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Conditions of the existence of the Global Alfvén Eigenmodes (GAE) and Non-

conventional Global Alfvén Eigenmodes (NGAE) predicted for stellarators by Ya. I.

Kolesnichenko et al. [Phys. Rev. Lett. 94, 165004 (2005)] have been obtained. It is

found that they depend on the nature of the rotational transform and that conditions

for NGAE can be most easily satisfied in currentless stellarators. It is shown that the

plasma compressibility may play an important role for the modes with the frequency

about or less than that of the Toroidicity-induced Alfvén Eigenmodes (TAE). It is

found that features of the Alfvén continuum in the vicinity of the k‖ = 0 radius (k‖

is the longitudinal wave number) can be very different, depending on a parameter

which we refer to as “the sound parameter”. Specific calculations modeling low-

frequency Alfvén instabilities in the stellarator Wendelstein 7-AS [A. Weller et al.,

Phys. Plasmas 8, 931 (2001)] are carried out, which are in reasonable agreement
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with the observations. It is emphasized that experimental data on low-frequency

Alfvénic activity can be used for the reconstruction of the profile of the rotational

transform. The mentioned results are obtained with the use of the equations derived

in this paper for the GAE/NGAE modes and of the codes COBRAS and BOA-fe.

PACS numbers: 52.35.Bj; 52.55.Hc; 52.65.Kj

Keywords: stellarator; Alfvén continuum; Alfvén eigenmodes

I. INTRODUCTION

Alfvén instabilities driven by energetic ions were observed in many experiments on toka-

maks, stellarators, and spherical tori.1–3 These instabilities can have very different forms and

consequences. They are not necessarily harmful and can be used for diagnostics.4 There is

an idea to destabilize Alfvén eigenmodes by external antennas in a reactor for ash removal.5

In stellarators, Alfvén instabilities have a number of peculiarities. In particular, there are

more various kinds of eigenmodes in stellarators than in tokamaks [namely, there are Mirror-

induced Alfvén Eigenmodes (MAE) and various Helicity-induced Alfvén Eigenmodes (HAE)

in the high frequency part of the Alfvén spectrum6–8]; there exist also non-axisymmetric

resonances of the wave-particle interaction and resonances associated with the finite orbit

width of the energetic ions;5,9 the high-frequency modes are strongly localized poloidally

(typically having anti-ballooning structure);10 thermal crashes may occur during Alfvén

instabilities.2

Many features of Alfvén instabilities are associated with the features of the Alfvén con-

tinuum. In the upper part of the Alfvén spectrum, continuum regions are compressed into

extremely narrow threads, so that the gaps in the continuum strongly dominate. Instabil-

ities in this part of the spectrum represent destabilized gap modes and EPMs (Energetic

Particle Modes) associated with the lack of the axial symmetry in stellarators. In contrast

to this, in the lower part of the Alfvén spectrum, continuum regions dominate, whereas the

gaps in the continuum are narrow. Therefore, the low frequency instabilities represent either

destabilized gap modes or continuum modes. They occur in all toroidal plasma systems. In

∗Electronic address: arthur.weller@ipp.mpg.de
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stellarators, low frequency instabilities are typically present in all experiments with Alfvénic

activity induced by fast ions.

In this paper, we study low frequency instabilities associated with the destabilization

of modes in the continuous part of the spectrum. A well-known mode of this kind is the

Global Alfvén Eigenmode (GAE).11 The GAE is a mode with the frequency below a min-

imum of a continuum branch with given mode numbers (m and n). Another mode is the

Non-conventional Global Alfvén Eigenmode (NGAE), which is a mode with the frequency

above a maximum of a continuum branch with given mode numbers. The NGAE was found

in a currentless stellarator plasma with a slightly non-monotonic rotational transform; fur-

thermore, it was argued that the NGAE can generate a Kinetic Alfvén Wave (KAW) leading

to anomalous electron heat transfer and sheared plasma rotation.9,12 In fact, this raised sev-

eral fundamental questions, which are of interest not only for stellarator plasmas, but also

for any plasma, in particular, for reversed-shear plasmas of tokamaks. Note that a similar

mode, the Alfvén Cascade Mode (ACM) or Reversed Shear Alfvén Eigenmode (RSAE), was

found in the tokamak JET (Joint European Torus).13 However, ACMs occur during so called

“Alfvén cascades” where instabilities with various mode numbers arise successively, which

was not observed in stellarators. The temporal evolution of the ACM frequency is completely

different from the NGAE frequency evolution observed in the stellarator Wendelstein 7-AS

(W7-AS).2 In addition, ACMs are localized near the radius where the tokamak safety factor

is minimum (i.e., where the rotational transform has a maximum), whereas the maximum

of the NGAE mode can be located far from this point in small-shear devices.

The GAE/NGAE frequency can be either below the toroidicity-induced gap in the Alfvén

continuum or above it. But it is known that when the mode frequency is much less than

the frequency of the Toroidicity-induced Alfvén Eigenmodes (TAE), the Alfvén spectrum in

tokamaks can be strongly affected by the plasma compressibility.15 One can expect that this

will be the case in stellarators, too. In addition, probably effects of the compressibility can

be considerable also for TAEs and for NGAEs with the frequencies slightly above the TAE

gap. Effects of the compressibility on Alfvén modes in stellarators are studied in this paper.

This work was stimulated by observations of low-frequency Alfvénic activity in Wen-

delstein 7-AS.2 A W7-AS discharge where various quasi-steady state low frequency Alfvén

instabilities occurred simultaneously was selected for analysis, and a numerical simulation

of the destabilized modes was carried out, using equations derived in this work.
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The structure of the work is as follows. In Sec. II the equations describing GAE/NGAE

modes in incompressible plasmas are derived and analyzed. Effects of the plasma compress-

ibility are studied in Sec. III on the basis of equations derived in this section. Section IV deals

with modeling of instabilities in a W7-AS discharge. The obtained results are summarized

in Sec. V.

II. GAE AND NGAE MODES IN COLD INCOMPRESSIBLE PLASMAS

We employ a perturbative approach, assuming that the fast ions weakly affect the Alfvén

eigenmodes, whose existence and spatial structure are determined by the bulk plasma. We

make an assumption (usual for the ideal magnetohydrodynamics) that Ẽ‖ = 0, where Ẽ‖ is

the perturbed electric field along the equilibrium magnetic field, B0, tilde labels perturbed

quantities. In addition, we assume that B̃‖ = 0 (B̃‖ is the perturbed longitudinal magnetic

field) in order to exclude from the consideration fast magnetoacoustic waves. Due to these

assumptions, we can take Ã⊥ = 0 (Ã⊥ is the transverse component of the perturbed vector

potential) and describe Alfvén eigenmodes by a single equation for the scalar potential of

the electromagnetic field (Φ̃), at least, when effects of the plasma compressibility and finite

pressure are not important. The scalar potential Φ̃ is connected with the electromagnetic

field strength by the equations:

Ẽ = −∇⊥Φ̃, B̃ = ∇× Ãb, Ã =
ck‖
ω

Φ̃, (1)

where Ã ≡ Ã‖ is the longitudinal component of the scalar potential of the electromagnetic

field, ∇⊥ = ∇ − b · ∇, b = B0/B0, ω is the mode frequency, k‖ is the longitudinal wave

number. We choose perturbations in the form

Φ̃ =
∑
mn

Φmn(ψ) exp(−iωt− inϕ + imϑ), (2)

where ψ, ϑ, and ϕ are Boozer coordinates. Then k‖ = (mι−n)/R, where ι is the rotational

transform, m and n are the poloidal mode number and toroidal mode number, respectively,

R is the major radius of the torus. Following the procedure of Ref. 6 and neglecting the

coupling between Fourier harmonics of Φ̃, we obtain the following equation describing Alfvén

eigenmodes:

1

r

∂

∂r
r

(
k2
‖ −

ω2

v2
A

)
∂Φmn

∂r
−

[
m2

r2

(
k2
‖ −

ω2

v2
A

)
− k‖

r
(rk′‖)

′
]

Φmn +
4πiω

c2
Bmn · ∇⊥

j0‖
B0

= 0, (3)
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where the radial coordinate r is defined by ψ = B̄r2/2, with B̄ the average equilibrium

magnetic field at the magnetic axis, j0‖ is the unperturbed plasma current density, prime

here and below denotes the radial derivative (d/dr).

