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Asymptotic description of high frequency wavesin tokamak
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1. Introduction.

As well known the linear properties of plasma waves are fdigcribed by the constitutive
relation that expresses plasma reaction to small fluctositim steady state, the relation links
the electric fieldE with the displacemerD as

D(r):(2n>—3/ (r,r —rE(F)dr’ _/dkE 2(r,k)ek. 0

In the approach of the geometrical optics the relation isaligwnderstood in the local sense.
It means that the plasma response to a plane wave perturbatassumed to be also a plane
wave. This is fully valid for a homogeneous medium where the@waves are eigenfunctions.
However, even for a slightly inhomogeneous medium the apsomalways violates.

As pointed out in [1] the violation has far reaching consegpes and can lead to loss or
wrong description of many physics effects. For instance,plane-wave-based consideration
cannot properly describe non-Hermitian terms and, as dtyele conservation of energy.
Moreover, the local approach complies with the approxioratif the geometric optics but is not
consistent with the more precise quasi-optics technicdhedsare gaining acceptance in tokamak
applications [2-4]. The correct treatment should be basethe concept of the wave packets
rather than the plane waves. In this contribution, the idddRef.[1] are applied to the beam
tracing equations [5,6] and a simple but self-consistetipeefor including the local dielectric
tensor into the beam tracing equations is presented.

2. Differential constitutiverelation.

A space vector will be represented in an arbitrary Cartesian coordinages-a{X“} and the
wave vector ak = {Kq }. Also the tensor summation convention will be employed: arsation
with respect to every repeated index is implied. We intredaiwector functiotk = k(r) = {kq}

to be defined later and make use of the Taylor expansion
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where and all its derivatives on the right hand side are computdd-atk(r). This makes
the dependences dnin (2) explicit and allows to calculate integrals in (1) thalstaining the
differential form of the constitutive relation
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Here the differential translation operay is defined a®q = —kq(r) —id/dX°.
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The only assumption has been employed so far that the Tasfliesy2) converges and can be
integrated. Formally, the relation (3) is local but it délses a non-locality through the deriva-
tives with respect t&k, and X?. It is clear that the convergence, and therefore the padctic
utility, of the series (3) depends on the properties of theengeld E and can be granted if
(Dg)"E decreases with fast enough. In what follows, it will be shown that the reguient
is fulfilled when the electric fiel&E has a form of a Gaussian wave packet localized along its
space trajectory.

3. Ordering.

Consider weakly inhomogeneous medium in the short wavéielngit. More precisely, we
assume that the refractive and dispersive properties ehdtdum have the characteristic length
of variationL that is large compared with = ¢/w so thatk = Lw/c=L/A > 1 is a large
parameter. Then our assumption of slow variation means

LOZ/XY = 38/0x% = O(K%) = (1),  (w/c)d%/dkq = E/INg = O(1),

where the dimensional variablés® andk, are replaced with the dimensionlegs= X% /L
andNy = cky /w respectively. It is seen that the differential operaif)g,sand derivations with
respect tdk, are included in Eqg. (3) in pairs so that we can replé@,e?/dka by Aqd /0Ny
whereAy = ¢/wDy = —Ng (r) —ik~19/9x?. We rewrite now Eq.(3) as
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Assume that the electric field has the eikonal fd(n) = A(r) exp{ikS(r) }. We employ the
concept of the complex eikonal and se&&k) in the form

S(r) = Na (1) (X" = X) + 3 (Sap (F) +i 6 (1)) (X7 = X) (x* = %) -+ (5)

where a new quantity= {X" } is introduced. Once the quadratic foggy (1) is positive definite
the electric fieldE has a form of wave packet exponentially decaying with ingiregr —r|.
We observe that

DaE(r) = &¥S[(Sy —Na) A+ Kk 29A/0x%) = 0 <K71/2> , (6)

whereS, = dS/0x9. The latter equality in Eq. (6) shows th@h,)"E has to be ordered as
0 (k~"2) and follows from the standard estimate [5].

Physically, the ordering means that the propagation ptigseof the wave packets, i.e. re-
fraction, diffraction and absorption, are due to the smpadilce domain where the wave field
is localized. Remote regions contribute to the plasma mespavith exponentially decreasing
weight. The estimate (6) shows that the omitted terms in Es.(5) should be ordered as
ﬁ(K*3/2) and thus go beyond the accuracy of the asymptotic solutionth® other hand,
straightforward replacing Eq.(1) with the local dispersielation and taking into account only
the first term in Eq.(4) can result in neglecting essentiahte
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4. Digpersion relation for wave packets.

