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Introduction

Despite the propagation of lower hybrid (LH) waves in a tokamak plasma has been intensively

studied there are still some debated issues. The most challenging one is known as the spectral

gap problem. Although many explanations have been proposed in the meantime, no one is yet

fully accepted. One of the candidates to explain the observed wave spectrum broadening and the

spectral gap filling is the diffraction phenomenon [1] that has not been taken into account in the

majority of former studies. The reason of the disregard is that the propagation of LH waves in

plasmas is usually investigated on the basis of ray tracing [2]. This technique describes correctly

the refractive effects but does not take into account the diffractive phenomena. In particular, in

most cases of practical interest for LH waves, the sufficient condition of the applicability of the

ray tracing ( i.e., W
� �

λL, where W is the beam width, λ the wavelength and L the plasma

inhomogeneity scale) is violated [3,4]. In other words, the diffraction effects become significant

and can strongly affect both wave propagation and absorption.

For these reasons, the beam tracing method [5] is employed in this paper. This approach re-

duces the full wave equation to a set of ordinary differential equations, including the ray tracing

as a particular case, and also describes the diffraction effects of the wave. In order to evaluate

the significance of the diffraction for LH wave propagation, a new code, called ��������	�
 , is pre-

sented which solves the beam tracing equations in a tokamak geometry for arbitrary launching

conditions and for analytic magnetic equilibria. The importance of the diffraction effects for the

space broadening of the LH wave beams is shown by comparing beam tracing and ray tracing

results for typical tokamak parameters.

Outline of the beam tracing technique and brief description of the ��������	�
 code

The beam tracing method provides a solution of Maxwell’s equation ∇ � ∇ � E  ω2

c2
εεε � E � 0

(where εεε is the cold plasma dielectric tensor) in the form

E � r ��� A � r � e � r � eiκ � s � r ��� iφ � r ��� (1)

where κ � 2πL � λ is a large dimensionless parameter , A and e are, respectively, the amplitude

and the unit polarization vector. The two functions s � r � and φ � r � are given by (summation over
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repeated indices is adopted)

s � r ��� s
0
� r ��� Kα � τ ��� xα  qα � τ �! �� 1

2
s

αβ
� τ ��� xα  qα � τ �! "� xβ

 q
β
� τ �! (2)

φ � r �#� 1

2
φ

αβ
� τ ��� xα  qα � τ �! $� xβ

 q
β
� τ �! (3)

where qα � τ � and Kα � τ � are, respectively, the components of the position vector % xα &(' r and

the wave vector % kα &)' k that satisfy the set of Hamiltonian differential equation of the ray

tracing
dqα

dτ
� ∂H

∂kα * dKα

dτ
�+ ∂H

∂xα * (4)

where H is the (real) determinant of the dispersion tensor ΛΛΛΛΛΛΛΛΛ �+� c2 � ω2 ��� kk  k2I ��� εεε .

The remaining functions s
αβ
� τ � and φ

αβ
� τ � which are connected, respectively, with the cur-

vature of the wave front and the width of the wave packet, obey the equations

ds
αβ

dτ
�, ∂ 2H

∂xα ∂x
β

 ∂ 2H

∂x
β

∂kγ
sαγ  ∂ 2H

∂xα∂kγ
s

βγ
 ∂ 2H

∂kγ ∂k
δ

sαγs
βδ
� ∂ 2H

∂kγ ∂k
δ

φαγφ
βδ * (5)

dφ
αβ

dτ
�+ - ∂ 2H

∂xα ∂kγ
� ∂ 2H

∂kγ ∂k
δ

s
αδ . φ

βγ
 -

∂ 2H

∂x
β

∂kγ
� ∂ 2H

∂kγ ∂k
δ

s
βδ . φαγ / (6)

All the derivatives in the Eqs. (4-6) are calculated at xα � qα � τ � and sα � Kα � τ � and, moreover,

the matrices s
αβ

and φ
αβ

are symmetric. There are two other relations connected with this

two matrices, namely, s
αβ

∂H � ∂k
β
� ∂H � ∂xα � 0 and φ

αβ
∂H � ∂k

β
� 0 which can be used as

constraints to control of the solution accuracy.