Sometimes it is convenient to use another wave function, Ψ = Φ̃/r, instead of Φ̃. This

function, as one can show, is proportional to the poloidal component of the electric field,

Ẽpol, and Ẽpol is proportional to the plasma radial displacement, ξr. Proceeding to this

variable, we write Eq. (3) as follows:

1

r

∂

∂r
r3

(
k2
‖ −

ω2

v2
A

)
∂Ψmn

∂r
− (m2 − 1)

(
k2
‖ −

ω2

v2
A

)
Ψmn − ω2

(
1

v2
A

)′
rΨmn

+rk‖(3k
′
‖ + rk′′‖)Ψmn +

4πiω

c2
rBmn · ∇⊥

j0‖
B0

= 0. (4)

The plasma current j0‖ contributes to the production of the rotational transform in

stellarators and is completely responsible for the rotational transform in tokamaks. It is

determined by the radial derivative of a covariant component of the magnetic field, Bϑ, as

follows:

j0‖ ≈ c

4π

1

r

∂

∂r
Bϑ. (5)

In order to express Bϑ through the rotational transform, we note that

ι =
Bϑ

Bϕ
=

gϑϑBϑ

Bϕ
+

gϑϕBϕ

Bϕ
, (6)

where the subscripts/superscripts denote co/contra-variant vector components, gij are con-

travariant metric tensor components. The first term in the RHS of Eq. (6) represents the

partial rotational transform associated with the plasma current (Bϑ in Boozer coordinates

is actually the toroidal plasma current), whereas the second term, which we denote as

ιext, is the partial rotational transform associated with the external coils. Of course, these

statements are exact only in the limit cases when either the plasma current is completely

responsible for the rotational transform (tokamak case) or this current is absent because,

strictly speaking, the equilibrium and, thus, the metric tensor components depend on the

presence of the plasma current. We obtain from Eq. (6) that Bϑ = (ι − ιext)B
ϕ/gϑϑ. This

leads to

j0‖ ≈ cB̄

4πrR

∂

∂r
r2ινι, (7)

where νι = (ι− ιext)/ι is the fraction of the rotational transform associated with the plasma

current. It is clear that in tokamaks νι = 1, whereas in stellarators νι can be negligibly

small.
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Using Eqs. (7) and (1), we can write the current term in Eq. (4) as

C(j)
mn ≡

4πiω

c2
Bmn · ∇⊥

j0‖
B0

= −k‖
m

R

[
(3ι′ + rι′′)νι + (2rι′ + 3ι)

dνι

dr
+ rι

d2νι

dr2

]
Ψmn. (8)

It follows from Eq. (8) that the current term completely compensates the shear terms in

Eq. (4) when νι = 1 (the tokamak case). This implies that conditions of existence of

Alfvén eigenmodes that are sensitive to the magnetic shear are different in stellarators and

tokamaks.

To find these conditions, we reduce Eq. (4) to a Schrödinger-like equation. This can be

done by proceeding to a new wave function, Y = Ψmnr
3/2

(
k2
‖ − ω2/v2

A

)0.5

. This change

of variables eliminates the terms proportional to the first derivative of the wave function,

leading to the following equation:

d2Y

dr2
−G(r)Y = 0, (9)

where

G(r) =
m2 − 1/4

r2
− 1

4

(
P ′

P

)2

+
3

2r

P ′

P
+

P ′′

2P

+
1

rP

[
ω2

v2
A

ρ′

ρ
− k‖

(
3k′‖ + rk′′‖

)
(1− νι) + k‖

(
2rk′‖ +

3mι

R

)
dνι

dr
+ ιk‖r

m

R

d2νι

dr2

]
,(10)

P = k2
‖−ω2/v2

A, and ρ is the mass density. This equations can be considered as a Schrödinger

equation with the full energy equal to zero. Then a condition of the existence of solutions

can be written as G = 0 in a pair of points, which correspond to “turning points”. A more

general condition is

G < 0 (11)

in some region. Equation (11) provides the existence of solutions even when G < 0 ev-

erywhere in the plasma (0 ≤ r ≤ a) provided that Y (a) = 0. The mentioned boundary

condition implies that we have to set the “potential energy” G to infinity for r ≥ a, thus

providing the presence of turning points. It is clear that when the points where G = 0 exist

and are not close to the plasma boundary, the solution is weakly dependent on the boundary

conditions.

The equation for Alfvén eigenmodes can be written in a form of the Schrödinger equa-

tion with the potential energy convenient for analytical consideration when the mode is well
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localized. We assume that a mode is localized around the radius r∗ where the Alfvén contin-

uum, ωA(r), has an extremum. In the considered approximation, the Alfvén continuum is

determined by the equation ω2
A = k2

‖(r)v
2
A(r), which leads to r∗ determined by the equation

k‖R = 2mι′
ρ

ρ′
. (12)

Following the approach of Ref. 16, we approximate ω2
A(r) as

ω2
A(r) = ω2

A∗ + 0.5(ω2
A)′′∗(r − r∗)2, (13)

with ωA∗ = ωA(r∗), (ω2
A)′′ ≡ d2ω2

A/dr2 and proceed to the variable

x =
r − r∗

∆
, (14)

where ∆2 = 2(ω2
A∗ − ω2)/(ω2

A)′′∗. Then, taking into account that

P ′

P
≈ ρ′

ρ

∣∣∣∣
r∗

+
2x

∆(1 + x2)
(15)

for (ω2−ω2
A∗) ¿ ω2

A∗, we obtain the following Schrödinger equation for well-localized modes:

d2Y

dx2
+ [E − U(x)]Y = 0. (16)

Here E ≡ −(m2− 1/4)∆2/r2
∗ plays the role of the full energy and U(x) the potential energy,

U(x) =
1

(1 + x2)2
− g

1 + x2
, (17)

with g a parameter given by

g = gT 1

2

[
3νι − 1− (1− νι)

ι′′r
ι′

+

(
2r +

3ι

ι′

)
dνι

dr
+

rι

ι′
d2νι

dr2

]

r∗

, (18)

gT ≡ g(νι = 1), i.e., gT is g in tokamaks,

gT = − 2ω2
A∗

r∗(ω2
A)′′∗

ρ′

ρ
=

2

r∗

(
ρ′′

ρ′
− ρ′

2ρ
− ι′′

ι′

)−1
∣∣∣∣∣
r∗

. (19)

The potential energy has a minimum at x = 0 when g > 2 and a pair of minima

located at xmin = ±
√

2/g − 1 and separated by a maximum at x = 0 when 0 < g < 2,

as shown in Fig. 1. The function U(x) is negative in the points of minima, which means

that eigensolutions of Eq. (16) with discrete energy eigenvalues exist in the region of E < 0,
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i.e., for ∆2 > 0. This corresponds to eigenfrequencies below the Alfvén continuum for

(ω2
A)′′ > 0 and above the continuum for (ω2

A)′′ < 0:

ω2 = ω2
A∗

[
1 +

r2
∗(ω

2
A∗)

′′

2(m2 − 1/4)ω2
A∗
E
]

. (20)

When g ¿ 1, the potential well becomes very shallow, and xmin À 1. To consider this

case, it is more convenient to use new variables defined by x = sinh ζ, Y =
√

cosh ζ Z(ζ).

Then Eq. (16) takes the form:

d2Z

dζ2
+ [E1 − V (ζ)] Z = 0, (21)

where

E1 = g − 1

4
, V (ζ) =

1

4 cosh2 ζ
+

(m2 − 1/4)∆2

r2∗
cosh2 ζ. (22)

It follows from Eq. (21) that solutions exist only when

g > 1/4, (23)

where g is given by Eqs. (18) and (19). Note that this condition, as well as solutions of

Eq. (21) with E1 and V given by Eq. (22), were obtained for a second-order differential

equation equivalent to Eq. (16) in Ref. 17.

Let us consider specific examples relevant to tokamaks (νι = 1) and currentless stellarators

(νι = 0). Then Eq. (18) is reduced to

gS = −1

2

(
1 +

ι′′r
ι′

)∣∣∣∣
r∗

gT , (24)

where the superscript S means that the magnitude is relevant to currentless stellarators.