On substitution the eikonal ansatz and Eq. (4) into the Mdixeguations and repeating all
calculations of Ref. [5] one arrives at the dispersion refat

H = det||kk — k*.7 4 (w/c)?&| =0 7)

where the only difference is that one has to replace the "deltsoré(r) of Ref. [5] with the

quantity i e
+ 5_13 (k) i ﬁ (k) (k). (®)
where the tensag(r, k) is introduced in Eq.(1) and includes the effects of the splésersion.
It remains to define the two vectors= {x¥} andk = {kq}.

Up to this point, they were treated as free independent v@ei@ameters in space and spec-
tral space, respectively. We select now these parametedw@ons to the Hamiltonian set of

equations

E=¢

dx? /dT = dH /dKy,  dkg/dT = —dH /X7, 9)

The equations (9) define the space curve, called the referagg (1) = {x” (1)} and the vector
functionk (1) = {kq (1)} along this curve. Equation (5) shows that the wave field isllaed
in the close vicinty of the reference ray. Moreover, the spea is localized in the vicinity of
the wave vectok. These properties are physics background for Taylor expas$2) and (5).
The definition ofr_andlzcompletes the derivation of the dispersion relation anctgaizes the
beam tracing procedure to the media with the space dismpersio

The two functionss,g and@,g introduced in Eq.(5) describe the curvature of the wavetfron
and the divergence of the wave packet, respectively. Eopsmfor these quantities retain exactly
the same form as in [5] except fét that is now defined by Eqgs.(7), (8). All results of Ref. [5]
can be word for word repeated with regard to the new dispefsiaction (7).

The new form of the dispersion relation (7) with the effeetiielectric tenso# is the main
result of this contribution. It is worth to mention that edgdhe same recipe is applicable to
the electrostatic case. Namely, all constructions of Rgfgmain valid provided the dispersion
relation of the plasma is written in the forkh = kak,g£“/3 = 0 where&?P are contravariant
components of the effective dielectric tensbrdefined by Eqg.(8). It is also obvious that the
limiting case of no space dispersiéen= £(r) follows immediately from (8) because the “cold”
tensor has n& dependence.

5. Discussions and conclusions.

The beam tracing approach provides a solution to the Maxagpllations as an asymptotic
expansion in descending powers of the large paramgkeup to the accuracy oﬁ’(K*3/2).
As already mentioned the quantityk @,g (X* — X?)(xP —xP) in the exponent oE(r) ensures
that the wave packet is strongly localized arourid the configuration space and aroundh
the spectral space. Because of this property only the clicggity of the wave packet centre
participates in the plasma response to the electric fielchaatees it possible to replace eventu-
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ally the integral constitutive relation (1) with the algalardispersion relation (7). Derivation of
Eq.(7) shows that within the accuracy@(K*3/2) one need not keep further terms of expansion
in (2) and (8) that contribute to the higher orders of the gstytic expansion. Moreover, the
exact constitutive relation is not needed for the beamnat@chnique (as well as for any other
guasi-optics approach) because the solution does not gupslevel of accuracy.

As an illustration to the aforesaid consider the group vigtaxf the wave packet that follows
from Eqg.(9) and is proportional to the quantityy = dH /dk,. In case of electrostatic waves
one can write

Vd

_ 0H _— aevu} (10)

_ av va
= 3k o = [k\,(s + € )+kvkum Ea.
The last term on the right hand side describes the influendbeokpace dispersion on the
refraction exactly in the form that one would obtain withasing the expansion (2).

This result is hardly surprising. It confirms that the appio®f the geometric optics is
intrinsically consistent: the ansatz and the result arecaatant in the asymptotic ordering.
Although the local dispersion relation of the geometricptics, D(r, k) = &(r,k)E(r,k), is
obtained as a plasma response to an infinite plane wave iedstodescribe an infinitely thin
ray. Nevertheless, there is no contradiction. In this respgle two extreme concepts come
together: the infinitely thin ray and the plane wave in a hoemegpus medium do not “know”
anything about non-locality of the medium. As a result, teergetrical optics has the adequate
asymptotic accuracy. However, taking account of a finitewadth or associated with that non-
corpuscular wave characteristics necessarily involveslacal properties of the dispersion.
For this case, one can prove that the expression (8) is ¢ensis accuracy with the basic
assumption (5) of the beam tracing description.

In conclusion, it is shown that the beam tracing techniqurebeastraightforwardly extended
to the media with the space dispersion. All derivations amhfilas of [4-6] remain unchanged
provided that the “cold” dielectric tensétr) is replaced byéa(r, k) given by Eq.(8). Contribu-
tion to the effect of refraction is due to the second term egkpansion (8) while the third term
controls the wave front deformation and the wave beam darerg. As known [1], absorption of
waves is affected by the new terms even more strongly. Tfestas described by the amplitude
equation and will be discussed elsewhere. The results ettmtribution are applicable to all
existing quasi-optics techniques because they differ irmigns and in the way of solution but
are exactly the same in the asymptotic expansion.
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