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1. Introduction.

As well known the linear properties of plasma waves are fullydescribed by the constitutive

relation that expresses plasma reaction to small fluctuations. In steady state, the relation links

the electric fieldE with the displacementD as

D(r) = (2π)−3
∫

ε̂(r,r− r′)E(r′)dr′ =
∫

dkE(k)ε̂(r,k)eikr. (1)

In the approach of the geometrical optics the relation is usually understood in the local sense.

It means that the plasma response to a plane wave perturbation is assumed to be also a plane

wave. This is fully valid for a homogeneous medium where the plane waves are eigenfunctions.

However, even for a slightly inhomogeneous medium the assumption always violates.

As pointed out in [1] the violation has far reaching consequences and can lead to loss or

wrong description of many physics effects. For instance, the plane-wave-based consideration

cannot properly describe non-Hermitian terms and, as a result, the conservation of energy.

Moreover, the local approach complies with the approximation of the geometric optics but is not

consistent with the more precise quasi-optics techniques that are gaining acceptance in tokamak

applications [2-4]. The correct treatment should be based on the concept of the wave packets

rather than the plane waves. In this contribution, the ideasof Ref.[1] are applied to the beam

tracing equations [5,6] and a simple but self-consistent recipe for including the local dielectric

tensor into the beam tracing equations is presented.

2. Differential constitutive relation.

A space vectorr will be represented in an arbitrary Cartesian coordinates as r = {Xα} and the

wave vector ask = {kα}. Also the tensor summation convention will be employed: a summation

with respect to every repeated index is implied. We introduce a vector function̄k = k̄(r) = {k̄α}
to be defined later and make use of the Taylor expansion

ε̂(r,k) = ε̂(r, k̄)+
∂ ε̂
∂kα

∣

∣

∣

∣

k̄
(kα − k̄α (r))+

1
2

∂2ε̂
∂kα ∂kβ

∣

∣

∣

∣

k̄

(kα − k̄α (r))(kβ − k̄β (r))+ . . . (2)

whereε̂ and all its derivatives on the right hand side are computed atk = k̄(r). This makes

the dependences onk in (2) explicit and allows to calculate integrals in (1) thusobtaining the

differential form of the constitutive relation

D(r) =

[

ε̂(r, k̄)+
∂ ε̂
∂kα

∣

∣

∣

∣

kα =k̄α

D̂α +
1
2

∂2ε̂
∂kα ∂kβ

∣

∣

∣

∣

kα =k̄α

D̂α D̂β + . . .

]

E(r) (3)

Here the differential translation operatorD̂α is defined aŝDα = −k̄α (r)− i∂/∂Xα .
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The only assumption has been employed so far that the Taylor series (2) converges and can be

integrated. Formally, the relation (3) is local but it describes a non-locality through the deriva-

tives with respect tokα andXα . It is clear that the convergence, and therefore the practical

utility, of the series (3) depends on the properties of the wave field E and can be granted if

(D̂α )n E decreases withn fast enough. In what follows, it will be shown that the requirement

is fulfilled when the electric fieldE has a form of a Gaussian wave packet localized along its

space trajectory.

3. Ordering.

Consider weakly inhomogeneous medium in the short wavelength limit. More precisely, we

assume that the refractive and dispersive properties of themedium have the characteristic length

of variationL that is large compared withλ = c/ω so thatκ = Lω/c = L/λ ≫ 1 is a large

parameter. Then our assumption of slow variation means

L∂ ε̂/∂Xα = ∂ ε̂/∂xα = O(κ 0) = O(1), (ω/c)∂ ε̂/∂kα = ∂ ε̂/∂Nα = O(1),

where the dimensional variablesXα andkα are replaced with the dimensionlessxα = Xα /L

andNα = ckα /ω respectively. It is seen that the differential operatorsD̂α and derivations with

respect tokα are included in Eq. (3) in pairs so that we can replaceD̂α ∂/∂kα by ∆α ∂/∂Nα

where∆α = c/ωD̂α = −N̄α (r)− iκ−1∂/∂xα . We rewrite now Eq.(3) as

D(r) =

[

ε̂(r,N)+
∂ ε̂

∂Nα
∆α +

1
2

∂2ε̂
∂Nα ∂Nβ

∆α ∆β + · · ·
]
∣

∣

∣

∣

N=N̄

E(r). (4)

Assume that the electric field has the eikonal formE(r) = A(r)exp{iκS(r)}. We employ the

concept of the complex eikonal and seekS(r) in the form

S(r) = N̄α (r̄)(xα − x̄α )+ 1
2

(

sαβ (r̄)+ iφαβ (r̄)
)

(xα − x̄α )(xα − x̄α )+ · · · (5)

where a new quantitȳr = {x̄α} is introduced. Once the quadratic formφαβ (r̄) is positive definite

the electric fieldE has a form of wave packet exponentially decaying with increasing |r− r̄|.
We observe that

∆α E(r) = eiκS[

(Sα − N̄α )A+κ−1∂A/∂xα ]

= O

(

κ−1/2
)

, (6)

whereSα = ∂S/∂xα . The latter equality in Eq. (6) shows that(∆α )nE has to be ordered as

O(κ−n/2) and follows from the standard estimate [5].

Physically, the ordering means that the propagation properties of the wave packets, i.e. re-

fraction, diffraction and absorption, are due to the small space domain where the wave field

is localized. Remote regions contribute to the plasma response with exponentially decreasing

weight. The estimate (6) shows that the omitted terms in Eqs.(4), (5) should be ordered as

O(κ−3/2) and thus go beyond the accuracy of the asymptotic solution. On the other hand,

straightforward replacing Eq.(1) with the local dispersion relation and taking into account only

the first term in Eq.(4) can result in neglecting essential terms.
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4. Dispersion relation for wave packets.

