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Abstract

The aim of the present work is to investigate tokamak equilibria with reversed magnetic
shear and sheared flow, which may play a role in the formation of internal transport bar-
riers (ITBs), within the framework of two-fluid model in cylindrical geometry. The study
is based on exact self-consistent solutions in cylindrical geometry by means of which the
impact of the magnetic shear, s, and the “toroidal” (axial) and “poloidal” (azimuthal)
ion velocity components, viz and viθ, on the radial electric field, Er, its shear, |dEr/dr|,
and the shear of the E×B velocity, ωE×B ≡ |d/dr(E×B/B2)|, is examined. For a wide
parametric regime of experimental concern it turns out that the contributions of the viz,
viθ and pressure gradient (∇Pi) terms to Er, |E ′

r| and ωE×B are of the same order of
magnitude. The contribution of the ∇Pi term is missing in the framework of magnetohy-
drodynamics (MHD) [G. Poulipoulis et al. Plasma Phys. Control. Fusion 46 (2004) 639].
The impact of s on ωE×B through the ∇Pi term is stronger than that through the velocity
terms; in particular for constant Bz the ion pressure gradient contribution to ωE×B at the
point where dEr/dr = 0 scales as (1 − s)(2 − s), whereas the ion flow contributions to
ωE×B scales as (1− s). The results indicate that, alike MHD, the magnetic shear and the
sheared toroidal and poloidal velocities act synergetically in producing electric fields and
therefore ωE×B profiles compatible with ones observed in discharges with ITBs; owing to
the ∇Pi term, however, the impact of s on Er, |E

′
r| and ωE×B is stronger than that in

MHD.

1A preliminary version of this study was presented in the 10th European Fusion Theory Conference
(Helsinki, Finland, 8-10 September 2003).
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Introduction

Tokamak discharges with improved energy and particle confinement properties in con-
nection with internal transport barriers (ITBs) have certain attractive features, such as
a large bootstrap current fraction, which suggest a potential route to steady-state mode
of operation desirable for fusion power plants. Long quasi-steady or steady ITB states
have been obtained in different tokamaks, e.g ASDEX Upgrade [1, 2], JT-60U [3], Tore-
Supra [4], and JET [5] where ITBs were maintained for up to 11 s. The ITBs usually
are associated with reversed magnetic shear profiles [6],[7] and their main characteristics
are steep pressure profiles in the barrier region [8] and radial electric fields associated
with sheared flows [9, 10]. The mechanism responsible for the formation of ITBs and
the underlying physics is not completely understood. Most theoretical models supported
by experimental observations rely on suppression of microinstability induced transport in
connection with reversed magnetic shear, s < 0, sheared flow, radial electric field, Er, its
shear, |E ′

r|, and most importantly the E ×B velocity shear,

ωE×B =

∣

∣

∣

∣

d

dr

E ×B

B2

∣

∣

∣

∣

. (1)

In particular the E×B velocity shear may lead to a reduction in the amplitude of turbulent
fluctuations, even to their suppression, or to a decrease in the radial correlation lengths
[11]. An expression for ωE×B related to a criterion for the stabilization of microturbulence
in a tokamak has been derived in Ref. [12]. Another criterion for turbulence suppression
in terms of ωE×B was reported in Ref. [13]. Also, contributions of the toroidal velocity
and the density and temperature gradients to ωE×B in ITB discharges of JET have been
obtained in Ref. [14]. Although there are experimental observations supporting this
scenario, the overall experimental evidence up to date is rather complicated, not universal
in the various tokamak machines and has not made clear whether the reversed magnetic
shear or the sheared flow (toroidal or poloidal) are more important for the ITB formation.
According to recent measurements of the poloidal rotation velocity across ITBs in JET
this velocity is an order of magnitude higher than neoclassical predictions for the thermal
particles in the ITB region and has large impact on the measured radial electric field
profile [15]. Discrepancy of the measured poloidal velocities from neoclassical predictions
before, during and after the transport bifurcation associated with enhanced reversed shear
plasmas was reported in Refs.[16, 17]. Further discussion on these issues is made in the
Introduction of Ref. [18]. Also, the experimental and theoretical knowledge on discharges
with ITBs was reviewed recently in Refs. [11] and [19].

