
Nonlinear three-dimensional �ows in magnetisedplasmas K. HallatshekMax-Plank-Institut für Plasmaphysik, EURATOM Assoiation, D-85748Garhing, GermanyE-mail: hallatshek�ipp.mpg.deAbstrat. After a long history of theoretial preditions, turbulene induedpoloidal �ows � �Zonal Flows� (ZF)� are nowadays ubiquitously deteted intokamaks and stellarators. The di�erene in harater of ZFs in a torus inomparison to those in a ylinder is disussed. The redution in symmetry leadsto a fundamentally three-dimensional �ow pattern, a seond osillating �ow type,and several additional interation mehanisms between �ows and turbulene equalin importane to the perpendiular Reynolds stress of the two-dimensional �owsin a ylinder.PACS numbers: 52.35.Ra, 52.55.Fa, 52.65.KjSubmitted to: Plasma Phys. Control. Fusion1. IntrodutionSine the �rst identi�ation of global osillating poloidal �ow ativity in the D3Dtokamak [1℄ � so alled geodesi aousti modes [2℄ (GAM) � these and even the harderto measure stationary "Zonal Flows" (ZF) have been observed in many more magnetion�nement devies (AUG, CHS, H-1, HL-2A, JFT-2M, Jet, JIPP-T2, Textor, TJ-2, T-10) [3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄ and have turned out to be an ubiquitousphenomenon. As one of the rare suesses of plasma theory, both types of �ow hadbeen predited beforehand by analyti onsiderations [13, 14℄ and numerial turbulenesimulations [15, 16, 17℄. In ontrast to the majority of plasma exitations, the �owsare not diretly driven by gradients in temperature and density but are seondaryinstabilities of the gradient driven turbulene [18, 19℄ or neolassial heat �ows (viavariants of the Stringer instability [20, 21℄). For this reason, they are bene�ial toon�nement and a hot topi in ontrolled fusion researh.2. Zonal �ow observationsZonal �ows were originally known just as planet-spanning latitudinal winds.Partiularly striking are the ZFs on Jupiter, whih are onneted to the brown andwhite stripes [22℄. Suessful models for the generation of Jovian ZFs are based onthe speial properties of two-dimensional turbulene. The atmospheri turbulene is



Nonlinear three-dimensional �ows in magnetised plasmas 2hypothesised to be quasi-two-dimensional either due to vortex alignment by the fastrotation [23℄, or due to the restrition of the turbulene to a thin weather layer [24℄.The reognition that a strong magneti �eld aligns plasma onvetive roles in ananalogous way to the planetary Coriolis fores led to the predition of plasma zonal�ows based on inverse asades as early as 1979 [13℄. Probably the �rst omputersimulations of ZFs in a magnetised plasma were those of Hasegawa and Wakatani [15℄.The omputations treated three-dimensional drift-wave turbulene in a ylindrialplasma with sheared magneti �eld for old ions and isothermal eletrons. In theabsene of partile soures or sinks, an initial burst of turbulene produes a poloidal
E ×B-�ow, whih is strong enough to ompletely quenh the turbulene and preventfurther deay of the density gradient. Here, potential vortiity ψ ≡ ∇2

