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Verification of the CAS3D-perturbed equilibrium code
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1 Perturbed equilibria
A numerical computation of an ideal MHD equilibrium may suffer from the following
short-comings. In the tokamak case, an axisymmetric Grad-Shafranov solver is not
suitable if error-fields turn the 2d into a 3d problem. In the stellarator case, equilib-
ria are usually calculated numerically using the assumption of integrability, or nested
magnetic surfaces, as it is done for example in the vMEC code [1]. In many applica-
tions, especially for plasma configurations optimized for good magnetic surfaces, this
is a sufficient approximation. If, however, the island structure of the magnetic field is
expected to be important [2], such as in a stellarator or in a tokamak with some error
field, then numerical tools that calculate the global equilibrium without the assump-
tion of nested magnetic surfaces, such as the piEs code [3], are employed. These
calculations are not only computationally intensive, the presence of rational surfaces
implies that 3D MHD equilibria with smooth pressure profiles do not in general ex-
ist [4]. To compute 3D ideal MHD equilibria, one needs to carefully account for the
singularities, and discontinuites, that arise at rational surfaces. A rigorous mathemat-
ical treatment of a perturbed equilibrium is provided by linear ideal stability theory [5]
which determines the
plasma response to

. SW= &'wW+8*W
small perturbations.

This approach has SW = /(Vp jxB)-Ed’r— —/5 (1)
been implemented

in the cAs3D stabil- 51W = /év (p/ —pnew) +B : V(ﬁmde - Bmetric)} d r ()
ity code [6], which 2

is used here. 82W = 2/{ |V B 5 +yp(V-E)? - (5‘9)2}d3r(3)

2 Ideal MHD energy principle

The ideal MHD equilibrium equation is Vp = 7 x B, with the scalar pressure Vp = p'Vs
a surface function. In Eq. (1), the first term describes the departure from an equilibrium
state, the second term, §2W, is given by the ideal MHD force operator .. The notation
used below may be found in Refs. [6]. In magnetic coordinates, the magnetic field may
be written as B = IV¢ +JV0 + fVs and V8B = —FJ¥,y —F}F.,9, with I and J the currents
and Fp and Fr the fluxes. The covariant component E may be determined from the
metric coefficients as \/ggmetric = F{gs + Fygs0. The scalar analog of the MHD equilib-
rium equation in magnetic coordinates gives rise to the magnetic differential equation
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Figure 1: Top: Rotational
transform in an A = 10
zero-B cylinder configu-
ration. Rational 1-values
are indicated. Left: Normal
displacements versus nor-
malized toroidal flux: Com-
parison of results given
by a cylinder-code (black
dashed lines) and the
CAS3D code (coloured).

o o
Qi\ ellipses between 1/2 and 1/3 resonces
—
_\:\\\\
— OO\
NN AN
—O000N\N N\
OO0 OO N
OO0V
SNNAERIRARRIAY

R-R

00

Figure 2: Left: Normal displacement harmonics with jumps at resonances 1 = 1/2 (red) and 1/3
(black); top: unperturbed case with perturbation prescribed on boundary; bottom: perturbed
case with fixed-boundary perturbation. Right: Quarter of cross-section with the surfaces includ-
ing the perturbation. Inside the innermost resonance (R — Ry < 0.52) the surfaces are circles
due to the shielding; inside 0.52 < R — Roo < 0.8 they are ellipses.
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V&B-VBnge = p'(/g—V"). In equilibrium Bpeic = Bmae- The second term in Eq. (2) de-
scribes the departure of a given set of magnetic surfaces, determining Bmetrim from the
equilibrium, described by B,q- If the plasma-pressure is slightly changed, then the first
term in Eq. (2) also contributes. In Egs. (1) to (3), E is the MHD displacement vector,
and &° = 5 - Vs the normal displacement. In the cAs3D stability code, by means of a
Galerkin method, Egs. (1) to (3) are recast as a system of linear equations, with the
matrix given by Eq. (3) and the right hand side by Eqg. (2). In a perfect equilibrium,
the right hand side vanishes, and the homogeneous problem is solved. The solution is
non-trivial only if inhomogeneous boundary conditions are used. An inhomogeneous
boundary condition for the normal displacement corresponds to applying an error-field
on the boundary, B - Vs = By - VE*; the plasma boundary will be perturbed. A homo-
geneous boundary condition means that a fixed-boundary perturbation is used; the
plasma boundary stays as prescribed. The normal displacement & appears in the
computation of the perturbed surfaces, 7 =7+ (E -1)i, with 7 the outer unit normal.
Resonant error-fields may produce magnetic islands if the corresponding rational sur-
face is inside the plasma. In ideal MHD magnetic islands may be characterized by a
surface current, which prevents an island from opening at the rational surface. The
strength of the surface current is related to a discontinuity allowed in the resonant nor-
mal displacement, &°. The strength of the surface current is related to the width of the
island [5].