We assume first that the iota profile is monotonic and take it in the form:

ι = ι0

(
1 + α

r2

a2

)σ

, (25)

where a is the plasma radius, α is a parameter, α > −1. Then we obtain from Eq. (24):

gS = −1 + ασr2
∗/a

2

1 + αr2∗/a2
gT . (26)

It follows from Eq. (26) that the signs of gS and gT are always different for ασ > 0, i.e., when

ι(r) is a growing function. These signs coincide only when the following two conditions are

satisfied simultaneously: ασ < 0 and |ασ|r2
∗/a

2 > 1, i.e., when ι(r) is a decreasing function
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and the magnetic shear is very large. In particular, gS = −gT for σ = 1. The same equation

approximately holds also for any small magnetic shear (|α| ¿ 1, |σ| ¿ 1). Thus, when ι(r)

is a monotonic function given by Eq. (25), GAE modes in stellarators exist only for those

plasma parameters for which GAEs are absent in tokamaks, except for a large-shear case

with ι′ < 0.

In order to evaluate gT , we specify ρ(r) as

ρ(r) = ρ0(1− γr2/a2)δ, (27)

where δ > 0 and 0 < γ < 1 are parameters. Then

gT =
2a2

r2∗

[
(2− δ)γ

1− γr2/a2
+

2α(1− σ)

1 + αr2/a2

]−1

r∗
. (28)

It follows from Eq. (28) that the parameters δ < 2, σ ≤ 1, α > 0 lead to gT > 0. On the

other hand, the parameters δ > 2, σ > 1, α > 0 lead to gT < 0; the same sign of gT takes

place when σ < 1, α < 0, |α|r2/a2 < 1. In a particular low-shear case with σ ¿ 1 and a

steep density gradient, δ = 2, we have

gS = − gT

1 + αr2∗/a2
= − a2

r2∗α
. (29)

Now we proceed to the case of non-monotonic ι(r). Let us assume that r∗ is localized

close to the point rm where ι(r) has an extremum, which implies due to Eq. (12) that

either the plasma is homogeneous in the region of the mode localization and/or the mode

frequency lies well below the TAE-gap in Alfvén continuum (k‖R ¿ ι). Then we conclude

from Eqs. (19) and (24) that gS → 1, whereas gT → 0. This means that the condition given

by Eq. (23) is well satisfied in stellarators and, thus, eigenmodes exist; depending on the

sign of (ω2
A)′′, they can be either GAEs (when ωA has a minimum) or NGAEs (when ωA has

a maximum). In addition, the obtained result (gT = 0) explains why taking into account

additional factors (such as the presence of the energetic ions,18 the toroidicity,19 and the

plasma density gradient20) is necessary to calculate RSAE modes in tokamaks.

III. EFFECTS OF COMPRESSIBILITY

Although in many cases Alfvén waves are studied in the approximation of incompressible

plasma, features of these waves and even conditions of their existence may depend on the
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plasma compressibility. Effects of the compressibility on Alfvén waves will be studied in this

section.

We proceed from the following equation, which generalizes Eq. (3) by taking into account

the compressibility, ζ̃ (ζ̃ ≡ div ξ, with ξ the plasma displacement) and the coupling between

Fourier harmonics of Φmn (we used Ref. 21):

ω2∇ ·
(

1

v2
Ah2

B

∇⊥Φ̃

)
+ B0∇‖

{
1

B2
0

∇ ·
[
B2

0∇⊥

(
1

B0

∇‖Φ̃
)]}

− C(j) + C(s) = 0, (30)

where ∇‖ = b · ∇, ∇⊥ = ∇ − b∇‖, C(j) is the current term with Fourier harmonics given

by Eq. (8), C(s) is the term associated with the plasma compressibility,

C(s) =
2iω

c
∇ ·

(
βsh

−2
B B0 ×K ζ̃

)
, (31)

βs = c2
s/v

2
A, cs = (γp/

∑
i Mini)

0.5 is the sound velocity, Mi and ni are the ion mass and

density, respectively, p is the plasma pressure, K = (b · ∇)b is the field line curvature.

In low-β plasmas the compressibility is connected to the scalar potential of the electric

field as follows:21

[
ω2 + c2

sB0∇‖

(
1

B0

∇‖

)]
ζ̃ =

2icω

B2
0

(B0 ×K) · ∇Φ̃. (32)

Equations (30) and (32) for Φ̃ and ζ̃ describe ideal-MHD (magnetohydrodynamics) Alfvén

waves and sound waves coupled due to the field line curvature. To study Alfvén waves, it is

convenient to eliminate ζ̃. This will be done below.

Let us write Fourier series for the curvature and the magnetic field:

K =
∑
µν

K(µν)eiµϑ−iνNϕ, B0 = B̄

(
1 +

1

2

∑
µν

ε
(µν)
B eiµϑ−iνNϕ

)
, (33)

where ε
(−µ,−ν)
B = ε

(µν)
B and K(−µ,−ν) = K(µν). Using Eqs. (33) and (2) and neglecting the

terms of the order ε2
B and the coupling between harmonics ζmn with various m, n because

of the inhomogeneity of B0 in the LHS of Eq. (32), we obtain:

C(s) =
∑

m,n,µ′ν′

2iω

c
∇ ·

(
βsB̄×K(µ′ν′)ζm+µ′, n+ν′Neimϑ−inϕ

)
, (34)

ζm+µ′ n+ν′N =
2icω

B̄2
(
ω2 − k2

m+µ′, n+ν′Nc2
s

)
∑
µν

{[
B̄×K(µ+µ′, ν+ν′)

]r dΦm+µ, n+νN

dr

+ i(m + µ)
[
B̄×K(µ+µ′, ν+ν′)

]ϑ

Φm+µ, n+νN

}
, (35)
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where km+µ, n+ν ≡ [(m + µ)ι− (n + νN)]/R.

The denominator in Eq. (35) vanishes when the sound resonance, ω2 = k2
‖c

2
s, takes place.

Around this resonance, an Alfvén-sound gap in the Alfvén continuum arises when

ωA,mn =
cs

R
|(m + µ)ι− n− νN |, (36)

where ωA,mn is an Alfvén continuum branch with the mode numbers m, n. The gaps with the

lowest frequencies are produced by the harmonics of B0 with µ ∼ 1 and ν = 0. Assuming that

ωA,mn = |mι−n|vA/R, we conclude that the gaps associated with the mentioned harmonics

arise at ι ≈ n/m because vA À cs, in which case Eq. (36) yields ωA,mn ≈ µιcs/R. Below we

show that in reality ωA,mn may considerably differ from k‖vA. Nevertheless, the conclusion

drawn remains valid when ωA,mn exceeds k‖vA. The presence of non-axisymmetric harmonics

(ν 6= 0) provides the fulfillment of Eq. (36) far from the rational surfaces, the corresponding

gaps being located in the high frequency part of the spectrum, ω ∼ Nνcs/R for Nν À 1;

in addition, the ν 6= 0 harmonics produce the gaps at low frequencies near rational surfaces

located at the plasma periphery where the temperature is low. Note that the waves with

the frequencies inside Alfvén-sound gaps are strongly damped (because these waves have

the phase velocity about the ion thermal velocity) unless the plasma is non-isothermal with

high electron temperature.

