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The ubiquitous problem of estimating 2-dimensional profile information from a set of line integrated mea-
surements is tackled with Bayesian probability theory by exploiting prior information about local smoothness.
For this purpose thin-plate-splines (the 2-D minimal curvature analogue of cubic-splines in 1-D) are employed.
The optimal number of support points required for inversion of 2-D tomographic problems is determined using
model comparison. Properties of this approach are discussed and thequestion of suitable priors is addressed.
Finally, we illustrated the properties of this approach with 2-D inversion results using data from line-integrated
measurements from fusion experiments.
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I. INTRODUCTION

The problem of the reconstruction of a two-dimensional emission profile from line-integrated measurements is an ubiquitous
one. In the original paper by Radon [1] it was shown that the reconstruction can be done by means of the Radon transform.
However the presence of measurement noise and limited amounts of data prevent a straightforward deconvolution of the line-
integrated measurements, leading to meaningless results.Therefore a large number of regularized methods for the inversion
procedure have been proposed [2–5]. In most cases the profileto be reconstructed is expanded in orthogonal function systems up
to a given order and adapted to predefined boundary conditions. These approaches give reasonable results - provided the profile
to be reconstructed is sufficiently symmetric. In irregulargeometries or for localized intensity peaks the required expansion order
is too large to provide regularization. However, examples from the field of fusion research which display these properties are soft
X ray imaging systems and the bolometry diagnostic. Here we propose to exploit the favorable property of local smoothness of
minimal curvature surfaces together with an adaptive distribution of support points to tackle the underdetermined andill-posed
inversion problem.

II. TOMOGRAPHIC DIAGNOSTICS IN FUSION EXPERIMENTS

a. Bolometry The precise measurement of power balance in fusion experiments has always been of utmost importance for
a understanding of particle and energy transport. Presently, only one technique for measuring the total radiated poweris widely
used in fusion experiments with magnetically confined plasma: Bolometry. Usually the temperature change induced by the
plasma radiation is detected using the temperature dependent conductivity of small wires attached to an absorbing foilexposed
to the plasma. Recently also silicon photodiodes have been used which have the advantage of a much better time resolutionof
about 10−6s compared to 2∗10−5s of foil based systems but on the expense of sensitivity. The sensor arrays are located a few
mm behind precision pinholes, so that each detector is detecting a defined conic section of the plasma. The signal level ofthe
detectors is around 10−5A for 1MW total radiated power [6] and approximately 100 lines of sight are available for deconvolution.
A typical setup is shown in Fig. 1a.

b. Soft-X-Ray The X ray emission from a plasma yields informations on a variety of parameters such as temperature,
density and impurities. Since typical plasmas of interest are optically thin in the soft X ray region of the emission spectrum,
reabsorption of the emitted radiation can be neglected. A typical set-up (the one shown in Fig. 1b is a setup developed forW7-X)
consists of several sets of imaging diode arrays. Every detector diode, usually ion-implanted silicon diodes, samplesradiation
from a plasma region located in the viewing cone formed by thediode and the collimator aperture. One advantage of the SoftX-
ray diagnostic is the combination of a good spatial resolution (large number of viewing chords) with a very good time-resolution
(sampling rate¿106s−1). Therefore the soft X-ray diagnostic provides important informations about the magnetohydrodynamic
phenomena in fusion experiments.

III. THE TOMOGRAPHY PROBLEM

To calculate spatial profiles from the line integrated measurements the inversion of the Radon transform is required. However
the direct inversion will not provide useful profiles because the measured data contains noise and the amount of data is often very
limited. Consider the following discretized tomography model wheres is a K-dimensional vector of observed signals recorded
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FIG. 1: a) Sensor configuration of the bolometry line integrating sensor arrays at ASDEX Ugrade(left). b) On the right hand side the intended
design of the sensor configuration of the soft x-ray line integrating sensor arrays at W7-X is shown.

by detector k:

si = Oi [E] = ∑
j

Qi j E j + εi , (1)

whereQ is a (IxJ) known matrix of the proportion of the emissionE j accumulated in detector i,E is a vector of J unknown
emission intensities to be recovered with the property thatE j > 0, and the signal recorded by sensor i is distorted by Gaussian
noiseεi . The objective is to recoverE from the noisy datas. Since the number of unknowns J outnumbers the number of
data points K this problem is underdetermined and a regularization criterion is needed to reduce the problem to a well-posed
one. In Ertl et al[7] the classical maximum-entropy formalism was chosen and subsequently Golan and Dose[8] developed a
generalized maximum-entropy based approach. However, in many tomographic problems there is additional prior information
available: The profile to be reconstructed is locally smooth- it exhibits local spatial correlations. These propertiesare explicitly
not captured by entropic priors which are invariant under permutations. Therefore we propose a different approach based on the
property of local smoothness.

