncettam
The straightforward next step is the addition of a suitableNC-method (see [13]) to improve on the presently used exiele
approximations and the integration into the framework ofé&aan Neural Networks [14] to achieve real-time deconioiu

capabilities with~ 10° deconvolutions/s.
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