In a previous work [18] we studied tokamak magnetohydrodynamic (MHD) equili-
brium states with reversed magnetic shear and sheared flow in cylindrical geometry. In
particular, presuming that Er, E ′

r and ωE×B are of relevance to the formation of ITBs we
examined how these quantities are affected by the magnetic shear and sheared flow and
found that the latter quantities act synergetically in increasing ωE×B with the impact of
the flow, in particular the poloidal one, being stronger than that of the magnetic shear, s.
In view of complicated experimental evidence and incomplete theoretical understanding,
the present work aims in a first step at extending our previous MHD study [18] to the
framework of the two fluid model. This model is advantageous over MHD in that the
contribution of the ion pressure gradient (∇Pi) term to Er, contribution which is missing
in MHD, can be obtained from the ion (or electron) momentum equation. In addition the
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current density can be expressed self-consistently in terms of the ion and electron fluid
velocities. Also, we shall examine the impact of certain local characteristics of the safety
factor profile, i.e. the minimum of q and its position, on the aforementioned quantities
(not addressed in Ref. [18]) and the relative sign of the “toroidal” (axial) ion velocity, viz,
“poloidal” (azimuthal) ion velocity, viθ, and toroidal magnetic field, Bz. It turns out that,
owing to the ∇Pi term, the impact of s on Er, E ′

r and ωE×B is stronger than that in MHD.
The contribution of both flow components, however, remains significant. In addition in
many cases s enhances the velocity contribution to these quantities which, alike in MHD,
indicates a synergism of s and the flow.

The work will be conducted through the following steps. Exact solutions of a slightly
reduced set of two-fluid equilibrium equations for a cylindrical magnetically confined pla-
sma are constructed in section 2 by prescribing the profiles of certain free quantities,
including the safety factor and the toroidal and poloidal ion velocities, in accord with
ITB experimental ones. Then in section 3 we examine the impact of s, the velocity, the
velocity shear, the local characteristics of q, and the relative signs of the velocity com-
ponents and Bz on Er, E ′

r and ωE×B. The characteristics of the pressure and toroidal
current density are also briefly discussed. The conclusions are summarized in section 4.

2. Two-fluid cylindrical equilibria with reversed magnetic shear

The two-fluid equilibrium states of an ideal quasineutral plasma are governed by the
following set of equations written in Gaussian units with both 4π and the velocity of light
being set to unity:

∇ · (nvα) = 0, (2)

mαnα(vα · ∇)vα = −∇Pα + qαnα(E + vα × B), (3)

vα · ∇Tα = 0, (4)

Zini ≈ ne = n, (5)

∇× E = 0, (6)

∇ ·B = 0, (7)

∇×B =
∑

α

nαqαvα = J, (8)

where the index α denotes the particle species (α = i for ions and e for electrons); n
is the plasma density in connection with the quasi-neutrality condition (5); qα is the
charge of each particle species with Zi being the atomic number. The rest of the notation
is standard. The energy equation (4), associated with the fact that for fusion plasmas
the heat conduction along B is large and therefore the temperature becomes uniform on
magnetic surfaces on a fast time scale, is particularly appropriate for electrons. For ions
one alternatively can use an adiabatic energy equation:

vi · ∇Pi + γPi∇ · vi = 0. (9)

Compared with the respective set of MHD equations (see for example Eqs. (2)-(6) of Ref.
[18]) Eqs. (2-8) are advantageous in two respects: (i) the momentum equation includes the
electric field and therefore the pressure gradient contribution to E can be calculated from
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this equation; this contribution is missing in the frame of MHD because E is calculated
by Ohm’s law, E + v × B = 0, and (ii) the current density J is related self-consistently
to the fluid species velocities [Eq. (8)].

The system under consideration is a cylindrical plasma of circular cross-section confi-
ned by a magnetic field having toroidal and poloidal components Bz and Bθ respectively.
Also the velocity has toroidal and poloidal components and the electric field is radial.
Because of symmetry any equilibrium quantity depends solely on the radial distance r;
therefore Eqs. (2), (4)[and (9)], (6), and (7) are identically satisfied. Also the flow for
both fluid species is incompressible (∇ · vα = 0). Under these considerations 6 out of the
12 scalar quantities remain free and can be prescribed.