IV. THIN-PLATE SPLINES

A thin plate spline is the functionf (x),x∈ Rd that minimises the curvature on a domainΩ([9]):

∫

Ω
dx ∑

|v|=2

(

2
v

)

(Dv f (x))2 , (2)

wherev = (v1, . . . ,vd) is a d dimensional multi-index, and|v| = ∑d
i=1vi . In two dimensions (d = 2) the thin plate spline (TPS)

can also be considered as generalization of the interpolating cubic spline in one dimension [10]. It is a commonly used basis
function for modeling smooth coordinate transformations in computer vision and morphing applications. We indicate the TPS
with t(r), wherer = (x,y) corresponds to the position on the grid in the detector field.The exposition of the basic thin-plate
spline theory is along the lines of Guglielmetti[11]. The shape of the interpolating TPS surface will be given by the minimum
curvature condition of eq.2. Oftenradial basis functions are used to represent f as they allow an analytical solution. More
specifically, the TPS is a weighted sum of translations of radially symmetric basis functions augmented by a linear term (see
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FIG. 2: The thin plate spline radial basis functiont(r) = r2 ln
(

r2
)

ref. [9], [12]), of the form

t(r) = K(r)+
N

∑
l=1

λl f (r − r l ), r ∈ R2 (3)

whereK(r) = c0 +c1x+c2y is the added plane.N is the number of support points. The real-valued weight is characterized by
λl . f (r − r l ) is a radial basis function, a real function of positive real values depending on the distance between the grid pointsr
and the support pointsr l .
Given the scattered data pointsr i and the datazi = z(r i), the TPS satisfies the interpolation conditions

t(r i) = K(r i)+
N

∑
l=1

λl f (r i − r l ) = zi , i = 1, . . . ,N (4)

with

f (r) = r2ln
(

r2) . (5)

and it minimises

‖t‖2 = I [t] =
∫ ∫

R2
(t2

xx+2t2
xy+ t2

yy)dxdy, (6)

the 2-d case of Eq.2.‖t‖2 is a measure of the bending energy of t. In other words, given aset of data points, a weighted
combination of TPSs centered about each data point gives theinterpolation function that passes through the points exactly while
minimizing the so-called “bending energy”. In order to fit the TPS to the data, it is necessary to solve for the weights and the
planes’ coefficients so that it is possible to compute the local TPS amplitude:

t(r i) = t(r i ,N,{r l ,zl , l = 1, . . . ,N}) (7)

which is a function ofzl , the given emission intensity at the knot positionsr l . The TPS interpolant is defined by the coefficients,
ci of the planeK(r) and the weightsλl of the basis functions. Given the interpolation valuesz= (z1, . . . ,zN), we search for the
weightsλl andci so that the TPS satisfies:

t(r l ) = zl , l = 1, . . . ,N (8)

and in order to have a converging integral, the following conditions need to be satisfied:

N

∑
l=1

λl =
N

∑
l=1

λl xl =
N

∑
l=1

λl yl = 0 (9)

3



U. von Toussaintet al. ‘Deconvolution using thin-plate splines’ Published with AIP Conference Proceedings954 (2007) 212–220

The coefficients of the TPS,λl , and the plane,ci , can be found by solving the linear system, that may be written in matrix form
as:

(

F Q

QT 0

)

(

λ
c

)

=

(

z
0

)

(10)

where the matrix components are:

Fi j = f (r i − r j)

z =(z1, . . . ,zN)T

0 =(0,0,0)T

λ =(λ1, . . . ,λN)T

c =(c0,c1,c2)
T

Q =









1 x1 y1
1 x2 y2
...

...
...

1 xN yN









After having solved for(λ ,c)T , the TPS can be evaluated at any point and total curvatureI [t] is easily accessible using
the relation

I [t] = λ TF λ . (11)

A. The Bayesian Framework

Once the numberN of support points, the location of the support pointsR =
(

rT
1 , . . . , rT

N

)

and the respective intensityz =
(z1, . . . ,zN) is fixed the thin-plate spline modelM is completely determined and fully characterized by the setN,R,z:

t (r) = t
(

r|N,R,z
)

. (12)

To compute the probability for the different models we startwith Bayes theorem:

p(M|D, I) =
p(M|I) p(D|M, I)

p(D|I) =
p(M|I)∫

dzp(D|M,z, I) p(z|M, I)
p(D|I) . (13)

The likelihood termp(D|M,z, I) = p(D|t, I) for Nd measured data points is given by

p(D|t, I) =
Nd

∏
i=1

1√
2πσi

exp

(

−1
2

(

di −Oi [t]
σi

)2
)

, (14)

for Gaussian distributed noise with zero mean and varianceσ2. The functionOi describes the weighted summation of the
intensities of the thin-plate spline within the viewing cone of sensori (cf. Eq. 1). The first term in the nominator of Eq. 13 is the
prior probability for the modelM. It factors into the prior for the number of support pointsN and the prior for the support points
p
(