Taking into account that K = B−1
0 ∇B0 (except for the µ = 0, ν = 0 harmonic of K) and

Bϕ ≈ √
gB2 ≈ const, we obtain:

C(s) =
∑
mn

C(s)
mne

imϑ−inϕ, (37)

where

C(s)
mn = −1

r

∂

∂r
βs

∑
µν

(
χ

(µν)
ϑϑ r

∂

∂r
+ mχ

(µν)
rϑ

)
Φm−µ,n−νN

+
βs

r2

∑
µν

(m + µ)(mχ(µν)
rr − χ

(µν)
rϑ )Φm−µ,n−νN , (38)

χ(µν)
rr =

∑

µ′ν′
α(µ′ν′)

mn

dε
(µ′ν′)
B

dr

dε
(µ+µ′, ν+ν′)
B

dr
, (39a)

χ
(µν)
ϑϑ =

1

r2

∑

µ′ν′
α(µ′ν′)

mn µ′(µ + µ′)ε(µ′ν′)
B ε

(µ+µ′, ν+ν′)
B , (39b)
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χ
(µν)
rϑ =

1

r

∑

µ′ν′
α(µ′ν′)

mn (µ + µ′)
dε

(µ′ν′)
B

dr
ε
(µ+µ′, ν+ν′)
B , (39c)

and

α(µ′ν′)
mn =

ω2

ω2 − k2
m+µ′, n+ν′Nc2

s

. (40)

The terms proportional to the temperature gradient are neglected because their contribution

is about that produced by the finite plasma pressure, which is not taken into account in our

analysis. Note that α
(µ,0)
mn ≈ 1 when µ ∼ 1 and ω ∼ cs/R (or exceeds cs/R) and ι ¿ 1. On

the other hand, α
(µν)
mn ¿ 1 for ω2 ¿ k2

m+µ,n+νNc2
s with ν 6= 0 (this condition is consistent with

the condition ω2 > k2
m+µ,nc

2
s when N À 1 and/or ι ¿ 1). This means that only the ν = 0

terms mainly contribute to the sums in Eq. (39) when ω is well below the high frequency

Alfvén-sound gaps.

To proceed further, we write the metric tensor components grr and gϑϑ as6

grr = δ0

(
1 +

1

2

∑
µν

ε(µν)
g eiµϑ−iνNϕ

)
, gϑϑ =

δ0

r2

(
1 +

1

2

∑
µν

ε(µν)
g eiµϑ−iνNϕ

)
, (41)

with δ0 ≡ δ0(r), and neglect the other components of the metric tensor. Note that δ0 was

assumed constant in Ref. 6, which is justified only in the vicinity of the magnetic axis; δ0(r)

monotonically grows with r, δ0(r) >∼ 1. Due to these expansions, Eq. (30) can be presented

as a set of the infinite number of coupled equations for the Fourier harmonics of the scalar

potential of the electromagnetic field. The equation for the (m,n)-harmonic coupled with

the others can be written as follows:

1

r

d

dr
rδ0

(
ω2 − ω2

G1

v2
A

− k2
mn

)
dΦmn

dr
−

[
m2δ0

r2

(
ω2 − ω2

G2

v2
A

− k2
mn

)
+

kmn

r
(rδ0k

′
mn)′

]
Φmn

+C(r)
mn + C∇

mn − C(j)
mn = 0, (42)

where kmn ≡ k‖(m,n) = (mι−n)/R, C
(r)
mn describes the harmonic coupling due to the terms

containing the second radial derivative of the wave function,

C(r)
mn =

∑
µν

1

r

d

dr
rδ0

[
ω2

v2
A

(
ε
(µν)
g

2
− 2ε

(µν)
B

)
− kmnkm−µ,n−νN

ε
(µν)
g

2
− ω2

G1

v2
A

ε
(µν)
G

]
dΦm−µ,n−νN

dr
,

(43)

C∇ describes the coupling due to other terms, its part associated with the compressibility

is given by Eq. (38) without the terms proportional to χ
(µν)
ϑϑ and all terms with µ = 0 and
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ν = 0; the contribution of the terms with µ = 0 and ν = 0 to Eq. (42) is represented by the

frequencies ωG1 and ωG2 given by

ω2
G1 =

1

δ0

c2
sχ

(00)
ϑϑ , ω2

G2 =
1

δ0

c2
sχ

(00)
rr , (44)

and ε
(µν)
G = χ

(µν)
ϑϑ /χ

(00)
ϑϑ , with µ 6= 0 and/or ν 6= 0; C

(j)
mn is a harmonic of C(j). The frequencies

ωG1 and ωG2, although they are associated with different components of the curvature, are

equal in the case of tokamaks. This can also be the case in stellarators, at least, close to

the magnetic axis; but, in general, ωG2 6= ωG1 because the dependence of harmonics of the

equilibrium magnetic field on radius is nonlinear.

It follows from Eq. (42) that the local Alfvén resonance is approximately described by

the equation (the coupling between Alfvén branches is neglected):

ω2 =

(
k2
‖ +

βs

δ0

χ
(00)
ϑϑ

)
v2

A. (45)

Note that the RHS of this equation represents the Alfvén continuum in the approximation

used.

Let us analyze Eq. (45). We consider first the simplest case of k‖ = 0 assuming that

the equilibrium magnetic field contains only the toroidicity-induced Fourier harmonic, εt ≡
−ε

(10)
B (εt > 0). Then Eq. (45) yields:

ω2 = ω2
G ≡

2c2
s

R2

ε2
t

δ0ε2

(
1 +

ι2

2

δ0ε
2

ε2
t

)
, (46)

where ε = r/R; typically, εt < ε in stellarators. It follows from Eq. (46) that ωG =
√

2(cs/R)(1 + ι2/2)] in tokamaks with circular cross section. The frequency ωG is asso-

ciated with the geodesic curvature, KG ≡ 2B−1[K × B] · ∇r, as ω2
G ≈ c2

s〈K2
G〉, where 〈...〉

means averaging over the angles. Therefore, ωG is called the “geodesic acoustic frequency”.

This frequency was introduced for the first time in Ref. 15. It plays an important role in

physics of zonal flows and Alfvén cascades in tokamaks.22,23 However, we should note that

introducing ωG makes sense only provided that the first term in Eq. (46) dominates, i.e.,

when

S ≡ ι2

2

δ0ε
2

ε2
t

¿ 1. (47)

In another limit case, S À 1, Eq. (46) describes the sound waves, ω2 = k2
‖c

2
s, with k‖ = ι/R.

We will refer to S as a “sound parameter” because, depending on its magnitude, the (m,n)

Alfvén continuum branch either avoids the sound resonance (when S ¿ 1) or reaches its
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vicinity (when S À 1) at the rational surface ι = m/n. When S ¿ 1, ω2
s/ω

2
G ≈ S, with

ωs = ιcs/R. Equation (47) is typically satisfied in tokamaks, at least, in the region where

the safety factor exceeds unity. It is also satisfied in W7-AS discharges with ι ¿ 1. In

contrast to this, S À 1 in Wendelstein 7-X (W7-X25) where ι <∼ 1 and ε/εt
>∼ 2.3, δ0 ∼ 1.5.

This implies that ωG does not exist in W7-X.

We remind that Eq. (46) was obtained by assuming that ε
(µ,0)
B = 0 for µ ≥ 2. Strictly

speaking, this assumption is not justified even for tokamaks. In addition, Eq. (46) was

obtained with neglecting the ν 6= 0 terms. Therefore, now we make a more accurate analysis.

We write Eq. (45) as follows:

ω2

[
1− k2

mnv
2
A

ω2
− F (ω)

]
= 0, (48)

where

F (ω) =
1

2

∑
µν

ε̂2
µν

ω̃2 − (k̃mn + k̃µν)2
=

ε̂2
10

ω̃2 − (k̃mn + k̃10)2
+

ε̂2
20

ω̃2 − (k̃mn + k̃20)2
+ . . . , (49)

ε̂µν =
√

2/δ0 µε
(µν)
B /ε, ω̃ = ωR/cs, k̃µν = µι − νN . Equation (48) has the infinite number

of solutions. However, only low frequency solutions of Eq. (48) with kmn = 0 can satisfy

the requirement that the frequency must be beyond the Alfvén-sound gaps. A solution of

this kind with ω > ιcs/R + ∆gap, where ∆gap is the half-width of the lowest Alfvén-sound

gap, represents ωG. For a particular case of ωG > 2ιcs/R it is shown in Fig. 2. When

3ι2 > ε̂2
10 everywhere in the plasma, ωG < 2ιcs/R. Then ωG(r) lies between the µ = 1

Alfvén-sound gap and the µ = 2 gap. Due to this, ωG(r) is a continuous function, and

the Alfvén continuum with k‖ 6= 0 exists only above ωG(r) and well below the resonance

ω = ιcs/R. It may happen that 3ι2 > ε̂2
10 only in some plasma region, whereas 3ι2 < ε̂2

10

in the other region (this may happen, in particular, because δ0(r) is a growing function).

Then, as one can see from Fig. 2, ωG will have a discontinuity.