Adding Eq. (3) for ions and electrons yields the MHD momentum equation

d

dr

(

P +
B2

θ + B2

z

2

)

+
(

1 − M2

θ

) B2

θ

r
= 0, (10)

where

Mθ ≡

[

nimiv
2

iθ + nemev
2

eθ

B2

θ

]1/2

is the poloidal Mach number. Because of symmetry the toroidal velocity as well as the
velocity shear (of both toroidal and poloidal components) do not appear in (10). It is
convenient to use (10) instead of (3) for the electrons. Therefore the slightly reduced
set of equilibrium equations we will use in the following consists of Eqs. (2), (3), (4) for
ions only, (5), (6), (7), (8), and (10). By expressing Bθ in terms of the safety factor, q =
rBθ/(R0Bz), with 2πR0 associated with the length of the plasma column, and introducing
the normalized radius ρ = r/r0 with r0 corresponding to the plasma surface, Eq. (10) can
be put in the form

P ′(ρ) = −Bz(ρ)B′
z(ρ)

[

1 +
(

ǫ
ρ

q(ρ)

)2
]

+
[

Mθ(ρ)2 + s(ρ) − 2
] ρ

r0

(

ǫ
Bz(ρ)

q(ρ)

)2

. (11)

Here, ǫ = r0/R0 is the inverse aspect ratio and s(ρ) = (r/q)(dq/dr) the magnetic shear.
On account of typical experimental ITB profiles we prescribe the quantities q, Bz, viθ,

viz and n as follows:
Reversed magnetic shear profile:

q(ρ) = qc

(

1 −
3∆q

qc

r2

0

r2

min

ρ2 +
2∆q

qc

r3

0

r3

min

ρ3

)

(12)

where qc = q(r = 0), rmin is the position of qmin, and ∆q = qc − qmin. The shape of the
q profile is determined by adjusting the parameters qmin, ∆q and rmin. Note that |s| is
proportional to ∆q; therefore as ∆q takes larger values the magnetic shear increases in
both the s < 0 and s > 0 regions. A q profile compatible with experimental ones (see for
example figure 10 in Ref. [20]) is presented in figure 1.
Toroidal magnetic field profile:

Bz = Bz0[1 + δ(1 − ρ2)]1/2, (13)

where Bz0 is the vacuum magnetic field and the parameter δ is related to the magnetic
properties of the plasma, i.e. for δ < 0 the plasma is diamagnetic.
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Gaussian-like ion poloidal velocity profile:

viθ = 4viθ0ρ(1 − ρ) exp
(

−
(ρ − ρmin)2

h

)

, (14)

where the parameter h > 0 is related to the velocity shear, i.e. |v′
iθ| increases when h

takes smaller values, and viθ0 defines the extremum of viθ.
Either peaked on axis toroidal velocity profile:

viz = viz0(1 − ρ3)3 (15)

or Gaussian-like viz profile similar to that of (14); it is also noted that the results do not
change if, alternative to (15), a peaked on axis toroidal velocity profile of the form

viz = viz0(1 − ρ) exp

(

−
ρ2

h

)

is employed;
density profile:

n = n0(1 − ρ3)3. (16)

In addition, the ion pressure can be expressed in terms of the total pressure by the relation

Pi = λP , 0 < λ < 1 . (17)

It is noted here that the free parameters q0, qmin, rmin, viθ0, viz0 and h aid in obtaining
a variety of safety factor and velocity profiles consistent with those observed in toka-
maks. An example showing q-profiles compatible with experimental ones measured in the
tokamak JT-60U is given in Fig. 1 of Ref. [18].

Since in tokamaks Mθ < 0.1, the convective flow term on the left hand side of (3) and
therefore the flow term M2

θ B2

θ/r in (10) are perturbative around the “static” equilibrium
M2

θ = 0 and henceforth will be neglected. It should be noted, however, that this approxi-
mation may be not good for non-circular cylindrical or axisymmetric plasmas because in
these cases the convective term in the momentum equation depends on the velocity shear
which in certain regions may become large (see for example the z-independent cylindrical
and axisymmetric incompressible MHD equilibrium equations (23) and (22) in Refs. [21]
and [22] respectively). The following quantities then can be calculated self-consistently:
the poloidal magnetic field, Bθ = ǫρBz/q, the magnetic shear s = (r/q)(dq/dr), the cur-
rent density via Ampére’s law, the pressure by integration of (11) and setting P (1) = 0,
the ion and electron pressures Pi = λP and Pe = (1 − λ)P , the electric field by Eq. (9)
for the ions

Er(ρ) =
1

er0n(ρ)

dPi(ρ)

dρ
+ viz(ρ)Bθ(ρ) − viθ(ρ)Bz(ρ), (18)

its shear |E ′
r| and ωE×B by (1). Also, the electron velocity components vez and veθ can

be determined by the relation J = ne(vi − ve). It is noted here that the ∇Pi term in
(18) can be obtained in the framework of the ideal Hall-MHD model, alternatively to the
complete two fluid one, which includes the generalized Ohm’s law:

E + v ×B =
1

en
(J × B −∇Pe) . (19)
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Neglecting in the Hall-MHD momentum equation the convective flow term (which for the
case under consideration corresponds to Mθ = 0), the term j×B in (19) can be expressed
in terms of the total pressure gradient:

J × B = ∇P = ∇(Pi + Pe);

then Eq. (19) leads to (18). The above prescriptions and subsequent suggested calcula-
tions comprise a procedure to solve analytically the set of the two-fluid equations. The
calculations have been performed analytically by developing a programm for symbolic
computation [23] in connection with [24].

