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I choose to address first Willink’s alternative approach to estimating mean and variance
from a set of inconsistent data. The assumption that a constant offset o should be added to
the quoted variances of the individual measurements can be traced back to the assumption
that all data d; suffer from a common unrecognized systematic offset Ad; = o. The rigorous
Bayesian solution to this problem has been presented by Frohner [1] with application to the
robust estimate of the fission cross section of the reaction 2 Pu(n, f) at 14.7MeV neutron
energy. The result is formally identical to that given by Willink though he starts from a
different concept and his derivation is ad hoc.

My concern is about the use of this result. Willink uses subsets of the available data
to obtain an estimate of G which means censoring of the data according to their influence
on the estimate of the mean. I oppose vigorously against such a procedure which brings
physical data analysis down to a beauty contest. In fact, the initial motivation for my
work [2] derives from a similar discussion of the evaluation of G in the CODATA report
[3]. In addition to deleting selected values from the analysis the authors consider also the
possibility of multiplying all quoted uncertainties by a common factor « such that the Birge
ratio becomes equal to one. A Bayesian analysis resting on the same assumption introduces
this factor « into the calculation and marginalises it subsequently using an appropriate
distribution. Since « is a scale variable the transformation invariance requirement results
in Jeffreys’ prior p(«) = 1/cv. This is criticized by Willink. The nature of this prior is more
obvious if we look at p(In o)) which turns out to be flat in —co < a < co. The argument that
p(«) puts infinite weight on « near zero is therefore misleading. Moreover, the likelihood
kills the v — 0 behavior exponentially, while the prior enforces the decay of the likelihood
for & — oo by a factor of 1/a.

p(a) is not normalisable and is called improper. The use of improper priors in a Bayesian
analysis is quite acceptable if they are considered as the limit of a sequence of proper priors
and if the transition to the limit does not affect the posterior distribution. Both requirements
have been considered in [2] and shown to hold.

Let me return to marginalisation. This important ingredient of Bayesian probability
theory which has no counter part in the traditional frequentist statistics is quite often slighted
by critics of the Bayesian approach. Simply multiplying all uncertainties by a suitably
chosen factor will bring down the Birge ratio to unity but the structure and degeneracy

of the data analysis problem remain unaltered the traditional weighted mean albeit with



modified uncertainties. It is the marginalisation step in the Bayesian analysis which leads to
a result with an uncertainty of the mean incorporating both, the quoted uncertainties of the
input data and the scatter of the data themselves. Doesn’t this meet with common sense?
It also removes the problem that mean and variance from a given set of data calculated in
the traditional way can be obtained from an infinity of data sets with different scatter and
unchanged uncertainties. The Bayesian marginalisation removes this degeneracy and the
result of the Bayesian treatment is therefore ”characteristic” (is unique a better word?) for
a particular set.

Of course, the assumption of a common scaling of uncertainties in a Bayesian treatment
is not the only way to remove the degeneracy. It was employed in [2] in order to stay as close
as possible to the considerations in [3]. A much more reasonable assumption for the analysis
of the G-data affording this was already indicated in the last paragraph of [2] which does
not imply in the least that I "leave the Bayesian interpretation and return to the classical
understanding”.

Willink criticizes also the choice of p(In &) = const on the grounds that it is uninformative.
The by far most frequent argument which I have to deal with in talks on Bayesian data
analysis is that the choice of the prior distribution anticipates posterior inference. The
answer to this objection in a nut shell is that the prior influences the posterior depending
on its information content. The use of uninformative priors is therefore a conservative
approach in case the formulation of an informative prior is beyond the field of competence
of the analyst. I dare not imagine the number of comments, if I had chosen a structured
prior instead. The same applies for the flat prior in model comparison of the three different
likelihoods. By the way, the equal prior weights used at this stage result from employing
the principle of maximum entropy, subject to the side condition of normalization only.

Willink also contests the use of the likelihoods employed in [2]. Though the introduc-
tion of a scaling variable o and its subsequent marginalisation has cured the deficiency of
the traditional uncertainty estimate, the mean has remained unchanged for the Gaussian
likelihood. However, if the data are inconsistent with the assumption that they obey to a
Gaussian likelihood, then this assumption must be abandoned. There is no unique method
to do so. One possibility is to assume a distribution of the uncertainties instead of regarding
them to be the exact true ones [4]. Another possibility is to assume that the data stem with

a certain probability f from a Gaussian distribution with quoted uncertainties o; and with a



probability (1 — ) from a Gaussian with uncertainty a-o; [5]. This leads to a mixture model
likelihood with at least two hyper parameters which must be marginalized. The mixture
model was also applied in a robustness study by Sivia [6]. My rational for choosing the
Laplace distribution in [2] was the wide spread experience that the L1 norm is much less
sensitive to outliers than the L2 norm. But is it preferable to the analysis of the G-data?
Bayesian probability theory offers a tool to access the quality of a model compared to at
least one alternative quantitatively. This is the evidence of a data set. It is the marginal
likelihood of the data given their uncertainties and the model. From table I in [2] it is seen
that this measure is in favor of the Laplace distribution compared to the Gaussian by a
factor of 209 for a very discordant data set. The cosh™! likelihood has Gaussian character
for small arguments and the heavier tails of the Laplace distribution for outliers. It resem-
bles in a way the assumptions of mixture modeling without introducing new parameters.
Willink raises the question why not using instead of the L1 norm an arbitrary power « of it
(including v = 2 for the L2 norm). The figure of merit of any such choice compared to any
other would of course again be the evidence. A truly Bayesian treatment of this suggestion
would include a final marginalisation over . This might be a problem worthwhile doing.

I need finally to comment on a misinterpretation of figure 2 in [2] which displays the
results of a sensitivity analysis of the three likelihood functions employed. Willink notices
correctly that when the fictitious measurement has a value near ”the middle” of the data the
sensitivity of the estimates is greater than with the Gaussian likelihood. The explanation is
that the fictitious data becomes a "good” data point in this region and lowers consequently
the variance of the estimated mean. In the Gaussian case the influence of the fictitious
measurement on the estimate of the mean is independent of the location of the fictitious
data point. This is a manifestation of robustness and the conclusion of Willink on his correct

observation is wrong.
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