In order to investigate LH propagation with allowance for the diffraction effects, a new code,

called ��������	�
 has been developed, which solves numerically the Eqs. (4-6). Part of the code’s

framework is based on 02143�����	�
 code [6] and the main features are� i � the plasma dielectric tensor is computed in the cold plasma limit and in the range of LH fre-

quency approximation (i.e., ω2
ci 5 ω2 5 ω2

ce). In particular, the elements of the (cold) dielectric

tensor are [7]

S � 1 � ω2
pe

ω2
ce

 ω2
pi

ω2 * D � ω2
pe

ωωce * P � 1  ω2
pe

ω2
 ω2

pi

ω2 * (7)

where ωce (ωci) is the electron (ion) cyclotron frequency and ωpe (ωpi) the electron (ion) plasma

frequency;� ii � the dispersion function H can be chosen to be the full electromagnetic dispersion function

HELM or the electrostatic dispersion function HELS and which read [7], respectively,

HELM � SN46 87:9 S  N2;=< � P � S �> D2 ? N26 � P @=9 S  N2;=< 2  D2 A and (8)

HELS � SN26 � PN2; (9)
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where N 6 (N ; ) is the perpendicular (parallel) component of the refractive index with respect to

magnetic field;� iii � arbitrary initial conditions for the wave beam can be assigned;� iv � the plasma equilibrium is prescribed analitically.

Numerical results

By means of the ��������	�
 code, one can show the importance of diffraction effects during

the propagation of LH beams in a tokamak. In particular, in the example shown here, JET

parameters are employed. The major radius is R
0
� 296 cm, the minus radius a � 125 cm, the

magnetic field B � R
0
�B� 3 / 45 T, the frequency ω � 2π � 3 / 7 GHz. The safety factor profile is q �

1 � 3ρ2, where ρ is the normalized minor radius. The central electron density is ne C 0 � 3 � 1013

cm D 3. The initial wave front is flat and has a circular symmetry in a cross-section orthogonal

to the group velocity, the beam width being W � 4 cm. The initial value of parallel refractive

index is N ; C 0 � 1 / 8.

In Fig.1(a) the 3D propagation of the LH beam launched in equatorial plane is plotted, com-

paring the ray tracing (blue line) with the beam tracing (red line). The difference betweeen the

two approaches is evident, in particular, the spatial wave beam broadening is very significant

as is shown both in the toroidal projection (cf. Fig. 1(b)) and in the poloidal projection (cf.

Fig. 2(a)). Moreover, in Fig. 2(a), a comparison between a electrostatic and electromagnetic
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Figure 1: (a) Evolution of the LH beam in 3D ;(b) toroidal wave beam propagation: comparison of RT

(blue lines) and BT (red lines).

case is shown. In addition, for both the cases, the ray tracing result is plotted. The significant

difference between elctromagnetic and electrostatic case is due to the small initial value of N ;
(N ; C 0 � 1 / 8). In fact, it can be shown that for large value of N ; the two cases are almost the same,
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Figure 2: (a) Poloidal wave beam propagation: comparison beetween electromagnetic (ELM) and elec-

trostatic (ELS) case. The reference ray (beam axis) and the ray tracing results, for both case, are shown;

(b) N E as a function of normalized minor radius ρ along with the accessibility condition N ENF
acc

and the

electron Landau damping (ELD) criterion N
ELD

.

as it is expected, because for N ; � 1 the electromagnetic dipersion function tends to electro-

static dispersion function � HELM PO HELS � . In Fig. 2(b) one can note the N ; -upshift (red line),

along with the accessibility condition (black line) [7], N ; C acc
� �

S � ωpe

ωce
and the condition of

linear electron Landau damping (ELD), NELD � 6 Q 5�
Te � keV � (see Ref.[8]), where it is assumed a

parabolic profile of electron temperature with Te C 0 � 5 keV.
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