R|N, I
)

. The discretized grid for the support points provides a maximum numberNG of possible locations (see Fig.3), which
cannot be exceeded. The uninformative prior is therefore (aminimum number of 4 support points is needed to define a TPS)

p(M|I) = p
(

R|N, I
)

p(N|I) =
1

(NG−3)
(NG

N

) . (15)

Finally we need to assign the prior for the z-values of the support points. As testable information we use the global curvature
I [t] of the TPS. The maximum entropy principle yields as prior probability

p(t|µ, I) =
1

Z(µ)
exp(−µ I [t]) , (16)

where we had to introduceµ as scale parameter with a Jeffreys’ priorp(µ |I) ∝ 1/µ . However, sincet is completely determined
by the setN,R,zwe can rewite the previous equation as prior forz:

p(z|µ ,M, I) = p
(

z|µ ,N,R, I
)

=
1

Z
(

µ ,N,R
) exp(−µ I [t(z)]) . (17)
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FIG. 3: The grid indicating the possible support point locations is adapted tothe shape of the plasma vessel and the best distribution of the
support points is indicated by stars.

The normalizationZ
(

µ ,N,R
)

along with the prior probability of the model M tends to keep the number of support points as small
as possible. Since we use optimization algorithms to compute the most likely vectorzwe avoid the cumbersome marginalization
of the hyperparameter (which is more easily accessible using MCMC methods) and instead look for the most likely valueµ∗ of
the hyperparameter using

p(µ |D,M, I) = p(µ|I) p(D|µ ,M, I) = p(µ |I)
∫

dz p(D|µ ,z,M, I) p(z|µ ,M, I) , (18)

followed by an approximation with a multi-variate Gaussiandistribution around the maximum :

p(D | z,µ ,M, I) p(z|µ ,M, I) ≈ p(D | z∗,µ ,M, I)p(z∗|µ ,M, I)exp{−1
2

∆zTH∆z} (19)

where∆z= z− z∗, z∗ being the position of the maximum of the integrand in eq. 18, and the Hessian matrix elementsHi j :=

− ∂ 2ln[p(D|z,µ,M,I)p(z|µ,M,I)]
∂zi∂zj

. Using this approximation the integration in Eq.18 can be carried out, yielding

p(µ |D,M, I) = p(µ |I) p(D|µ ,z∗,M, I) p(z∗|µ ,M, I)

√

(2π)N

det(H)
(20)

followed by an 1-D line scan inµ to determineµ∗. Usingµ∗ in Eq.17 we have all the necessary quantities to evaluate Eq.13
and to obtain the model probabilityp(M|D, I). As final step simple sampling over different model orders (the number of support
points is varied between 4 andNG) and the locations of the support points is performed resulting in a distribution of model
probabilities depending onN andR.

V. APPLICATIONS

The TPS approach has successfully been applied to a number ofdifferent soft X-ray and bolometry tomographic measure-
ments. Here we display mock data which closely resemble the experimental observations and the measurement uncertainties. As
can be seen in Fig. 4a two high emission spots are located in the lower parts of the plasma vessel (the divertor) where the plasma
touches the wall. The intensity in the main chamber varies only slightly but at the top of the plasma vessel there is an extended
area, emitting slightly more than its environment. Additionally there is a hot spot visible slightly below the midplaneon the
right hand side. The reconstruction, displayed in Fig. 4b isdisplaying all the key features and does not introduce any spurious
ringing despite the peaked intensity profile and the edge location of most of the emission maxima. The difference betweenthe
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FIG. 4: a) On the left: Mock 2-D intensity profile in agreement with experimental observations b) Mid dle: reconstructed intensity profile using
thin-plate splines as basis functions. c) Right hand side: Difference between true profile and reconstructed intensity (same absolute scale).

FIG. 5: Sensor data and intensities obtained from the reconstruction

mock profile and the reconstruction is mostly due to the slightly smoother reconstruction of the profiles. In Fig.5 the measured
line-integrated signal is compared to the intensity derived from the reconstructed profile. The agreement is within thestatistical
uncertainties without overfitting tendency. The underlying spatial distribution of the support points is displayed inFig.3. Most
support points are in or close to the divertor therefore adaptively enhancing the flexibility of the reconstruction where the profile
has the largest variations.

VI. SUMMARY

We presented a Bayesian analysis for the 2-d profile reconstruction from line-integrated chord measurements which augments
the usual approaches by the concept of data dependent adaptive resolution and local smoothness. All structures in the reconstruc-
tion are supported by data constraints. This has been demonstrated by a mock bolometry example with realistic uncertainties.
The straightforward next step is the addition of a suitable MCMC-method (see [13]) to improve on the presently used evidence
approximations and the integration into the framework of Bayesian Neural Networks [14] to achieve real-time deconvolution
capabilities with≈ 103 deconvolutions/s.
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