Inspection of (18) implies that in addition to the dependence of Er and E ′
r on the

magnetic shear through the dPi/dρ term, s is involved in the viz term through the q de-
pendence of Bθ. The quantity ωE×B is stronger affected by the magnetic shear because
s is involved in both the viz and viθ terms of ωE×B [see Eqs. (20) and (21) in section 3].
These observations indicate that there is a synergetic contribution of magnetic shear and
flow to Er, E ′

r, and ωE×B. In this report results not obtainable within the framework of
MHD will mainly be presented in the next section. MHD results were reported in Ref.
[18].

3. Results

We have set the following values for some of the parameters: Bz0 = 1T , δ = −0.0975,
Zi = 1, r0 = 1m, R0 = 3m, n0 = 5 × 1019part./m3, λ = 0.6. The choice qmin ≥ 2
was made because according to experimental evidence for qmin < 2 strong MHD activity
destroys confinement possibly due to a double tearing mode [25]. A similar result was
found numerically for one-dimensional cylindrical equilibria with hollow currents in [26].
Moreover in discharges with reversed magnetic shear in JET a correlation was found
between the formation of ITBs and qmin reaching an integer value (2 or 3) [27]. The impact
of the magnetic shear and flow profiles on the equilibrium characteristics was examined
by varying the parameters ∆q, qmin, rmin, h, viz0 and viθ0 in the ranges (4-14), (2-3),
(0.5-0.6), (0.001-0.1), (105-106 ms−1) and (104-105 ms−1) respectively in consistence with
experimental regimes; consequently qc = qmin+∆q varies from 6 to 16 and it is guaranteed
that M2

θ ≈ M2

z , where M2

z = [n(miv
2

iz +mev
2

ez)]/B
2

z , a scaling typical in tokamaks because
Bz ≈ 10Bθ and viz ≈ 10viθ [28, 16]. The impact of the variation of magnetic shear through
∆q was studied by keeping rmin and qmin constant, while the impact of rmin and qmin was
examined with constant ∆q.

First we will briefly report certain characteristics of the pressure and toroidal current
density profiles which remain similar as in MHD. The total pressure profile, and therefore
the Pi one, is peaked and for s < 0 becomes steeper when |s| increases as can be deduced
from Eq. (11) (see also figure 2). In addition (11) implies that the profile becomes steeper
as the plasma becomes more diamagnetic, i.e. when B′

z in connection with δ in (13) takes
larger values. The Jz-profile is hollow with its maximum located in the region where the
qmin lies as can be seen in figure 3. These characteristics are observed in discharges with
ITBs [11] and are favorable for ITB formation. Especially for s > 2 a reversal of Jz occurs
in the s > 0 region. This characteristic is discussed further in Ref. [18]. It is also noted
that a sufficient stability criterion for equilibria with reversed current density in the outer
plasma area and monotonically increasing q-profiles was derived in Ref. [29].

6



The conclusions on the impact of the magnetic shear and flow on Er, |E
′
r| and ωE×B

are reported on an individual basis in the rest of this section.

3.1 Electric field (Er)

1. The electric field consists of the ∇Pi, viz and, viθ contributions in connection with
the first, second, and third term in Eq. (18). Each of these terms contributes
of about the same order of magnitude to Er (figure 4). This is consistent with
experimental evidence [11]. A similar result was obtained in a different way in [30]
(see figure 4 therein). It is apparent from (18) that Er depends linearly on viz and
viθ with the overall velocity contribution to Er, however, depending on the relative
signs of viz, viθ and Bz.

2. Typical Er profiles exhibit an extremum located in the neighborhood of the qmin

position (figure 4).

3. Increase of |s|, by increasing ∆q, makes the maximum of |Er| to take larger values
(figure 5). Depending on the direction (toroidal or poloidal) of the velocity and
the shape of its profile, variation of ∆q from 4 to 14 increases the values of the
|Er| maximum in a range that varies from 5.6% for purely poloidal flow to 48% for
purely peaked toroidal flow. It is reminded that, in addition to the s dependence of
the ∇Pi term in (18), s contributes to Er synergetically with the viz term (the viθ

term is s independent).