Note that an equation for the frequency of the geodesic acoustic mode in arbitrary geom-

etry was presented without derivation in Ref. 26 [Eq. (2) therein]. Like Eq. (46), it contains

only two terms, which implies that it neglects the effects described by Eqs. (48) and (49).

Therefore, it is of interest to compare Eq. (2) of Ref. 26 and Eq. (46). The notations in

Ref. 26 were the same as in Ref. 27. Using this, we found that if we take m = 1 and n = 0

in Eq. (2) of Ref. 26, the first terms in this equation and Eq. (46) coincide, whereas the
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seconds terms differ by a factor of N2. We conclude that either a factor of N−2 is missing

in Eq. (2) of Ref. 26 or the notations in Refs. 26 and 27 were different.

Now we consider a particular Alfvén continuum branch with kmn 6= 0. It is clear from

Eq. (48) that the usual equation for the local Alfvén resonance, ω = k‖vA, takes place when

F (ω) ¿ 1. This condition is satisfied at high frequencies, ω2 À ω2
G, provided that ω is not

close to Alfvén-sound gaps. In addition, it is satisfied at very low frequencies, ω2 ¿ ι2c2
s/R

2

provided that S À 1, i.e., when the geodesic frequency does not exist. It is interesting to

note that Eq. (48) has a solution with ω ∝ k‖vA at very low frequencies even when S <∼ 1

(we used the fact that F (ω) ≈ −S−1 for ω → 0):

ω ≈ k‖vA√
1 + S−1

. (50)

It follows from the foregoing that the character of the Alfvén continuum depends on the

sound parameter. Figures 3 and 4, where a particular Alfvén continuum branch (ωA,mn)

in the presence of the Alfvén-sound gap is shown for S À 1 and S ¿ 1, demonstrate

this. Figure 3 is simpler. It takes into account the presence of only one (toroidal) Fourier

harmonic in the equilibrium magnetic field and neglects the plasma inhomogeneity. We

observe in Fig. 3 that when S À 1, ωA,mn ≈ kmnvA everywhere except for the region with

ι close to ιmn = n/m, where the branch approaches the sound resonance. In contrast to

this, when S ¿ 1, the considered branch lies partly well above the sound resonance, with

dωA,mn/dk‖ = 0 at the rational surface, and partly below this resonance, with dωA,mn/dk‖ ¿
vA, in accordance with Eq. (50). Figure 4 presents a picture taking into account the presence

of several harmonics of B0 and plasma inhomogeneity, where, however, details in the vicinity

of Alfvén-sound gaps are omitted.

Note that the plasma displacement along the field lines, ξ‖, becomes considerable when

F (ω) is not small. To see it, we use Eq. (32) and ξ⊥ = icB0 ×∇Φ/(ωB2
0), which give

ζmn = −2α(00)
mn

∑
µν

K(µν) · ξ⊥m−µ. (51)

Then, writing K =
∑

µν K(µν) exp(iµϑ− iνNϕ) and assuming that kmn → 0, we obtain from

ξ‖ = −(c2
s/ω

2)∇‖ζ that

ξ‖m+µ, n+νN =
2ic2

skµν

ω2 − k2
µνc

2
s

∑

µ′ν′
K(µ′ν′) · ξ⊥m+µ−µ′, n+νN−ν′N . (52)
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In particular, Eq. (52) yields ξ‖m+1,n/ξ⊥m,n ∼ ιδ0ε/εt when ω = ωG and the curvature

harmonic with µ = 1 and ν = 0 dominates. For ω ¿ csι/R, we obtain ξ‖m+1,n/ξ⊥m,n ∼
ι−1εt/ε. Thus, ξ‖ is negligible only for ι−1εt/ε ¿ 1 (in which case S À 1), as one could

expect. This implies that continuum branches and discrete modes are actually hybrid Alfvén-

sound oscillations when they are close to the flux surfaces where ι = n/m with m and n the

mode numbers, except for the case of S À 1 with ω ¿ ιcs.

Let us consider the influence of the compressibility on the gaps in the Alfvén continuum.

First of all, as was already mentioned, the compressibility leads to the appearance of the

Alfvén-sound gaps. Because of the presence of non-axisymmetric harmonics of B0 in stel-

larators, these gaps exist even at rather high frequencies, ω ∼ νNcs/R, although their width

is rather narrow because, first, ε
(µν)
B are small for large µ, ν, and second, the Alfvén-sound

gaps are determined by ε
(µν)
B , which typically are much less than ε

(µν)
g .

In addition, the compressibility changes the frequencies of the gaps existing in incom-

pressible plasmas. Below we consider this effect.

It is clear that the presence of the term proportional to the temperature in Eq. (45) affects

the continuum branches. This term, in contrast to the first term, typically decreases with

the radius. This promotes the existence of gap modes in the case when the gap is “closed”

at the edge because of the small particle density in this region.

Assuming that two cylindrical continuum branches with the mode numbers m, n and

m + µ, n + νN intersect at a point r1, we write kmn(r1) = −km+µ,n+νN(r1) and restrict our-

selves to the consideration of the interaction between the wave functions with the mentioned

mode numbers. In addition, we assume that k2
mnv

2
A À ω2

G1. This condition is satisfied for

the toroidicity-induced gap (which lies below the other gaps and, thus, is affected by the

compressibility more than the other gaps) when

ω2
G1

ω2
TAE

=
4βs

ι2δ0

χ
(00)
ϑϑ R2 ∼ 4βs

ι2
¿ 1, (53)

where ωTAE is a characteristic frequency of the TAE gap, ωTAE = 0.5ιvA/R. Finally, we

assume that there are no Alfvén-sound gaps in the vicinity of the considered Alfvén gap and

that the Alfvén gap is narrow. In this approximation, ωG1 ≈ ωG and we can take εG at the

frequency at which the considered cylindrical branches intersect. Then, using Eq. (42) for

Φmn and Φm+µ,n+νN , we obtain:

ω2
± = k2

mnv
2
A[1± (εg − 2εB)] + ω2

G1(1∓ εG) [1± (0.5εg − 2εB)] , (54)
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where the upper/lower sign refers to the upper/lower boundary of the gap, all the magnitudes

are taken in the intersection point of the two cylindrical branches, and the superscripts µ

and ν at εg, εB, and εG are omitted. This leads to the gap width

∆ω ≡ ω+ − ω− =
1

ω+

[
k2

mnv2
A(0.5εg − εB) + ω2

G1(0.25εg − εB − 0.5εG)
]

(55)

and ω+, ω− given by

ω± = kmnvA

{
1± (0.5εg − εB) +

ω2
G1

2k2
mnv2

A

(1∓ εG)[1± (0.5εg − 2εB)]

}
. (56)

It follows from Eq. (55) that the compressibility increases or decreases the gap width, de-

pending on the sign of the coefficient at ω2
G1, i.e., the sign of (0.25εg − εB − 0.5εG). As

we already mentioned, typically εg À εB in stellarators because of strong plasma shaping.

Therefore, the effect is determined mainly by competition between the εg term and the

εG term. Effects of compressibility on the gap boundary can be different, as is seen from

Eq. (56). In the limit case of εG ¿ 1, both the upper edge and the lower edge of the gap are

shifted up, the upper edge being shifted stronger. In contrast to this, the upper edge is not

changed by the compressibility, whereas the lower one is strongly up-shifted when εG → 1.

Equation (42) can be written in the Schrödinger form given by Eq. (9) with the potential

energy G(r) if the coupling between harmonics is neglected. For currentless stellarators the

potential energy can be written as follows:

GS(r) =
m2

r2

P2

P1

− 1

4r2
−

(
P ′

1

2P1

)2

+
1

2r

P ′
1

P1

+
P ′′

1

2P1

−
k‖(δ0rk

′
‖)
′

rP1

, (57)

where P1,2 = δ0

(
ω2

A1,2 − ω2
)
/v2

A, with ω2
A1,2 = k2

‖v
2
A + ω2

G1,2. To obtain G(r) in tokamaks

with including effects of the compressibility, one should put νι = 1 in Eq. (10) and replace ω2

with ω2−ω2
G1 in all the terms of this equation. We remind that a condition of the existence

of eigenmodes is given by Eq. (11).