⊥(ñ + φ̃) isexatly onserved, whene the system evolves into a state of minimum free energydensity f ≡ ñ2/2 + (∇⊥φ̃)2/2 [25℄ at given mean square potential vortiity, whihis haraterised by a �nite gradient and stable poloidal �ows. In ontrast, the �owsparallel to the �eld have been shown to be unstable against a spei� drift-instability[26℄ and are not observed to play a signi�ant role in the turbulene simulations.The behaviour of the Hasegawa-Wakatani-system an be regarded as the limitingase of the general situation with less onserved quantities. Tokamak ore simulationswith realisti toroidal geometry within the gyro�uid [16℄ and gyrokineti framework[17, 27℄ also found turbulene generated ZFs. These �ows usually just redue theturbulene level by a fator 4-10. Complete suppression ours only very lose tomarginal stability seemingly upshifting the instability threshold [28℄. The �ows'tendeny to redue the turbulene is aused by the shearing of the turbulene [29℄ andby drawing on the turbulene free energy (kineti energy and �utuation energy bymodi�ation of the ross phase of �utuations in potential and partile distribution).While the latter e�et is the dominant one in the ylindrial drift wave senario,the former is dominant for toroidal instabilities � these are trapped at the outboardmidplane and annot easily �unshear� themselves by propagating along the �eld lines.(The turbulene redution e�et and the observed E × B-�ow feature onnetedwith the H-mode was the dominant motivation for initial analyti studies of �ows[29, 14, 30℄.)From the ore studies, the �ows in a torus appeared to be rather similar to theylindrial ones. In ontrast, toroidal edge turbulene omputations appear not to haveyielded signi�ant stationary �ows. In retrospet, the �ows observed in some of them(in pursuit of the H-mode [31℄) seem to be either transient due to parameter hangesand initialisation e�ets, or due to GAMs. On the other hand, GAMs, osillating �owmodes [2℄ (some more details follow), are frequently enountered in edge simulations[32℄ while being of minor importane for the ore turbulene ase [33℄.Failitated by the spetral peak aused by their �nite osillation frequeny, theseGAMs have been identi�ed in tokamaks well before the stationary zonal �ows [1℄ byFourier analysing the Doppler spetrosopy signal of the turbulene. The stationaryZFs have been identi�ed muh later by double heavy ion beam probes in CHS[4℄. Nowadays it seems to be experimentally settled that GAMs and stationaryZFs our ubiquitously in the edge and the ore of tokamak plasmas, respetively[3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄.



Nonlinear three-dimensional �ows in magnetised plasmas 33. 3D-E�et: toroidiity, GAMs and residual �owsThe super�ial similarity of the ZFs in toroidal ore turbulene and ylindrial driftwave simulations suggests that the mehanism for generation, ontrol of the amplitude,and turbulene interation are idential. So for simpliity most analyti studieshave been arried out in ylinder or slab geometry [14, 18, 19, 29, 30℄, even if theturbulent modes have been desribed toroidally [34℄. Unfortunately, this simpli�ationdisregards that the ZFs ompletely loose the harater of a steady poloidal �ow intoroidal geometry. The ZF-Eigenmodes split into a stationary and an osillatingbranh. The stationary �ows are thereby more properly regarded as parallel (ortoroidal) �ows with a rather subdominant poloidal omponent oupled to them. Theonsequenes of this harater hange have been highlighted by reent turbuleneomputer studies [35, 36℄.The toroidal e�et on the ZFs an be dedued most learly from the frozenmagneti �ux ondition in a low-β plasma. On one hand the magneti �ux is frozeninto the plasma, and thus swept with the �ow. Thereby the �ux density hangesaording to the divergene of the plasma �ow perpendiular to the magneti �eld.Sine on the other hand the magneti �eld an be assumed to be time-onstant due tolow β, the perpendiular �ow divergene must be suh that it ontinuously adjusts thefrozen-in magneti �ux density to the ambient �ux density. Sine the magneti �eldvaries inversely proportional to the distane from the urvature entre, B ∝ 1/R, theperpendiular ross-setion of a �ux tube swept with the �owmust hange proportionalto R. In addition the ar-length of the �eld lines varies ∝ R, whene the volume ofthe plasma trapped in the magneti �eld must be proportional R2 and its densityproportional to 1/R2 ∝ B2.Taking as an example the ASDEX Upgrade tokamak, a �uid element movingfrom the outboard midplane at Ro = 2.1m to the inboard midplane at Ri = 1.1mis ompressed by a fator ni/no = R2
o/R

2
i = 3.6. The pressure � and the thermalenergy density � would hange adiabatially by a fator pi/po = (ni/no)