4. The larger rmin the higher the values of the |Er| maximum (for given values of ∆q
and qmin) as shown in figure 6. Quantitatively for a variation of rmin from 0.5 to
0.6, the increase of |Er| maximum varies from 36% to 70%. Also the position of the
extremum (located in the vicinity of rmin) is displaced outwards.

5. The larger qmin the smaller the |Er| maximum (figure 7). In particular, increase of
qmin from 2 to 3 (with ∆q = 4 and rmin = 0.5), results in a decrease of the |Er|
maximum in the range (12-40)%.

6. When the flow shear increases (by decreasing h from 0.1 to 0.001) the extremum of
Er remains practically unchanged in most of the cases considered.

3.1 Shear of the electric field (|E ′
r|)

1. As in the case of Er the contributions from the ∇Pi-, viz- and viθ-related terms to
E ′

r are of the same order of magnitude as shown in figure 8.

2. The profile of E ′
r exhibits one local extremum on each side of the qmin position

(figure 9). The two extrema are of opposite sign.

3. Increase of |s| increases both maxima of |E ′
r| in most of the flow cases considered and

this increase is larger in the region where s > 0 than that where s < 0. This is shown
in figure (9). For certain combinations of the velocity components, however, the one
extremum increases and the other decreases. Such a case with peaked toroidal viz

and poloidal viθ flow is shown in figure 10.
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4. The larger rmin the higher the maxima of |E ′
r| (figure 11) unless the case of poloidal

velocity in conjunction with Gaussian-like toroidal one. Depending on the direction
and the shape of the velocity this increase varies from from 8% to 42%. Also the
profile of |E ′

r| is displaced outwards as can be seen in figure 11.

5. An increase of qmin results in a decrease of the |E ′
r| extremum in the s > 0 region in

all of the cases considered while in the s < 0 region this happens for viθ = 0 (figure
12).

6. By increasing the velocity shear the maxima of |E ′
r| are also increased in all the

cases considered (figure 13).

7. For either purely toroidal or poloidal flow, increase of the maximum absolute value
of the velocity by a factor increases the maxima of |E ′

r| by the same factor in all of
the cases considered with the following exception: purely toroidal peaked flow for
which the maximum in the s < 0 region increases and the one in the s > 0 region
decreases.

8. For either purely toroidal or purely poloidal flow, inversion of the velocity direction
causes a change in the sign of the two E ′

r extrema. Also, this inversion leads to
(i) an increase of both maxima of |E ′

r| for Gaussian-like viz, (ii) an increase of the
one |E ′

r| maximum in the s > 0 and a decrease of the other in the s < 0 region for
peaked toroidal velocity and (iii) a decrease of both maxima for purely poloidal flow.
For peaked viz the increase of the one |E ′

r|-maximum in the s > 0 region caused by
inversion is greater than the increase of the other in the s < 0 region.

3.3 Shear of the E× B velocity (ωE×B)

1. The profile of ωE×B (Eq. 1) possesses two maxima, one in the region with s < 0
and one located in the region with s > 0 (figure 14). Larger of the two maxima is
the one which lies in the region of steeper pressure profile.

2. The impact of the magnetic shear on ωE×B is stronger than that in MHD due to the
∇Pi term of the electric field [Eq. (18)]. Specifically for constant Bz and arbitrary
profiles of q, viz and viθ, Eq. (1) yields at the point where E ′

r = 0

ωE×B =
∣

∣

∣
λ

(1 − s)(2 − s)Bzρǫ

enqr2

0
(ρ2 + q2

ǫ2
)

− ωE×B−MHD

∣

∣

∣
, (20)

where

ωE×B−MHD =
(1 − s)

(

ǫρviz

q
− viθ

)

r2

0

(

ρ2 + q2

ǫ2

)
(21)

The first term in (20) stems from the ∇Pi part of Er in (11) while the second term
comes from the viz and viθ parts of Er. The subscript MHD is used to empha-
size the similarity of (21) with the respective MHD relation derived in Ref. [18]
[equation (18) therein]. It is apparent that the ∇Pi-related dependence of ωE×B

on s, proportional to (1 − s)(2 − s), is stronger than the viz and viθ dependence
proportional to 1 − s; also, the absolute values of the ∇Pi-, viz- and viθ- related

8



terms are individually larger for s < 0 than s > 0. The contribution of each of these
terms to ωE×B however is of the same order of magnitude. Note that despite of the
tokamak pertinent scaling viz ≈ 10viθ, the contributions of viz and viθ terms are of
the same order of magnitude because of the factor ǫρ/q. In connection with this
result we may note here a conclusion in Ref. [12] that suppression of turbulence in
association with flute-like fluctuations caused by the E×B shear occurs regardless
of the rotation direction. The “equipartition” of the three terms holds in general
for the whole ωE×B profile obtained via the symbolic computation programme as
shown in Fig 15.