When ωG1,2 weakly depends on ω and the modes are well-localized, we can, as in Sec. II,

transform the equation d2Y/dr2 −G(r)Y = 0 to other Schrödinger-type equations, where a

key parameter is g given by

gS =
2v2

A

(ω2
A1)

′′

{
mk‖ι′

rR

[
δ0

(
1 +

rι′′

ι′

)
+ rδ′0

]
− m2

r2

ω2
G2 − ω2

G1

V 2
A

}
, (58)

gT = − 4v2
A

(ω2
A1)

′′
mk‖ι′

rR
, (59)
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with

(ω2
A1)

′′ = 2k2
‖v

2
A

[
k′2‖
k2
‖

+
k′′‖
k‖
− ρ′′

2ρ
+

ω2
G1

k2
‖v

2
A

(
ρ′

ρ

T ′

T
+

T ′′

2T

)]
, (60)

and all the magnitudes are taken at the point determined by (ω2
A1)

′ = 0, i.e.,

2mι′

k‖R
− ρ′

ρ
+

ω2
G1

k2
‖v

2
A

T ′

T
= 0. (61)

In the case when ι′ ≈ 0 in the vicinity of the point determined by Eq. (61) with the term

proportional to ι′ neglected, we obtain:

gS =
δ0mk‖r2ι′′v2

A −m2R(ω2
G2 − ω2

G1)

mk‖r2ι′′v2
A +

(
ρ′T ′
ρT

+ T ′′
2T
− T ′ρ′′

2Tρ′

)
r2Rω2

G1

. (62)

It follows from this equation that gs = δ0 when the first terms in the numerator and denom-

inator dominate. The effect of finite ωG1 and ωG2 depends on profiles of plasma parameters.

The analysis above ignores effects associated with gradient of the plasma pressure. In

order to see the limit of validity of this approach, we add the pressure gradient term 8π∇ ·
(IB0 × K), with I = (B0 × ∇p) · ∇Φ̃/B4

0 , to Eq. (30).21 It is clear that this term, first,

directly contributes to the equation for a certain Fourier harmonic Φmn and, second, leads

to additional coupling between different Fourier harmonics. Let us first neglect the coupling.

Then the ∇p-term can be written as 8π
∑

mn(m2/r2)(δ0/v
2
A)ω2

P Φmnexp(−iωt− inϕ + imϑ),

where

ω2
P = −2C

δ0

p′

ρ
Kr, (63)

C = 1, Kr is the average radial component of the curvature, p′ = dp/dr. If we assume that

ε
(00)
B ∼ ε2 and ε

(µν)
B ∼ ε for µ or ν 6= 0, the quantity Kr, like in tokamaks, can be estimated

as Kr ∼ εσ/R with σ ∼ 1.23,28 Thus, Kr is less than the non-averaged curvature by a factor

of ε; therefore, the coupling terms are of the order of those containing the average curvature.

Due to this, the resulting effect of ∇p on the modes can be qualitatively described by taking

C 6= 1 in Eq. (63). Note that the coupling may change the sign of C. To incorporate ω2
P

into the equations derived above [Eq. (42), (58), (62)], one has to replace ω2
G2 with the sum

ω2
G2 + ω2

P . It follows from here that the effects of ∇p can be disregarded when ω2
P ¿ ω2

G,

which leads to

rp′ ¿ p (64)

in the region where the mode is localized, which is true for core-localized modes. Moreover,

one can see from Eq. (58) with the added ∇p-term that the influence of ∇p on NGAEs in
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stellarators may be not important even when Eq. (64) is not satisfied. This is the case for

NGAEs with sufficietly large longitudinal wave numbers:

k‖R À m

r2ι′′
β

δ0

d ln p

d ln r
. (65)

In order to calculate eigenmodes with taking into account effects of plasma compressibility

included to Eq. (42), the code BOA (Branches Of Alfvén modes)6 was extended and a

new code BOA-fe (BOA – finite elements) finding eigensolutions with higher accuracy was

developed. In addition, the code COBRAS (COntinuum BRanches of Alfvén and Sound

waves)24 calculating the MHD continuum was amended to make the identification of specific

Alfvén and sound branches of the continuum, as well the calculation of the boundaries of

continuum gaps, possible.

IV. MODELING OF LOW FREQUENCY ALFVÉNIC ACTIVITY IN

WENDELSTEIN 7-AS

Low frequency instabilities were observed in all W7-AS discharges with Alfvénic activity

driven by the neutral beam injection (NBI). We selected the discharge #39029, in which

several modes with m = 3 in the frequency range of 30 − 40 kHz and an m = 5 mode

with the frequency of <∼ 50 kHz were destabilized simultaneously, as shown in Fig. 5. In

this discharge, the Alfvénic activity had a quasi-steady-state character; it had maximum

amplitudes at r/a ∼ 0.3− 0.5 and occupied a rather wide region. The available equilibrium

data are relevant to t = 0.45 s. At this time, the most pronounced signals had the frequencies

of 33 kHz, 35 kHz, and 38 kHz, all relevant to m = 3 modes, and 46 kHz, relevant to an

m = 5 mode. The injected power was rather low, Pinj = 440 kW, and the Alfvén velocity

was large (small Pinj led to low plasma density limit), which may explain why high frequency

Alfvén instabilities were absent. This conclusion can be drawn from a simple equation for the

driving part of the instability growth rate (γα), which indicates that typically γLF
α > γHF

α (the

superscripts “LF” and “HF” are relevant to low-frequency instabilities and high frequency

instabilities, respectively) for given parameters. To see it, we write the following estimate

for the growth rate (expressions for the growth rate obtained in Refs. 5,29 are used):

γα ∝ α4
vPinjT

3/2
e

α2
ωM2

i n3
eι

(66)
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where Pinj is the injected NBI power, αω characterizes the mode frequency being defined by

ω = αωvA/R, and αv determines the resonance velocity of the injected particles, vres
‖ = αvvA.

In the considered discharge αv < 1 and Pinj was small, therefore, γα was small, too, except

for the case of αω ¿ 1. Of course, Eq. (66) is rough, but, nevertheless, it agrees with

W7-AS experiments showing the presence of HF-instabilities only in the discharges with

Pinj > 1 MW. Note that when k‖ → 0, so that ω → ωG, γα decreases because in this case

the resonance velocity is much less than vA even when the injection velocity, vα, exceeds

vA. In particular, when the mode is destabilized through the toroidicity-induced sideband

resonance, vres → ±ωGR/ι ∼ ±cs/ι.

The important parameters of the considered discharge are the following: the equilibrium

magnetic field is B̄ = 2.53 T, the electron density is ne(0) = 1.1 × 1014 cm−3, the plasma

temperature is T (0) = 540 eV, the plasma radius is a = 17 cm, and the edge rotational

transform is ιa = 0.35. A deuterium plasma but hydrogen NBI were used. The radial profiles

of plasma parameters are shown in Fig. 6. Fourier harmonics of the equilibrium magnetic

field and the radial profiles of plasma parameters are shown in Fig. 7. The magnetic shear

was very low.

Before analyzing the experimental data, we note that GAE/NGAE modes with k‖R ¿ 1

are extremely sensitive to the magnitude of the rotational transform, especially when m À
1. A small change of ι or the ι error bar may have a largest effect when more than one

mode is destabilized simultaneously. This will be the case when the waves are localized

approximately in the same region and propagate in opposite directions along the magnetic

field, i.e., sgn km1,n1 = −sgn km2,n2 (note that this condition does not contradict to the fact

that the waves destabilized by the spatial inhomogeneity of the energetic ions propagate in

the same direction along the large azimuth of the torus, sgn n1 = sgn n2). Then the most

sensitive quantity is the difference between the mode frequencies (ω2 − ω1, with ω1,2 the

frequency of the mode with the mode numbers m1,2 and n1,2):

∆|ω2 − ω1| = |m1 + m2|∆ι
vA

R
, (67)

where ∆ι is the change of ι or the ι error bar, and all the quantities are taken at the point

r0 where the mode amplitude is maximum. In particular, for the considered discharge with

m1 = 3 and m2 = 5, this yields ∆ι · 2400 kHz in a deuterium plasma (and more in the

presence of protons); for instance, a very small error in determination of ι, ∆ι = 0.001,
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leads to an error of 2.4 kHz! Note that the sensitivity of the frequency to ι is strong even

if the waves propagate in the same direction; in the considered case the frequency error

would decrease only by a factor of |m1 + m2|/|m1 − m2| = 4. It is clear that the codes

calculating equilibrium configurations cannot provide ι(r) with so high accuracy (because

of the presence of the bootstrap current, beam-induced current, Ohmic current etc). To

evaluate the influence of the iota error bar on the single frequency, we have to take either

m1 = 0 or m2 = 0 in Eq. (67). The influence of ∆ι on the gap modes is different. Because

the mode numbers determine both the gap frequency and ι(r0), a change of iota leads to a

change of r0 (∆ι ≈ ι′∆r0) or the mode numbers (∆ι = ∆[(2n + νN)/(2m + µ)]) when r0

does not change. In the latter case, the mode frequency also changes. In particular, for the

TAE modes we have:

∆ωTAE =
∆ι

2

vA

R
. (68)

We observe that the TAE frequency is less sensitive to ∆ι than the GAE/NGAE frequency

by a factor of 2m. Equations (67) and (68) were obtained in the assumption that ω = k‖vA.