5/3 = 8.6. Itis ertain that the small residual �ux surfae averaged turbulene fores responsiblefor the ZFs are inapable of ausing suh an enormous pressure inrease, exeedingby far the internal energy density. Instead, any poloidal momentum will just ause asmall motion, whih is immediately stopped and reversed by strong restoring foresdue to the plasma ompression. What results is an osillation, the �geodesi aoustimode� (as the ompression is aused by the geodesi urvature-omponent of the �eldlines, i.e., the omponent tangential to the �ux surfae).From this onsideration � whih is just a diret appliation of the ylindrialZF onept to the toroidal ase � it seems logial to onlude, that turbuleneindued stationary �ows are ompletely ruled out in toroidal systems, with the possibleexeption of (unreasonably) slender high aspet ratio mahines. However, an alteredform of the stationary ZFs is sometimes saved by another e�et absent in a ylinder:the generation of a �ow omponent parallel to the �eld lines, whih anels the plasmaompression due to �eld urvature. Sine the parallel omponent is suseptible toinstabilities and turbulent damping, the toroidal ZFs are learly weaker than the onesin a ylinder. The ruial question is now whether they retain the harater of apoloidal �ow or essentially turn into a parallel �ow pattern.Taking for example a irular high aspet ratio tokamak, the poloidal �ow



Nonlinear three-dimensional �ows in magnetised plasmas 4divergene due to the frozen �ux argument is
∇ · vp = vp · ∇ lnR2 = 2

vp,R

R
= 2

vp sin θ

R
, (1)where vp is the poloidal veloity and vp,R is its (major) radial omponent. This hasto be anelled by the parallel �ow divergene

∇ · v‖ = ∂‖v‖ =
Bθ

B r
∂θv‖ ≈ Bθ
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∂θv‖ =

1

qR
∂θv‖, (2)where q is the safety fator, the number of toroidal windings per poloidal winding ofa �eld line. This balane is solved by v‖ = −2qvp cos θ. The parallel kineti energydensity averaged over θ (indiated by 〈〉) is

ρ

2
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〈4q2v2p cos2 θ〉 = 2q2
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2
v2p, (3)where ρ is the mass density. The parallel kineti energy an be desribed by ane�etive poloidal mass density as

ρ

2
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‖ + v2p〉 =
ρ

2
(1 + 2q2)〈v2p〉 ≡ ρe�.

2
〈v2p〉 (4)Sine in a tokamak q varies from 1 in the ore to 3�5 near the edge, the parallel-�ow energy is at least a fator of 2 larger than the poloidal-�ow energy. Thereforea stationary ZF is always more of a parallel �ow than a poloidal one. Approahingthe edge the ratio beomes 18�50 and the poloidal �ow omponent all but disappears!In this light, the absene of stationary poloidal �ows in edge turbulene simulationsappears quite natural.For ollisionless plasmas, the enhanement of the e�etive mass (idential to theinverse fration of residual �ow or the neolassial enhanement of polarisation) hasbeen omputed by Rosenbluth and Hinton [37, 38℄ as ρ = ρe�etive(1 + 1.6q2

√

R/a),provided R ≫ a. The ollisionless inertia is always larger than the �uid one, sineall the divergenes of the poloidal heat �ux (and even higher moment �uxes) haveto be anelled by separate parallel �ows, inreasing the parallel kineti energy. Forwavelengths below the banana width, the polarisation su�ers ut-o� e�ets, whihresults in a ontribution proportional to λ2
r (λr is the ZF radial wavelength). Thesame always happens in a stellarator [39, 40℄, whose unon�ned orbits an be regardedas in�nitely wide banana orbits.The GAM frequeny an be derived by balaning the time averages ofompressional and kineti energy. The spei� energy invested in ompressing a �uidelement of volume V , so that the pressure inreases by δp, is
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, (5)where δV is the volume hange, the fator 1/2 arises beause during ompressionthe resistane rises from zero to the full δp, and γ stems from the adiabati gas law
pn−γ = const. The relative hange in density was obtained from the time integral of(1). With 〈sin2 θ〉 = 1/2 and the referene sound speed cs =