3. Increase of the flow via either |viz0| or |viθ0| by a factor increases the maxima of
ωE×B by the same factor.

The impact of the magnetic shear through ∆q and the flow on ωE×B is similar as that
on E ′

r. Specifically:

1. Increase of |s| leads to larger values for the maxima of ωE×B in most of the flow
cases considered (figure 16). There are some combinations of velocity components
however for which the one maximum increases and the other decreases. Such a
case is shown in figure 17. In which region (s < 0 or s < 0) the increase takes
place depends on the particular velocity components involved and the shape of the
toroidal velocity profile.

2. The larger rmin the greater the ωE×B-maxima (figure 18) in the same cases as for
E ′

r. The profile of ωE×B is also displaced outwards as can be seen in figure 18.

3. Increase of qmin causes (i) a decrease of the ωE×B-maximum in the s > 0 region in
all of the cases considered and (ii) an increase of ωE×B -maximum in the s < 0 one
for viθ 6= 0 (figure 19).

4. The larger the flow shear the greater the ωE×B maxima in all of the cases considered
(figure 20).

5. ωE×B is affected by the relative signs of viθ, viz and Bz as is apparent from Eqs. (20)
and (21). In particular (i) inversion of the Gaussian-like toroidal velocity increases
the maxima of ωE×B (figure 21), (ii) the maximum of ωE×B in the s > 0 region
increases while the one in the s < 0 region decreases due to the reversal of the
peaked toroidal velocity and (iii) they decrease by inversion of the poloidal velocity.
Finally for both Gaussian-like velocity components the variation caused by inversion
is greater in the s > 0 region.

4. Summary and Conclusions

In this report tokamak equilibria with reversed magnetic shear and sheared flow have
been studied within the framework of two-fluid model in the limit of infinite aspect ratio.
The study is based on a slightly reduced set of two-fluid equations in which the electron
momentum equation is replaced by the respective MHD one. Neglecting the flow term in
this equation (because in cylindrical geometry it is small for tokamaks) and prescribing
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the profiles of six free quantities in accord with ITB experimental ones, i.e. the toroidal
magnetic field Bz, the safety factor q, the toroidal and poloidal ion velocities viz and viθ,
the density n [Eqs. (13)-(16)] and the ion pressure in terms of the total pressure, Pi =
λP , we have constructed analytic solutions in calculating self consistently the following
quantities: P [and therefore Pi and the electron pressure Pe = (1 − λ)P ], the current
density and the radial electric field Er; the electric field shear, |E ′

r|, and the shear of the
E × B-velocity, ωE×B [Eq. (1)] have also been calculated. Gaussian-like profiles for viθ

and either Gaussian-like or peaked-on-axis ones for viz have been considered. In addition,
for reversed magnetic shear profiles the impact of s and the flow on the equilibrium
characteristics has been examined by varying the parameters ∆q which |s| is proportional
to, the minimum of q, qmin, its position, rmin, the extrema of the velocity components, viz0

and viθ0, and a parameter h which decreases with increasing velocity shear. The results
are as follows.

1. The pressure profiles become steeper in the region of s < 0.

2. The profile of the toroidal current density Jz is hollow and a reversal occurs in the
outer plasma region for s > 2 in connection with appropriate values of ∆q.

3. The |Er| profile has a maximum located close to the qmin position while the |E ′
r|

and ωE×B ones have two local maxima the one in the s > 0 and the other in the
s < 0 regions.

4. The contributions associated with ∇Pi, viz, and viθ to Er, E ′
r and ωE×B (the ∇Pi

contribution being missed in MHD) are of the same order of magnitude.

5. The magnetic shear affects Er and E ′
r explicitly through ∇Pi and implicitly in

conjunction with viz; s has an additional impact on ωE×B in connection with viθ. The
explicit impact of s is stronger; in particular for Bz =constant, the ∇Pi contribution
to ωE×B at the point where E ′

r = 0 is proportional to (1− s)(2− s) [Eq. (20)] while
the contribution through the flow terms is proportional to (1-s) [Eq. (21)].

6. Increase of |s| results in an increase in the maximum of |Er| in all of the cases
considered. Also, the maxima of |E ′

r| and ωE×B increase in most of the flow cases
considered. When either the toroidal and poloidal velocity contributions cancel each
other or the velocity is purely toroidal peaked, the increase is greater in the s > 0
region. Also pending on the direction and shape of the flow, the increase varies from
56.4% to 323%.