Taking into account finite ωG decreases the influence of ∆ι on the frequency by a factor of

(1 + ω2
G/ω2

A)1/2.

Note that emergence of Alfvén grand cascades, when modes with various n appeared

simultaneously, was used in JET to conclude that the minimum of the safety factor was at

a rational flux surface.13

It follows from what was said that ι(r) obtained in equilibrium calculations can hardly be

used for calculation of the GAE/NGAE mode structure and, in some cases, even for identi-

fication of the instability. Instead, an analysis of experimentally observed characteristics of

the modes can be used for a reconstruction of the iota profile, or at least, determination of

ι in certain points. Below we demonstrate this.

Basing on Fig. 5, we require that ι(r) should provide the following:

(i) At least, three eigenmodes with m = 3 and various frequencies must exist, such that

ωmax − ωmin = 5 kHz; the mode with ωmin should be located closer to the magnetic axis

than the mode with ωmax. This implies that Alfvén continuum of the m = 3 branch must

have two extrema, a minimum and a maximum. The minimum should be located closer to

the magnetic axis, and the difference between the maximum magnitude and the minimum

magnitude of the continuum frequency must be a little less than 5 kHz.

(ii) The frequency of the m = 5 mode should exceed the maximum frequency of the
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m = 3 mode by ∼ 9 kHz.

(iii) The maximum of the wave function of the m = 3 mode with the lowest frequency,

33 kHz, should be located at r/a ∼ 0.3. The maxima of the other modes should be located

at r/a ∼ 0.4− 0.5.

(iv) The reconstructed ι(r) must be in reasonable agreement with that obtained in equi-

librium calculations; in particular, the edge rotational transform should be considered as a

given quantity, ιa ≈ 0.35.

In the considered discharge hydrogen was injected into a deuterium plasma. Because of

this, plasma consisted of the mixture of deuterium and hydrogen. The mode frequency is

proportional to 1/
√

Mi, where Mi = MH(2− νH), where MH is the proton mass, Mi is the

effective ion mass, and νH ≡ nH/ni is the fraction of hydrogen, 0 < νH < 1. The magnitude

of νH was not known from the experiment. However, it can be exactly determined due to

simultaneous observation of the m = 3 mode and the m = 5 mode. Indeed, we have two

equations for the modes localized approximately around the same radius, ω1 = f1(m1,Mi, ι∗)

and ω2 = f2(m2,Mi, ι∗), and two variables, Mi and ι∗ = ι(r∗), with r∗/a ≈ 0.5 the point

where the amplitudes of the m = 3 mode with the frequency of 38 kHz and the m = 5 mode

have maxima.

A simple estimate shows that ωG ∼ 20 kHz in the core of a deuterium plasma and 28 kHz

in a hydrogen plasma. This implies that the compressibility does not prevent from the ex-

istence of the modes with experimentally observed frequencies (ω > 28 kHz). On the other

hand, 20 − 28 kHz is comparable with the observed frequencies. Therefore, the influence

of the plasma compressibility on the modes is rather strong, and thus, the compressibility

must be taken into account in calculations. Simple estimates of the mode frequencies show

that n = 1 when m = 3 and n = 2 for m = 5. Using these mode numbers, we calculated

the corresponding continuum branches by the code COBRAS, varying ι(r) and Mi in or-

der to satisfy the formulated above constraints. After that, the selected magnitudes were

tested and slightly varied again to calculate the eigenmodes. This was done by the code

BOA. It was shown by BOA that there are several eigenmodes above the maximum of the

m/n = 3/1 continuum branch, the highest frequency being above the continuum by about

1.5 kHz in deuterium, whereas the other modes have the frequencies very close to extrema

of the continua. Using these facts, the final choice of ι and Mi was done and the full pic-

ture of the low frequency part of the continuum was calculated. The continuum and the
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eigenmodes for Mi = 1.39MH (νH = 60%) are shown in Fig. 8 and Fig. 9, respectively. The

rotational transform reconstructed by using results of calculations of the Alfvén continuum

and eigenmodes is shown in Fig. 10 by the solid lines. In addition, the upper dashed curve in

Fig. 10 represents ι(r) calculated with neglecting the plasma currents by the code VMEC.14

The lower dashed curve shows the results of the VMEC calculation corrected by adding

evaluated effects of the bootstrap current, jb, and the Ohmic heating current, jOH, but the

beam-driven current, jNBI, is still neglected (although injection was non-balanced and, thus,

this current was considerable). The current jOH was used to compensate other currents, so

that j0‖ = jNBI + jb − jOH, and
∫ a

0
j0‖ r dr ≈ 0. It is clear, however, that this integral con-

dition, even if it is satisfied exactly, cannot provide vanishing of the local plasma current.

Furthermore, this condition implies that j0‖ has different signs on different radii because

partial currents jNBI, jb, and jOH have different radial dependences. Due to this and to the

fact that ιext(r) is very flat, the resulting ι(r) may have a complicated radial dependence,

which makes plausible ι(r) shown by solid curves. On the other hand, we have to note that,

as shown above, one can use observations of instabilities to reconstruct ι with high accuracy

at several characteristic points (in particular, at extrema of continuum branches); however,

the ι profile away from these points can be reconstructed only with some uncertainty.

It follows from our analysis that the instability with m = 5 can be identified as a desta-

bilized GAE mode, whereas the instabilities with m = 3 represent a combination of GAE

and NGAE modes.

V. SUMMARY AND CONCLUSIONS

The paper contains both a general theory of the GAE/NGAE modes in stellarator plas-

mas and a consideration of a particular W7-AS discharge in which low-frequency Alfvén

instabilities were observed. The obtained results can be summarized as follows.

Equations describing the GAE/NGAE modes in stellarator plasmas are derived. Con-

ditions of the existence of the GAE/NGAE modes have been obtained. They are actually

the conditions of the existence of the potential well in a Schrödinger-type equation that

approximately describes eigenmodes. These conditions are very different in plasmas with

and without the local toroidal current, which implies that the GAE/NGAE modes which

exist when the rotational transform, ι, is produced by the plasma current may not exist
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when ι is produced by the external coils and vice versa. In the cold plasma approximation,

the obtained conditions are well satisfied in currentless stellarators with non-monotonic ι(r)

when the mass density, ρ, is flat in the region of the mode localization, whereas they are not

satisfied in tokamaks. This result implies that NGAE modes can be most easily observed

in currentless stellarators with flat ρ(r). On the other hand, this explains why taking into

account various factors (such as the presence of the energetic ions, toroidal effects, gradients

of the plasma pressure) is necessary to explain observations of RSAE modes responsible for

the Alfvén cascades in tokamaks.