√

p/ρ =
√

(Ti + Te)/mi,the time and �ux surfae averaged energy balane reads
ρ
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√
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. (6)In a tokamak plasma it is usually best to regard the eletrons as isothermal (γe = 1)and the ions as adiabati (γi = 5/3), whene the oe�ient to be used is the mean,
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γ = 4/3. The ollisionless orretion is ωoll.less =

√

33/32ω�uid [41℄. (This an also beobtained by omputing the e�etive γi,kineti = 7/4 ⇒ γkineti = 11/8 = 33/32γ�uid.)Judging from the frozen �ux argument, GAM osillation should exist quitegenerally in urved magneti �elds whih at least partially follow �ux surfaes. (For
β ∼ 1, the magneti �eld is not rigid and ontributes to the energy balane.) Anastrophysial example may have been found by SUMER (solar UV spetrometer) onthe SOHO spae raft [42℄: Observed were slow Doppler osillations of solar oronalloops with periods of order of 10min, whih are typial sound wave frequenies, albeitthe harateristi intensity osillations were absent in the observations. Interpreted asGAMs � with equally ompatible frequeny �, no intensity osillations are expeted,sine the sight line averages over the expanding and ompressing side of the oronalloop.4. Zonal �ow generation and dampingWhile ultimately the quasi two-dimensional harater of the turbulene is responsiblefor the spin up of the otherwise stable ZFs, the preise reasons depend on the spei�senario. Generi hydrodynami 2D-turbulene transfers energy in small spetral stepsfrom small sales up to the largest sale �ows, i.e., in an inverse energy asade [43℄.(This ounter-intuitive �ow of energy is required by the onservation of enstrophy in2D.) Somewhat di�erently, in magnetised plasmas the turbulene (ion-temperature-gradient modes, resistive ballooning modes, drift waves, trapped eletron modes, et.)is on�ned to well de�ned wavenumber bands at sales muh smaller than the minorradius. (If an instability atually does reah up to the largest sales, suh as idealballooning modes, the result is usually atastrophi.) The energy is transferred in onebig nonloal spetral step from the turbulene to the �ows. Sine a large sale �owovers many turbulene eddies, the average fore on the �ow is well-de�ned and anbe represented by the divergene of the turbulent transport of poloidal momentum,the Reynolds stress, whih depends deterministially on the partiular irumstanes(not the least of whih is the presene of ZFs themselves). The majority of analyti ZFstudies have been devoted to the various mehanisms whih an indue the turbuleneto produe poloidal Reynolds stress.One mehanism depends on the dispersive nature and non-zero group veloity ofmost of the turbulene modes. The Reynolds stress is often roughly proportional tothe radial group veloity, or synonymously, the Poynting vetor [14℄ of the modes. Inase of a strong spatial variation of the turbulene level, the turbulene modes tendto drift from the more turbulent region to the stable region, while at the same timetransferring poloidal momentum and reating a poloidal �ow. This idea was laterre�ned towards the �beah model� of the H-mode [30℄. Moreover, onsider a modewith vanishing vgroup,r ≡ ∂kr