7. The larger rmin the greater the maxima of |Er|, |E
′
r|, and ωE×B.

8. The larger qmin the smaller the maximum of |Er| but the larger the maxima of |E ′
r|

and ωE×B in the s > 0 region.

9. Stronger flow, by larger values of |viz0| and |viθ0|, leads to linear increase in Er, |E
′
r|,

and ωE×B.

10. The larger the flow shear (by smaller values of the parameter h) the slightly smaller
the maximum of |Er| but the larger the maxima of |E ′

r| and ωE×B.

11. Er, E ′
r, and ωE×B are sensitive to the relative signs of viz, viθ, and Bz.
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In summary, alike MHD, in the framework of two-fluid model the magnetic shear and
sheared flow (toroidal and poloidal) act synergetically on Er, E ′

r, and ωE×B which may
play a role in the formation of ITBs. However the impact of magnetic shear on these
quantities is stronger than that in MHD due to the additional ∇Pi contribution to the
aforementioned terms.
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Figure captions

Figure 1: Safety factor profile in connection with Eq. (12) compatible with the experi-
mental one measured in JT-60U [20] (figure 10 therein).

Figure 2: Pressure profiles for two values of the reversed-magnetic-shear parameter ∆q
normalized with respect to the value of P at the magnetic axis.

Figure 3: Toroidal current density profiles for two values of ∆q which show the hollow
shape and the reversal in the outer plasma region. The profiles are normalized with
respect to the maximum of Jz for ∆q = 4.

Figure 4: Profiles of the ∇Pi, viz and viθ contributions to the electric field, Er, showing
that all three contributions are of the same order of magnitude. The viz profile is peaked
on axis. The profiles are normalized with respect to the extremum of ∇Pi contribution.

Figure 5: Increase of the normalized absolute value of the electric field extremum due to
the variation of ∆q for qmin = 4, rmin = 0.5, Gaussian-like viz profile and viθ = 0.

Figure 6: Increase of the absolute value of the Er extremum when the distance rmin in
connection with the qmin position becomes larger. Also, the position of the extremum is
displaced outwards. Here, qmin = 2, ∆q = 4, and the flow is purely toroidal peaked on
axis. The profiles are normalized with respect to the extremum for rmin = 0.5.

Figure 7: Decrease of the normalized |Er| maximum when qmin increases for ∆q = 4,
rmin = 0.5, peaked viz and Gaussian-like localized viθ (h = 0.001).

Figure 8: Profiles of the ∇Pi, viz and viθ contributions to the electric field shear, E ′
r,

showing that all three contributions are of the same order of magnitude. The viz profile
is peaked on axis. The profiles are normalized with respect to the extremum of the ∇Pi

contribution in the s < 0 region.

Figure 9: Increase of the normalized |E ′
r| maxima caused by an increase of the magnetic

shear in connection with variation of ∆q. The plots were obtained for viz peaked and
viθ = 0.

Figure 10: Increase of the |E ′
r| extremum in the s > 0 region due to the increase of ∆q.

The profiles are obtained for viz peaked and viθ 6= 0 and are normalized with respect to
the value of the extremum in the s < 0 region for ∆q = 4.

Figure 11: Increase of the |E ′
r| extrema as rmin takes larger values for qmin = 2, ∆q = 4,

and peaked purely toroidal flow. Also the positions of the extrema are displaced outwards.
The profiles are normalized with respect to the E ′

r extremum for rmin = 0.5

Figure 12: Decrease of the |E ′
r| extremum in the s < 0 region for purely toroidal Gaussian-

like flow due to the increase of qmin. For this particular case of flow the variation of the
other extremum in the s > 0 region is negligible.

Figure 13: Increase of the |E ′
r| extrema due to the increase of the flow shear for Gaussian-

like viz and viθ = 0.

Figure 14: A typical ωE×B profile for purely poloidal flow, normalized with respect to
the maximum value in the s > 0 region.
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Figure 15: Profiles of the ∇Pi, viz and viθ contributions to ωE×B showing that all three
are of the same order of magnitude. The viz profile is peaked on axis. The normalization
is made with respect to the maximum value of the ∇Pi contribution in the s < 0 region.

Figure 16: Increase of the normalized ωE×B maxima due to the increase of the magnetic
shear. Both velocity components have Gaussian-like profiles.

Figure 17: Increase of the ωE×B extremum in the s < 0 and decrease in the s > 0 regions
due to the increase of ∆q. The profiles are obtained for viz Gaussian-like and viθ = 0 and
are normalized with respect to the s < 0 extremum of ωE×B for ∆q = 4.