3 Discontinuous normal displacement in a cylinder

As part of code validation, the influence of error fields has been studied in cylin-
drical geometry, for an equilibrium with aspect-ratio A=10, vanishing plasma-f, and
rotational-transform 0.66 > 1 > 0.23 (compare Fig. 1). The cas3D results have been
benchmarked with a code for the ideal cylindrical stability [7]. In this code the exte-
rior tearing equation, with singular points at the rationals and the origin, has been
implemented using a shooting and matching technique. The result of the benchmark is
shown in the left frame of Fig. 1. The nine normal displacement harmonics that have
been studied coincide to a very good approximation. From the plasma boundary the
error-field harmonics decay and are completely shielded off by the respective rational
surfaces. Since in a cylinder all perturbation harmonics decouple, they are not influ-
enced by the other rational surfaces.

Prescribing a finite normal displacement in the perfect equilibrium case (homogeneous
problem with inhomogeneous boundary conditions) is equivalent to using a vanishing
normal displacement in a correspondingly deformed plasma state. For a check of this
statement, two of the rational 1-values of the above benchmark have been studied,
1/2 (at s =0.28) and 1/3 (at s = 0.65). If the perfect cylinder equilibrium is perturbed
with a small B; on the plasma boundary, then the respective normal displacement har-
monics are discontinuous at the respective resonant surfaces. The top left frame of
Fig. 2 shows the corresponding cAs3D result, a subset of the above-described bench-
mark calculation. In a second calculation an equivalently helically distorted equilib-
rium was studied, being described by a VMEC equilibrium, which is approximate near
the resonances. In this calculation the second term in Eq. (2) is the driving term g in
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the inhomogeneous problem with homogeneous boundary conditions. The bottom left
frame of Fig. 2 shows the resonant normal displacement harmonics vanishing on the
plasma boundary which represent the first order correction leading to a better equilib-
rium. For the m = 3(2), n =1 harmonic, the magnitude of the jump, |&;,, — émn [, i
0.038 (0.023) in the 355 = 0 calculation as compared to 0.036 (0.022) in the 34’5 =g
case. To see whether the two calculations lead to the same result, the shifted surfaces,
71 =T+ (5 ii)i, have been determined (see the right frame in Fig. 2). Black dashed
lines are for the ?6 = g calculation, red lines for the ,9’5 = 0 calculation. The two sets
of lines coincide to a very good approximation. Outside the resonance closest to the
plasma boundary, here 1 = 1/3, the surfaces are deformed according to the m = 2,3
n =1 perturbation. Between the two resonances, the surfaces are ellipses: The 1 =1/3
resonance screens off the m = 3 perturbation, the m = 2 perturbation remains. Inside
the resonant surface closest to the magnetic axis, here 1 = 1/2, the surfaces are circles,
which demonstrates the complete shielding of the two resonances.

4 Plasma-pressure change in a stellarator
As discussed in Secs. 1 and 2,
the perturbed equilibrium con- — —@o X VMEC v=0

— (L -5) x VMEC v=05
@ 5 + CAS3D v=0

cept can also be used to find  °* Z S E A © Ghsap ve0s
the response of the plasma e
to a small plasma-pressure
change. The first term in Eq. 2
then describes how the devia- .

tion in pressure gradient con- 4 4:\\ i
tributes in the determination " nomalied trsida s T romaediooda s
of the corresponding normal
displacement. As an applica-

tion, the effect on the equi-
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Figure 3: Left frame: Normal displacement harmonics de-
scribing the perturbation of a W7-X variant from () = 0.045
librium due to an increase to 0.048. Only m = 1 harmonics havg been studied. Right
, frame: The enhanced Shafranov shift for the normal dis-
in volume-averaged plasma-p, placement in the left frame, normalized to the respective
from (B) = 0.045 10 0.048, has  ¢rps5-section half-width, ~ 0.2 m at the bean-shaped cross-
been studied for a high-mirror  section, black symbols, ~ 0.7 m at the triangle, red symbols.
W7-X variant, maintaining a

fixed rotational-transform profile. A first calculation has been restricted to normal dis-
placement harmonics with poloidal node number m = 1, and toroidal node numbers
n=—10,-5,0,5,10. The results of this calculation are shown in Fig. 3. The cAas3D (+ in
the right frame) and VvMEC () results are compared on two outboard symmetry lines:
on the bean-shaped cross-section (cross-section half-width ~ 0.2 m, black symbols)
and on the triangular cross-section (=~ 0.7 m, red symbols).
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