ω = 0 at partiular radial and poloidal wavenumber, krand kθ, respetively. An ambient shear �ow will alter the radial wavenumber withtime, kr(t) = −tkθ∂rvθ + kr(0), whih subsequently auses non-zero radial groupveloity. Due to their in�uene on the group veloity, ZFs an aelerate, brakeor even trap wave pakets. Sine the group veloity entails Reynolds stress, wave-trapping ampli�es the �ow if the signs in the dispersion relation are right. This typeof argument makes the theory ompletely analogous to the theory of kineti plasmainstabilities, opening up a rih �eld of appliations and extensions. Examples are themodulational instability [18, 19℄, its extension to toroidal waves [34℄, theory of thenonlinear evolution and saturation [44℄ (loosely speaking if the wave-troughs are full),
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Figure 1. Instantaneous pro�les at a later stage in an ITG simulation from[35℄. Top: poloidal �ow 〈vθ〉 (solid), parallel return �ow −〈cos θv‖〉/q (dashed).Middle: shearing rate 〈∂rvθ〉. Bottom: poloidal Reynolds stress, negative e�etiveparallel stress 2q〈ṽr ṽ‖ cos θ〉. Note the good math between �ow and return �ow,poloidal and parallel stress, and the orrelation between shearing rate and stress.and appliation of the theory to large sale onvetive ells [45℄.The results of these theories should not be taken too literal, sine in realitytokamak turbulene annot be onsidered weak. Nevertheless, dispersive wavetrapping and the proportionality between Reynolds stress and Poynting vetor anbe readily observed in the simulations (see e.g. in [32℄). Alas, the wave troughs arerather �leaky� for toroidal modes and the strong nonlinear interations prevent themodes from travelling signi�ant distanes.In the ase of very strong turbulene or non-dispersive modes, far less an besaid. Still, for su�iently anisotropi turbulene, a negative turbulene visosity, andhene an ampli�ation of ambient �ows is predited [46℄.All of the above theories regard the large sale ZFs as purely poloidal �ows (evenif the enhaned inertia is taken into aount) and should stritly speaking be appliedonly to a ylinder. As we have seen in setion 3, the parallel �ow omponent isneessary for the �ow to persist. Without it, plasma ompression ours, resulting ina restoring fore stopping the �ow.In fat, the linear braking of weakly ollisional ZFs by ollisions an be viewed asthe damping of the parallel �ow omponent by ollisions with a damping rate of order
νii [38℄. If only the perpendiular omponent were a�eted by ollisions, the dampingrate would be smaller by the e�etive inertia fator ∼ (1 + 1.6q2/

√
ǫ)−1.Muh more important, the turbulene tends to reshu�e the parallel momentum inradial diretion. Detailed data about the radial transport of the parallel ZF-omponentan be gleaned up to now only from turbulene simulations. It turns out that the�ows evolve into an equilibrium between the driving poloidal Reynolds-stress and theturbulent braking fore on the parallel �ow omponent [35, 36℄ as shown in �gure 1.Were it not for the parallel braking, the ZFs would grow rapidly (within one soundtransit time) and to muh higher amplitudes. (It is thus inappropriate to searh forthe ontrol mehanism for the �ows by only looking at the poloidal Reynolds stress.)To judge the importane of the parallel momentum di�usion, one may applythe mixing length estimate to both the poloidal negative turbulene visosity andto the parallel positive turbulene visosity. The turbulent momentum di�usion