The effects of plasma compressibility were also studied. It is found that the plasma com-

pressibility can play an important role. It prevents the existence of the NGAE modes with

frequencies ω < ωG, although Alfvén modes coupled with sound waves may still exist at

very low frequencies, ω < ιcs/R. In other words, there is a “forbidden zone” in the Alfvén

spectrum, ιcs/R < ω < ωG, where NGAE modes cannot exist. Below this zone, ω < ιcs/R,

the situation is more complicated because of effects which cannot be described by ideal

MHD. Note that the geodesic acoustic frequency in stellarators differs from that in toka-

maks because of the presence of many Fourier harmonics in the equilibrium magnetic field,

εt < r/R, and strong plasma shaping. All these factors reduce the effects of compressibility

in stellarators except for the case when the mode frequency approaches an Alfvén-sound res-

onance associated with the presence of non-axisymmetric Fourier harmonics of the magnetic

field. The presence of these harmonics makes Alfvén-sound resonances possible not only at

very low frequencies but also when ω ∼ ωTAE, in which case these resonances occur at the

plasma edge where the temperature is much lower than in the plasma core. It is shown that

features of the Alfvén spectrum when ι is close to rational surfaces can be different. A key

parameter [S given by Eq. (47)] which determines these features is found. The geodesic

frequency exists only when S ¿ 1. In stellarators, this parameter can vary in a wide range.

In particular, S ¿ 1 in W7-AS discharges with ι ¿ 1, whereas S À 1 in W7-X. Thus, from

this point of view, W7-AS and W7-X are qualitatively different devices.

The compressibility affects Alfvén modes through coupling of Alfvén and sound harmon-

ics of the perturbation because of the inhomogeneity of the magnetic field (described by εB).

In addition, there is a coupling between Alfvén harmonics themselves due to both the inho-

mogeneity of B and plasma shaping (described by εg). The former coupling influences the

continuum and the mode frequency as described above. The latter coupling was neglected
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in this work. One can expect that its main effect is the continuum damping, which arises

when the frequency of the main harmonic intersects the continuum branches of sideband

harmonics.

We draw attention to the fact that the low-frequency GAE/NGAE modes are much more

sensitive to the ι profile than the gap modes. This means that experimental observations

of these modes can be used for a very precise reconstruction of ι(r). This statement is

general, i.e., it is relevant to any toroidal device with any profile of the rotational transform.

Especially favorable for the reconstruction of ι(r) is the situation when several modes are

destabilized simultaneously. Just this was the case in the W7-AS discharge #39029, in which

an m = 5 mode and several m = 3 modes were destabilized. Therefore, this discharge was

selected for modeling in this paper. Both Alfvén continua and eigenmodes were calculated

for various ι(r), which enabled to find ι(r) that gives the best agreement with experimental

observations of Alfvénic activity. Moreover, the analysis carried out enabled us to make a

conclusion on the fraction of the hydrogen and deuterium in the plasma. We identified the

m = 5 mode as a GAE with n = 2, and the m = 3 modes as a GAE and a NGAE with

n = 1.

Note that the conditions for getting several GAE modes are not known, but it was very

typical to see two lines and sometimes more lines in the spectrum. The occurrence of several

modes does not seem to depend on a certain mixture of H and D (as expected for MHD

modes). Therefore, our results are equally applicable to cases with only one ion species.

However, we cannot claim that the reconstructed profile of ι(r) really coincides with the

profile that took place in the experiment because of the lack of experimental data on plasma

rotation. Thus, our analysis of the selected discharge should be considered as a demon-

stration of the potential to use low frequency instabilities for diagnostics in stellarators. In

addition, this analysis showed that plasma compressibility may play an important role in

low frequency Alfvén instabilities occurring in stellarators.

The calculations of the Alfvén continuum were carried out by the code COBRAS, whereas

the eigenmodes were calculated by a new code, BOA-fe (Branches Of Alfvén – finite ele-

ments), solving an equation for Alfvén eigenmodes, such as GAE and NGAE modes, with

higher accuracy and with taking into account the plasma compressibility. The necessity of

the development of this code was caused by the facts that, first, the potential well respon-

sible for GAE and NGAE can be very shallow, and second, the plasma compressibility may
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play an important role. The previous finite difference code, BOA, often failed to find the

eigenmodes in this case. The new code employs a finite-element numerical approximation.

The current versions of the code use quadratic and cubic finite elements, but in the case of

necessity the code can be extended to higher orders. This allows performing calculations

with a smaller number of radial grid points but with higher accuracy as compared to the

finite-difference approximation.

In conclusion, it follows from this paper that predictive calculations of Alfvén instabilities

in future devices (in particular, in Wendelstein 7-X) are justified only for the gap modes.

Predictive calculations of low frequency GAE/NGAE modes cannot be reliable because equi-

librium calculations can hardly provide knowledge of ι(r) with required accuracy [because

these modes are very sensitive to ι(r)]. On the other hand, observations of low frequency

Alfvénic activity and plasma rotation can be used for plasma diagnostics, in particular, they

can help to reconstruct ι(r).
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FIG. 1: The potential energy U(x) for various g in the Schrödinger equation (16).
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FIG. 2: Sketch of the function F (ω) given by Eq. (49) with kmn = 0 and a possible geodesic

acoustic frequency, ωG. Regions beyond the Alfvén-sound gaps are shaded, the unshaded regions

correspond to these gaps, ωµ = µιcs/R, µ = 1, 2, 3. The frequency ωG is a continuous function of

r only when ωµ + ∆µ < ωG(r) < ωµ+1 − ∆µ+1 for 0 < r < a, where ∆µ is the half-width of the

gap; otherwise, ωG(r) has jumps at the radii where it crosses the gaps.
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FIG. 3: Sketch of an Alfvén continuum branch, ωA,mn, and sound branches in the vicinity of the

rational surface when B0 has only one (toroidal) harmonic and plasma is homogeneous: (a), S À 1;

(b), S ¿ 1. Notations: ιmn = n/m; A(m, n), the Alfvén branch with the mode numbers (m,n);

S(m±1, n), the sound branches with the mode numbers (m±1, n); AS gap (1, 0), the Alfvén-sound

gap caused by the toroidicity; gray line, the same Alfvén branch in the absence of the Alfvén-sound

coupling. We observe that the geodesic acoustic frequency is absent in when S À 1.
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radius; AS(µ, ν), with µ, ν the integers, are the Alfvén-sound gaps caused by the Fourier harmonics

ε
(µν)
B . Details of the Alfvén branch in the vicinities of the sound branches are not shown.
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(a)

(b)

FIG. 5: Alfvénic activity in W7-AS discharge #39029: (a), the frequencies of the m = 3 mode in

the range of 30 − 40 kHz and the m = 5 mode at 43 − 50 kHz; (b), the spatial structure of the

modes, the mode with the minimum frequency being on the left.
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FIG. 7: Fourier harmonics of the equilibrium magnetic field and δ0(r) at t = 0.45 s in the W7-AS

discharge #39029.
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FIG. 8: The Alfvén continuum branches with m/n = 3/1 and m/n = 5/2 in the W7-AS dis-

charge #39029. The branch with m/n = 0/0 represents the geodesic acoustic frequency, ωG. The

calculations were carried out by the code COBRAS.



37

0 0.2 0.4 0.6 0.8 1
r/a

0

0.1

0.2

0.3

Φ

m/n = 3/1 m/n = 5/2

0 0.2 0.4 0.6 0.8 1
r/a

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

0.16

0.2

Φ

m/n = 3/1

1

2

3

(a)

(b)

FIG. 9: Alfvén eigenmodes in the W7-AS discharge #39029: (a), m/n = 3/1 and m/n = 5/2

GAE modes, which are relevant to instabilities with the lowest frequency (33 kHz) and the highest

frequency (46 kHz), respectively, shown in Fig. 5 at t = 0.45 s; (b), m/n = 3/1 NGAE modes

relevant to instabilities with intermediate frequencies shown in Fig. 5 at t = 0.45 s. Curve 1 is

relevant to the instability with the frequency of 38 kHz; curve 3, of 35 kHz. Calculations were

carried out by the code BOA-fe.
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FIG. 10: The rotational transform in W7-AS discharge #39029 at t = 0.45 s: upper solid line,

reconstructed by using the code BOA-fe; lower solid line, reconstructed by using the code COBRAS;

upper dashed line, calculated by the code VMEC with neglecting the NBI-driven current, the

bootstrap current, and the OH current; lower dashed line, obtained from the upper dashed line by

adding the estimated effect of the bootstrap current and the OH current. Adding the NBI-driven

current would increase ι(r) and might provide a better agreement with the results shown by the

solid lines.


