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Abstract 
Surface temperature control of actively cooled targets is a part of the machine protection in long pulse 

experiments. The protection of the target is as good as the surface measurement and the thermal model of the 

target. This paper deduces thermal parameters necessary to correct the measured temperature by surface effects. 

The temperature measurement error due to the intrinsic CFC structure is discussed. Layers on top of the bulk 

material result in a change of the temperature response and in an overestimation of the calculated heat flux. All 

discussed effects did not reduce the machine safety but can reduce the operational space of the experiment. The 

thermal surface properties have to be checked in-situ by changing the heat load to the target and calculating the 

temperature response. 

1. Introduction and motivation 
 
Steady state fusion experiments rely on equilibrium between input power and power exhaust. 

Depending on the magnetic field configuration most critical structures are limiters or 

divertors. A plasma heating power of about 20 MW in the limiter tokamak Tore Supra, 20 

MW in the stellarator W7-X or 100 MW in the next step divertor experiment ITER has to be 

received stationary.  Actively cooled high heat flux components were developed and tested at 

Tore Supra for heat loads of about 10 MW/m2 [1]. The divertor concept for ITER aims at 

10 MW/m2 maximum stationary heat load but can tolerate up to 300 cycles with 20 MW/m2 

[2]. The divertor concept of the W7-X stellarator is specified to withstand a stationary heat 

flux up to 10 MW/m2 [3,4]. Heat flux limiting components are brazed or welded structures 

inside the actively cooled targets. For W7-X, the 10 MW/m2 standard load case results in a 

temperature in the CuCrZr–Cu interface of 450°C or 70% of the maximum temperature [3], 
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i.e. the safety margin is about 1.4.  In contrast, the corresponding surface temperature is below 

1000 °C, i.e. more than factor of 2 below the tolerable surface temperature of Carbon Fibre 

Composite (CFC).  

Overloading of target tiles will, at the end, interrupt the cooling because no inherent safe 

technical concepts could be found.  A safe machine operation requires a reliable and 

permanent control of the target heat load. This will be done by controlling the target surface 

temperature with requirements as defined e.g. in the ITER [5] and W7-X design documents 

[6]. But, the measured surface temperature is only a good figure for machine protection if a 

target in plasma contact has the same thermal properties as used for the model calculation and 

for the definition of the surface temperature limits.  

Experiences from running experiments show that the assumption of an ideal target is violated 

and the thermal properties of the target surface are non-ideal. There are two main reasons for 

this. First, CFC has an intrinsic structure on a sub-millimeter scale which results in a non 

homogeneous surface temperature distribution. In addition, the manufacturing process of Fine 

Grain Graphite (FGG) and CFC damages the surface. Second, plasma target interaction can 

result in surface modifications and layer deposition. This paper discusses both effects with the 

focus on a route to identify parameters allowing to correct the measured temperature by the 

surface effects.  

2. Graphite without plasma exposure 

Carbon is used as target material for heat receiving structures because of its unique material 

properties (no melting, shock resistance, high sublimation temperature). Fine grain graphite 

(FGG) is commonly used in quasi stationary machines and carbon fibre composite (CFC) is 

needed for actively cooled structures due to the higher mechanical strength.  

Thermographic measurements at carbon surfaces show that the temperature increase under 

heat loads is higher than expected from the effusivity cb κρ=  of the bulk material. The 
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effusivity is the capability of heat penetration and relevant for transient events where the 

temperature increase with a heat load qs is: t
b
q

T s
s

π
2

=Δ     (Equ. 1) 

This behaviour was found for virgin carbon [7,8] as well as plasma exposed samples [9-11] in 

lab experiments and by plasma heating. A typical temperature response on a nearly square 

like heat pulse is shown in Fig. 1 for a plasma exposed surface and a polished part of the same 

target tile. On the time scale of the measurement (tframe = 500 µs), the temperature increase is 

stepwise at the beginning of the pulse followed by an increase with the square root of time as 

expected from Equ. 1. Because the temperature jump is found not only for targets with plasma 

wall contact but also for virgin targets, it is supposed that this jump is due to grains with a 

reduced contact to the bulk. Carefully polishing can remove the loosely connected grains 

resulting in an ideal temperature behaviour of FGG [8]. The heat flux to the target can be 

estimated from the square root in time like behaviour at later times in the heat pulse, 

independent of the temperature jump. This value, qs = 4.2 MW/m2 for the example of Fig. 1, 

can be then used to estimate the heat transmission coefficient for the surface from the 

temperature jump, . This is equivalent to a thermal resistance 

of . If the heat transmission coefficient for the used material is known, 

e.g. from laboratory experiments, the heat load to the target can be estimated from the 

temperature jump as well as the temporal evolution of the surface temperature. This allows a 

consistency check for the heat flux calculation and the detection of additional surface 

modifications. 