Nonlinear three-dimensional �ows in magnetised plasmas 7oe�ient should thus be of the same order as the anomalous heat di�usion oe�ient.(This is supported by the experimental �nding that toroidal momentum and energydi�use equally fast [47℄, noting that there is little di�erene between parallel andtoroidal momentum in a tokamak.) Both visosities lead therefore to the same kinetienergy ampli�ation/damping rate, respetively. The di�erene is that the poloidalvisosity ats only on the poloidal �ow, whose energy density is a fator 1/(2q2)(√ǫ/(1.6q2) ollisionless) smaller than the parallel �ow's energy density. Thus thedamping inreases relative to the drive proportional to q2. This is the reason for theomplete absene of stationary ZFs in the edge region of tokamaks, where q ∼ 3 − 5.(On a side note, this fat onfounds H-mode theories based on the ampli�ation ofpoloidal �ows by Reynolds stress.) It may be mentioned that the parallel �ows arealso subjet to a drift type instability [26℄. For non-marginal ITG turbulene thisinstability seems, however, to be negligible in omparison to the turbulent damping[35℄. The desribed fores on the parallel �ows also appear in the ollisionless �owtheory by Rosenbluth and Hinton [37℄. The relevant onstrut is the odd soure-term in equation (13) therein, whih represents the di�erene between partile sourerates with positive and negative momentum, in other words, the parallel momentuminjetion rate.The importane of the parallel stress has been on�rmed experimentally in theTJ-II stellarator by measurements with reiproating Mah probe arrays [11℄. Themagnitude of the stress was suh that by itself it would have hanged the parallelMah numbers on a time onstant of the order of 100µs. In agreement with the abovemixing length arguments this orresponds to the relevant loal energy transport timesales.5. Transition to geodesi aousti modesSine in a tokamak edge (with q > 2−3) the parallel �ow omponent ontains far moreenergy than the poloidal E × B-�ow, the losses due to the positive parallel visosityoutweigh the gains due to negative poloidal visosity e�ets, ruling out stationaryedge ZFs. GAMs are of ourse allowed, even failitated by the elimination of theparallel �ows, whih would otherwise tend to short-iruit the assoiated pressureperturbations.Core turbulene simulations have always yielded a peak at the GAM frequeny[33℄, whih, however, has a very weak e�et on the turbulene. This is beause theGAM frequeny is muh higher than the loal turbulene frequenies, due to lowgradients and high speed of sound (ompare (6)). The turbulene averages overomplete GAM periods, and the resulting net shearing e�et on the turbulene issmall.In ontrast, at the edge of a tokamak, the sound veloity is muh smaller dueto lower temperature, and the turbulene frequenies higher due to high gradients,whene the GAMs are as e�etive at shearing eddies as stationary �ows. In addition,the wave trapping e�ets mentioned in setion 4 in onjuntion with the osillationprodue a harateristi modulation of the turbulene in time and spae [32℄.The modulated transport is the root of two di�erent drive mehanisms spei�to the GAMs (apart from the perpendiular Reynolds stress). On one hand, theshear �ows break the up-down symmetry of the turbulene, ausing an up-downasymmetri transport omponent. The transport asymmetry subsequently a�ets thepressure asymmetry [32℄ � one of the phases of the GAM �, amplifying or weakening



Nonlinear three-dimensional �ows in magnetised plasmas 8it, depending on the relative phase of the transport asymmetry. The orrespondingGAM growth rate has been omputed for a simple turbulene asymmetry model in[48℄. On the other hand, the osillating transport modulates the pressure pro�le, whosegradients are proportional to the bakground diamagneti veloity, vdiamagneti =
(|∇ lnn| + |∇ lnT |)T/B. Neolassial e�ets onnet the diamagneti veloity withthe zero-point of the GAM osillation. Consequently, the indued osillation of thiszero-point an transfer energy into the GAMs � just as moving the suspension exitesa pendulum.All these mehanisms an also extrat energy from the GAMs, dependingon the relative phase of the oupling term to the osillation. In addition, thepressure �utuations assoiated with the GAM are naturally subjet to erosion due toanomalous or neolassial transport e�ets. As will be disussed in more detail in thenext setion, toroidal e�ets ouple the GAMs to parallel �ows (or more auratelysound waves), at least to some degree. As with the stationary �ows, these paralleldegrees of freedom are subjet to turbulent braking and ollisional damping and thusrepresent another energy sink for the GAMs. Due to the �nite frequeny of the GAMsthe parallel degrees of freedom are also Landau damped in the absene of dissipation,whih leads to damping rates on the order of ∼ ωGAM exp(−q2) [38℄.6. GAM frequeny for real tokamaksReal tokamaks have of ourse shaped �ux surfae whih are not onentri. Negletingat �rst parallel �ows, the e�ets of �ux surfae geometry may be desribed by twoparameters. Beause the �ow potential is a �ux surfae quantity, the poloidal variationof the distane between �ux surfaes auses an eletri �eld variation and thus avariation of the E × B-veloity. This modi�es the �ux surfae averages enteringthe energy balane relation for the frequeny (6). The averages, relative to thereferene veloity vp,0 at the outboard mid-plane, an be desribed by two geometrialoe�ients for the kineti and ompressional energy,
〈v2p〉 = C1v