Figure 18: Increase of the normalized ωE×B maxima due to the outward shift of the
position of qmin for purely toroidal Gaussian-like flow.

Figure 19: Increase of the ωE×B-extrema as qmin takes larger values when both velocity
components have Gaussian-like profiles. In this particular case the increase of the extre-
mum in the s > 0 region is very small. The profiles are normalized with respect to the
s > 0 maximum of ωE×B for qmin = 3.

Figure 20: Increase of the ωE×B extrema caused by the increase of the flow shear for viz

peaked and viθ 6= 0. The normalization is made with respect to the ωE×B extremum in
the s > 0 region for h = 0.1.

Figure 21: Increase of the normalized ωE×B-extrema caused by inversion of a Gaussian-
like toroidal velocity.
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Figure 1: Safety factor profile in connection with Eq. (12) compatible with the experi-
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1 ___

---

ρ

P (ρ)/P (0)

∆q = 4

∆q = 14
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Figure 3: Toroidal current density profiles for two values of ∆q which show the hollow
shape and the reversal in the outer plasma region. The profiles are normalized with
respect to the maximum of Jz for ∆q = 4.
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Figure 7: Decrease of the normalized |Er| maximum when qmin increases for ∆q = 4,
rmin = 0.5, peaked viz and Gaussian-like localized viθ (h = 0.001).
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showing that all three contributions are of the same order of magnitude. The viz profile
is peaked on axis. The profiles are normalized with respect to the extremum of the ∇Pi

contribution in the s < 0 region.
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Figure 9: Increase of the normalized |E ′
r| maxima caused by an increase of the magnetic

shear in connection with variation of ∆q. The plots were obtained for viz peaked and
viθ = 0.
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Figure 10: Increase of the |E ′
r| extremum in the s > 0 region due to the increase of ∆q.

The profiles are obtained for viz peaked and viθ 6= 0 and are normalized with respect to
the value of the extremum in the s < 0 region for ∆q = 4.
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Figure 11: Increase of the |E ′
r| extrema as rmin takes larger values for qmin = 2, ∆q = 4,

and peaked purely toroidal flow. Also the positions of the extrema are displaced outwards.
The profiles are normalized with respect to the E ′

r extremum for rmin = 0.5.
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Figure 12: Decrease of the |E ′
r| extremum in the s < 0 region for purely toroidal Gaussian-

like flow due to the increase of qmin. For this particular case of flow the variation of the
other extremum in the s > 0 region is negligible.
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Figure 13: Increase of the |E ′
r| extrema due to the increase of the flow shear for Gaussian-

like viz and viθ = 0. The profiles are normalized with respect to the extremum in the
s > 0 region for h = 0.001.
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Figure 14: A typical ωE×B profile for purely poloidal flow, normalized with respect to the
maximum value in the s > 0 region.
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Figure 15: Profiles of the ∇Pi, viz and viθ contributions to ωE×B showing that all three
are of the same order of magnitude. The viz profile is peaked on axis. The normalization
is made with respect to the maximum value of the ∇Pi contribution in the s < 0 region.
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Figure 16: Increase of the normalized ωE×B maxima due to the increase of the magnetic
shear. Both velocity components have Gaussian-like profiles.
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Figure 17: Increase of the ωE×B extremum in the s < 0 and decrease in the s > 0 regions
due to the increase of ∆q. The profiles are obtained for viz Gaussian-like and viθ = 0 and
are normalized with respect to the s < 0 extremum of ωE×B for ∆q = 4.
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Figure 18: Increase of the normalized ωE×B maxima due to the outward shift of the
position of qmin for purely toroidal Gaussian-like flow.
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Figure 19: Increase of the ωE×B-extrema as qmin takes larger values when both velocity
components have Gaussian-like profiles. In this particular case the increase of the extre-
mum in the s > 0 region is very small. The profiles are normalized with respect to the
s > 0 maximum of ωE×B for qmin = 3.
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Figure 20: Increase of the ωE×B extrema caused by the increase of the flow shear for viz

peaked and viθ 6= 0. The normalization is made with respect to the ωE×B extremum in
the s > 0 region for h = 0.1.

26



0.46 0.48 0.5 0.52 0.54 0.56 0.58

0.2

0.4

0.6

0.8

1

1.2

1.4

___

---

ρ

ωE×B(ρ)/ωc

viz > 0

viz < 0

Figure 21: Increase of the normalized ωE×B-extrema caused by inversion of a Gaussian-like
toroidal velocity.
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