On substitution the eikonal ansatz and Eq. (4) into the Maxwell equations and repeating all

calculations of Ref. [5] one arrives at the dispersion relation

H = det‖kk−k2
Î +(ω/c)2

Ê ‖ = 0 (7)

where the only difference is that one has to replace the “cold” tensorε̂(r) of Ref. [5] with the

quantity

Ê = ε̂ +
∂ ε̂
∂kγ

∣

∣

∣

∣

k=k̄
(kγ− k̄γ)+

1
2

∂2ε̂
∂kγ∂kδ

∣

∣

∣

∣

k=k̄

(

kγ− k̄γ
)(

kδ − k̄δ
)

. (8)

where the tensor̂ε(r,k) is introduced in Eq.(1) and includes the effects of the spacedispersion.

It remains to define the two vectors̄r = {x̄α} andk̄ = {k̄α}.

Up to this point, they were treated as free independent vector parameters in space and spec-

tral space, respectively. We select now these parameters assolutions to the Hamiltonian set of

equations

dx̄α /dτ = ∂H/∂kα , dk̄α /dτ = −∂H/∂xα . (9)

The equations (9) define the space curve, called the reference ray,r̄(τ )= {x̄α (τ )} and the vector

function k̄(τ ) = {k̄α (τ )} along this curve. Equation (5) shows that the wave field is localized

in the close vicinty of the reference ray. Moreover, the spectrum is localized in the vicinity of

the wave vector̄k. These properties are physics background for Taylor expansions (2) and (5).

The definition ofr̄ andk̄ completes the derivation of the dispersion relation and generalizes the

beam tracing procedure to the media with the space dispersion.

The two functionssαβ andφαβ introduced in Eq.(5) describe the curvature of the wave front

and the divergence of the wave packet, respectively. Equations for these quantities retain exactly

the same form as in [5] except forH that is now defined by Eqs.(7), (8). All results of Ref. [5]

can be word for word repeated with regard to the new dispersion function (7).

The new form of the dispersion relation (7) with the effective dielectric tensorÊ is the main

result of this contribution. It is worth to mention that exactly the same recipe is applicable to

the electrostatic case. Namely, all constructions of Ref. [6] remain valid provided the dispersion

relation of the plasma is written in the formH = kα kβE αβ = 0 whereE αβ are contravariant

components of the effective dielectric tensorÊ defined by Eq. (8). It is also obvious that the

limiting case of no space dispersionε̂ = ε̂(r) follows immediately from (8) because the “cold”

tensor has nok dependence.

5. Discussions and conclusions.

The beam tracing approach provides a solution to the Maxwellequations as an asymptotic

expansion in descending powers of the large parameter
√

κ up to the accuracy ofO(κ−3/2).

As already mentioned the quantity−κφαβ (xα − x̄α )(xβ − x̄β ) in the exponent ofE(r) ensures

that the wave packet is strongly localized aroundr̄ in the configuration space and aroundk̄ in

the spectral space. Because of this property only the close vicinity of the wave packet centre

participates in the plasma response to the electric field andmakes it possible to replace eventu-
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ally the integral constitutive relation (1) with the algebraic dispersion relation (7). Derivation of

Eq.(7) shows that within the accuracy ofO(κ−3/2) one need not keep further terms of expansion

in (2) and (8) that contribute to the higher orders of the asymptotic expansion. Moreover, the

exact constitutive relation is not needed for the beam tracing technique (as well as for any other

quasi-optics approach) because the solution does not support this level of accuracy.

As an illustration to the aforesaid consider the group velocity of the wave packet that follows

from Eq.(9) and is proportional to the quantityVα = ∂H/∂kα . In case of electrostatic waves

one can write

Vα =
∂H
∂kα

∣

∣

∣

∣

k̄α

=

[

k̄ν (εαν + ενα )+ k̄ν k̄µ
∂ενµ

∂kα

]
∣

∣

∣

∣

k̄α

. (10)

The last term on the right hand side describes the influence ofthe space dispersion on the

refraction exactly in the form that one would obtain withoutusing the expansion (2).

This result is hardly surprising. It confirms that the approach of the geometric optics is

intrinsically consistent: the ansatz and the result are concordant in the asymptotic ordering.

Although the local dispersion relation of the geometrical optics, D(r,k) = ε̂(r,k)E(r,k), is

obtained as a plasma response to an infinite plane wave it is used to describe an infinitely thin

ray. Nevertheless, there is no contradiction. In this respect, the two extreme concepts come

together: the infinitely thin ray and the plane wave in a homogeneous medium do not “know”

anything about non-locality of the medium. As a result, the geometrical optics has the adequate

asymptotic accuracy. However, taking account of a finite raywidth or associated with that non-

corpuscular wave characteristics necessarily involves non-local properties of the dispersion.

For this case, one can prove that the expression (8) is consistent in accuracy with the basic

assumption (5) of the beam tracing description.

In conclusion, it is shown that the beam tracing technique can be straightforwardly extended

to the media with the space dispersion. All derivations and formulas of [4-6] remain unchanged

provided that the “cold” dielectric tensorε̂(r) is replaced byÊ (r,k) given by Eq.(8). Contribu-

tion to the effect of refraction is due to the second term in the expansion (8) while the third term

controls the wave front deformation and the wave beam divergence. As known [1], absorption of

waves is affected by the new terms even more strongly. This effect is described by the amplitude

equation and will be discussed elsewhere. The results of this contribution are applicable to all

existing quasi-optics techniques because they differ in equations and in the way of solution but

are exactly the same in the asymptotic expansion.
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