2p,0, C1 ≡ 〈(|∇ψ|/B)2〉
|(∇ψ)0|2/B2

0

≈ 〈(∇ψ)2〉
|(∇ψ)0|2

, (7)
〈(v · ∇ lnB)2〉 = C2v
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〈(F∂‖B−1)2〉
|(∇ψ)0|2/B2
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≈ 〈(∂zψ)2〉
|(∇ψ)0|2R2

0

, (8)where F ≡ BφR is one of the �ux surfae quantities of the Grad-Shafranov equationand the index 0 signi�es quantities taken at the referene position at the outboardmidplane, z is the vertial oordinate, and the approximation holds for R ≫ a. Sine
ψ is the �ux-surfae label, (∇ψ)2 an be interpreted as the inverse squared distaneand (∂zψ)2 as the inverse squared vertial distane of neighbouring �ux surfaes as afuntion of θ.Applying the energy argument of setion 3 one arrives at the frequeny
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Figure 2. Top: Frequeny of sound wave branhes (thin solid), the GAM (thik),and pure GAM frequeny (dashed) versus safety fator q. The dominant modenumber m of the parallel displaement �eld is indiated for eah branh. Crossingof the GAM branh hanges m by one for eah sound wave. Bottom: ratio ofperpendiular to parallel kineti energy; the sound wave branh with maximumratio is the GAM. Equilibrium parameters: R = 1.6m, a = 0.5m, κ = 1.5,
R′ = −0.3, aκ′/κ = 0.4. The pure GAM frequeny in a onentri irularplasma would be ω/(

√
γcs) =

√
2/(1.6m) = 0.9m−1.For an ellipti Miller-equilibrium [49℄ in the high aspet ratio limit, the requiredratio an be given analytially as

〈(∂zψ)2〉
〈∇ψ2〉 =

P

1 + (κ2 − 1)(1 − P )
, P ≡ 2

(1 +Q−1)

(

1 +
√

1 + 2aκ′/κ
1+Q

) , (10)where Q ≡
√

1 −R′2, a is the minor radius at the midplane, κ is the elliptiity, R′ and
κ′ are the di�erential Shafranov shift and elliptiity. (The prime indiates derivativewith respet to the minor radius at the midplane.)Although the GAM frequeny is normally not resonant with the parallel soundtransit frequenies, the plasma will move a little along the �eld lines in response tothe parallel pressure gradients aused by the GAM. The oupling turns the frequenyalulation into an eigenvalue problem whih an only be solved numerially [50℄.Figure 2 shows an example spetrum of axisymmetri aousti eigenmodesobtained numerially for a Miller-equilibrium [49℄, together with a plot of the �pure�GAM-frequeny alulated without the oupling (note that the dependene on q enterspredominantly due to the �nite aspet ratio in this ase, and is absent for R ≫ a).Sine the pure GAM frequeny has intersetions with all the sound wave branhes towhih it ouples, it is not trivial to identify the branh orresponding to the GAMin the absene of oupling. A little bit away from the resonanes with individualaousti branhes, this an be done by seleting the mode with the highest ratio ofperpendiular to parallel �ow energy (bottom of �gure 2 and top highlighted graph).It is interesting to note, that the GAM swithes between ontinuous aoustibranhes at the resonanes with the sound waves, and that the dominant mode
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Figure 3. Measured GAM frequenies (points), and alulated linear GAMfrequenies inluding sound wave oupling, using a Miller equilibrium [49℄reproduing the parameters R, r, R′, κ, κ′ of respetive the nominal equilibrium.Experimental data from [52℄.number of a ontinuous branh is redued by one, when q moves from above theupper resonane to below the lower resonane.These features an be understood by onsidering how the branhes for the oupledspetrum arise from the pure, unoupled modes. Firstly, the unoupled pure GAMbranh intersets with various sound wave branhes as q traverses from high to lowvalues. The oupling between the GAM and the sound waves will tend to push theGAM frequeny and the losest sound frequeny branh away from eah other. Eahbranh-rossing is resolved into two smooth transitions between the GAM branh andone of the sound wave branhes. As result, the GAM-branh is broken down intoseveral segments, whih onnet sound-wave branhes with poloidal mode numberdi�ering by one.Partiularly strong damping due to the parallel turbulent stresses (see previoussetions) is expeted at the resonanes with the sound waves, i.e., at the branhswithing loations. This ould be an explanation for the experimentally observedwindows of GAM ativity in D3D [51℄.Let us now ompare the linear mode frequenies with experimental values fromASDEX Upgrade [52℄ (�gure 3). Sine the strength of kineti e�ets and parallelheat ondution may be debated, the linear mode frequenies have been plotted forthe range of adiabati oe�ients from γ = 5/3 (no heat ondution) to γ = 1(in�nite parallel heat ondution, isothermal), where the nominal value is γ = 4/3(see setion 3). Although the frequenies generally follow the saling with the soundveloity cs ∝
√
T , good agreement ours only for the data points from the oreplasma inside the pedestal (disharge 20787 for √