KmkWTqs
2/200140/ −≈Δ=α

21 /85 −− ÷≈ MWmKα

The surface temperature distribution measured on CFC shows a much larger scatter during 

homogeneous heat load compared to FGG [7], as expected from the intrinsic structure of CFC 

consisting of fibres and filler (matrix) material with high and low heat conductivity, 

respectively. In addition fibres with lateral orientation can reduce the heat flux into the bulk. 

Thermally, CFC should be described, at least, as a two component system with different heat 
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conductivity but comparable heat capacity. If these components are not coupled by lateral 

heat conduction the temperature ratio between the components is given by the effusivity ratio 

of the components (see equ. 1). Because the fibre has typically a 5-10 times higher heat 

conductivity [12], this temperature ratio is about 2-3. For higher temperatures the lateral heat 

conduction becomes significant and limits the maximum temperature difference at the 

surface. This difference can be estimated from the dimension of the component with bad heat 

conduction and the thermal properties by assuming that the lateral heat flux is in the same 

order as the heat flux into the bulk. With a typical lateral dimension of half the fibre diameter 

(d = 100µm) and a lateral heat conductivity which is a factor of 5 lower compared to the heat 

conductivity into the depth, i.e. about κ = 40 W/m/K, the resulting temperature difference 

(thermal resistance) is . A measurement of the temperature 

pattern at CFC NB-31 with high temporal and spatial resolution loaded with a laser beam of 

10 MW/m2 over 10 ms [7] is shown in 

2/5.2// −≈=Δ MWmKdqT κ

Fig. 2. Localized hot spots are found in addition to the 

fibre and the filler. The temperature behaviour of fibre, filler and most of the hot spots can be 

characterized as discussed for the FGG material. At the start of the heating pulse, a 

temperature jump is observed. Later in time, the temperature evolution follows the square root 

of time dependence with a heat conductivity of the fibre which is 5 times higher compared to 

the filler. The resulting thermal resistance for the filler and the fibre is comparable to that of 

the FGG surface (8 K/MWm-2 and 6 K/MWm-2 for the filler and the fibre, respectively). Hot 

spots result in a significant stronger local temperature increase dominated by a thermal 

resistance of about 30 K/MWm-2, i.e. 300 K temperature excursion for the design heat load of 

10 MW/m2 in W7-X and ITER. The fraction of hot spots is between 3 and 10 % of the target 

area. 

A temperature measurement with a few millimetre spatial resolution, as envisaged for 

machine protection systems, would integrate over all these temperature components. This will 
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influence the accuracy of the surface temperature measurement. Because the temperature 

pattern is dominated by the intrinsic structure and the manufacturing of the CFC, the 

measurement error can be estimated by characterizing the surface behaviour of the used CFC 

and calculating a temperature correction curve as shown in the following for the measurement 

of Fig. 2. 

The number of photons received by a millimetre sized detector pixel is the sum of the photons 

from the three different temperature regions with parameters as given in Table 1. 

Table 1. Parameters of the CFC components. 

 fibre filler Hot spot 

Filling ratio 0.45 0.45 0.1 

Th. resistance  

K/MWm-2 

6 8 30-50 

 

This sum of photons from different temperature regions is then interpreted as caused by a 

uniform temperature in the field of view of a millimetre size detector. Fig. 3 shows the ratio 

between the bulk temperature (fibre without surface effects) and the temperature derived from 

the sum of all components. Parameters are the detection wavelength and the heating power. It 

is obvious, that for all parameter combinations the measured temperature is higher than the 

bulk temperature. From the viewpoint of machine protection, this is a safe situation. But, the 

mismatch between measured temperature and target temperature reduces the operational 

space for the machine, in particular in the near infra-red wavelength region (1 µm). The 

relative contribution of the hot spot decreases with increasing wavelength because the change 

of the photon flux with temperature becomes lower (smoother Planck function). The 

mismatch increases with increasing heat flux due to the heat flux dependent temperature jump 

(see Table 1.). The dashed curve in Fig. 3 is the 10% error line. It is obviously that all but the 
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measurement in the near ir-region at 10 MW/m2 has an error below 10 %.  Such an error is 

inside the safety margin of 1.4 and comparable to the temperature error due to a change of 

emissivity in the LWIR region (10 µm). 

The parameterization of the thermal surface properties of CFC material used for target 

materials on a sub-millimetre scale can be used to calculate a correction curve which allows 

calculating the bulk temperature without surface effects from the measured temperature by 

single step iteration. 1st step, calculate the heat load to the target with averaged thermal 

parameters for the bulk and the surface. 2nd step, use this heat flux and the parameterization to 

calculate the real bulk temperature. The required parameters can be gained during the 

acceptance test of the target or in-situ by measurements with spectral resolution [13-15] 

3. Plasma effects 

In addition to the intrinsic surface temperature structure, plasma target contact can result in an 

additional modification of the surface. These surface modifications might be caused by ion 

implantation or layer deposition. How to consider these effects into the estimation of the true 

bulk temperature and the heat flux calculation model depends on the layer thickness and its 

thermal contact to the bulk material. The combination of the thermal layer thickness and 

contact o the bulk material allows distinguishing for limits.  