Te + Ti > 20
√eV ). In the highgradient regions of the edge (outside the pedestal) the experimental frequenies areeither higher (disharges 20856, and 20787 for √Te + Ti < 20

√eV ) or lower (disharge18783) than the alulated linear frequenies.
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Figure 4. Left: Colour oded �ow veloity 〈vθ〉 versus minor radius and time.Right: Linear GAM-frequeny and Fourier transformed �ow spetrum, whih isnonlinearly upshifted by 30%. Simulation parameters (for de�nition see [32℄ andreferenes therein) αd = 1, ǫn = 0.03, τ = 1, q = 3.2, s = 1, ηi = 4.The high gradient regions of the edge plasma are notoriously hard to haraterise,and the deviation ould be simply due to slight inauraies of the magneti struturethere. Another possibility is the turbulene itself: The turbulene-�ow interationterms ould just as well push the GAM instead of driving it, i.e., hange the real GAM-frequeny instead of just providing the imaginary part orresponding to the growthof the �ows. Indeed, in turbulene simulations at omparatively high gradients theGAM frequeny an be up to about 30% larger than the linear value (�gure 4).7. SummaryAnalogous to the well known zonal winds in the atmosphere of gas planets, the plasmazonal �ows are exited due to the quasi-2D-restrition of the turbulene perpendiularto the magneti �eld or the axis of rotation, respetively. Di�erent from the purely2D planetary zonal winds, the inhomogeneous magneti �elds frozen into the movingplasma exite strong �ows parallel to the �eld, as the irulating �ux ropes ompress orexpand, to adjust to the ambient onditions. Depending on the magneti geometry, theparallel �ow may have the e�et of a hanged e�etive inertia (typially in tokamakore, where the safety fator is around one) or an be suh a strong energy drainthat a stationary �ow pattern beomes impossible and an osillation between plasmaompression and �ow results (usually in the tokamak edge, with q ∼ 3 − 5).This 3D-nature of the plasma �ows auses a omplex interplay of the parallelturbulent stresses, ross �eld transport, and oupling to parallel sound waves, whihis absent in "�at" slab or ylindrial models. As for fusion appliations, these notionshave predited testable onnetions between parallel �ows and Reynolds stress on onehand, and the perpendiular �ow on the other. They an explain the reently observedradial windows of GAM ativity and open new possibilities for transport redution bydesigning optimal geometries for the �ows.More general, the desribed e�ets are expeted for any type of urved �uxsurfae, whih opens a so far untapped �eld of appliations in solar and astrophysialplasmas, an example of whih are the osillations of oronal loops.[1℄ MKee G R et al 2003 Phys. Plasmas 5 1712[2℄ Winsor N et al 1968 Phys. Rev. Lett. 11 2448[3℄ Conway G D et al Plasma Phys. Control. Fusion 47, 1165 (2005)
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