 (i) A thin layer with good heat contact has a low heat capacity and the temperature 

distribution becomes stationary at time scales on the order of the frame rate of the 

measurement.  A stationary temperature profile can be considered by a thermal resistance in 

the same way as for the intrinsic surface effects. The measured time evolution of temperature 

is that of the bulk (see Fig. 1). 

(ii) A thick layer with good heat contact shows two time scales, the time evolution of the layer 

temperature at the start of the heating and the heating of the bulk at later times [see also[11]]. 
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(iii,iv) The temperature of a layer with bad heat contact is comparable to a thin target with a 

cooling at the backside via a heat transmission edge condition. The surface temperature is 

determined by the heat capacity and the accumulated energy and increases linear in time until 

radiation losses becomes significant at very high temperatures. The ratio of heating power and 

radiated power determines whether or not such a layer evaporates or not.  

To estimate layer effects on the temperature measurement and finally the heat flux 

calculation, the temporal temperature evolution for a target consisting of the bulk, an 

interlayer with a heat resistance of   and a 30 µm thick top layer with 

different thermal parameters (see Table. 2) were calculated with the FE code FlexPDE [16]. 

This calculated temperature evolution was then used as input for heat flux calculation with a 

thermal model for a bulk with thermal resistance on top. 

21 /7.7 −− ≈ MWmKα

Fig. 4 shows the calculated heat flux 

for 4 parameter sets. In case 1 the model for the temperature calculation and the heat flux 

calculation are the same, i.e. the curve represents really applied heat flux. Case 2 represents a 

layer with the same thermal properties as the bulk. The slower increase of the heat flux is 

because the temperature jump is delayed by the time the heat needs to diffuse through the 

layer. For a layer with lower heat capacity this transfer time is short and again a jump like 

temperature increase is observed (case 5). The calculated heat flux is higher due to the 

additional temperature drop across the layer caused by the lower heat conductivity. Increasing 

the heat capacity and keeping the lower heat conductivity reduces the temperature slope as in 

case 2 but now again with a higher calculated heat flux (case 4).  The temporal temperature 

behaviour at the end of the heating is qualitatively the same as at the raising edge. It should be 

mentioned, that the accumulated energy is independent on the thermal model for the surface 

because it is dominated by the bulk properties (Fig. 4).   
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Table 2 Thermal parameters of the top layer as used for the calculation of the surface 
temperature. 

 

case ρc / MJ/m3K  κ / W/m2 

1 NO top layer 

2 1.08 110 

4 1.08 22 

5 0.108 22 

4. Conclusions 

Surface temperature control of actively cooled targets is a part of the machine protection in 

long pulse experiments. The protection of the target is as good as the surface measurement 

and the thermal model. Measurements in existing machines have shown that the surface 

temperature measurement is influenced by the intrinsic in-homogeneous structure of the CFC 

material and layers deposited by plasma target interaction. The surface effect for FGG and 

CFC can be parameterized by thermal resistances. For CFC at least three different thermal 

resistances are required. Using these parameters a correction curve can be calculated which 

allows to deduce the true bulk temperature from the measured surface temperature. The 

required parameters can be gained during the acceptance test of the target or in-situ by 

measurements with spectral resolution [13-15]. Layers in top of the bulk material result in a 

change of the temperature response and in an overestimation of the calculated heat flux. All 

discussed effects did not reduce the machine safety but can reduce the operational space of the 

experiment. The thermal surface properties can be checked in-situ by changing the heat load 

to the target and calculating the temperature response. Temperature monitoring as tool for 

target protection must include heat flux calculations.  
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5. Figures 
 

 

 
Fig. 1. Temporal evolution of the surface temperature of FGG during a laser pulse of 10 ms measured at an 

upper divertor tile of ASDEX Upgrade (S8, A1). The lower curve was measured at a plasma exposed part, the 

upper curve (polished) on a position that was polished by sandpaper. The experimental arrangement of ir-camera 

and laser parameters are described in [7]. 

 

Fig. 2 a) Temperature pattern with 30 µm spatial resolution at the end of an heat pulse (10 MW/m2, 10 ms). b) 

Temporal evolution of the surface temperature at  different locations as marked in a). The size of the 2D frame 

corresponds to the typical spatial resolution of thermography systems for machine protection and physics 

investigations. The heat conductivity of the fiber is a factor of 5 better than that of the filler material. 
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Fig. 3 Temperature ratio - true temperature of the fibre material compared to the temperature derived from the 

mixing of photons from different temperature regions of the target. 

 

Fig. 4 Heat flux calculated with the thermal model of a bulk material with a thermal resistance on top and 

different temperature evolutions calculated for different layers on top as input (parameters - see Table 2).  
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