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Introduction: In the edge region of the tokamak, the plasma parameters are such that the equi-

librium and the turbulence interact strongly, and evolve together. In particular, the magnetic

vector potential (A‖) is a dynamical quantity evolved by an electromagnetic turbulence model

like GEM Ref. [1]. This quantity takes part in the MHD equilibrium, defined by the balances

(forces and divergences) describing the Pfirsch-Schlüter currents, via the Àmpere’s law. Its ax-

isymmetric component yields changes to the q-profile (field pitch), as well as the Shafranov

shift. The challenge is to avoid double counting these effects, which are also set by an MHD

equilibrium solver. For the case of the simplified geometry of an S−α model (which does not

require an MHD solver), the treatment for the self-consistent evolution of the MHD equibilib-

rium with the turbulence has been given in Ref. [2]. Here, a the treatment to do so on simplified

zeroth order in the inverse aspect ratio (ε = a/R) Grad-Safranov solutions (nested circular flux

surfaces) is reported. Furthermore, since turbulence is affected by the deformation of its spa-

tial domain, an X-point is also included in the model to deform the circular flux surfaces. This

serves as a starting basis to tackle the full problem, which will employ real tokamak geometry.

Model: The tokamak axisymmetric magnetic field can be expressed as, B = I∇φ + ∇Ψ×∇φ ,

where φ represents the toroidal angle, I = I(Ψ) the poloidal current and Ψ the poloidal flux, with

the sign convention that ∇Ψ is negative. The expression for the local helicity of the magnetic

field (field pitch) is found from the ratio of the contravariant components of the magnetic field

q = Bφ/Bη , where η is the geometrical poloidal angle. With the assumption ε ≪ 1, one obtains

the cylinder approximation, for which I = RB ≈ B0R0 and Ψ
′(r) ≈ −(rB0)/q. Assuming a

constant field pitch and integrating over the radial coordinate r yields

ΨC(R,Z) = −BC

2

[

r2 −a2] (1)

with the additive constant BCa/2 chosen to fulfil ΨC(a) = 0, where a stands for the tokamak

minor radius and BC = B0/q has units of a magnetic field. One can invert the Eq. (1) to have the

contours R = R(ΨC) and Z = Z(ΨC) in the poloidal plane (R,Z), since r2 = (R−R0)
2 +(Z −
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Z0)
2. Doing so yields the equation for circular flux surfaces











R(ΨC,η) = r cosη +R0

Z(ΨC,η) = r sinη +Z0

(2)
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Figure 1: Graphical representation of the relation

between the cylindrical coordinate system (r,η ,φ)

and the shited coordinate system (ρ,η∗,φ).

The Shafranov shift constitutes a O(ε) cor-

rection to such a circular equilibrium. In prac-

tice, it corresponds to a shift of the flux sur-

faces in the R-direction, such that they be-

come centered on R1 = (R0 + ∆,Z0), with

∆(r) representing the shift, as ilustrated in the

Fig. 1. The equation for the new flux surfaces

can be obtained directly from Eq. (2) by sub-

stituting R0 with R1. Introducing a new radial

coordinate to describe the shifted surfaces,

namely, ρ2 = (R−R0 −∆)2 + (Z − Z0)
2, al-

lows expressing the poloidal magnetic flux,

including the Shafranov shift, as

ΨC(ρ) = −BC

2
(ρ2 −a2) = −BC

2
(r2 −a2)+BC∆r cosη − BC

2
∆

2

= ΨC(r)+Ψ1(r)cosη +O(∆2) (3)

where the relation between ρ and the original (r,η) coordinates, ρ2 = r2 −2r∆cosη +∆
2, has

been used. The first term in the second line corresponds to the zeroth order model given by

Eq. (1) and the last term is a second a order correction that can be dropped. The middle term

introduces the definition

Ψ1(r) = BCr∆(r) (4)

and corresponds to the first order correction due to ∆(r).

As mentioned before, the GEM model provides a contibution to the MHD part of the equi-

librium through the magnetic vector potential. Its axisymmetric part yields the Shafranov shift,

through the Pfirsch-Schlüter current, whereas its zonal component (flux surface average) pro-

vides a contribution to magnetic the field pitch. These can be expressed in terms of poloidal

magnetic flux as

Ψ
GEM = Ψ

GEM
0 +Ψ

GEM
1 +O(ε2) ≈ R0〈A‖〉+R0〈A‖ coss〉+O(∆2) (5)

where the angle brackets denote the flux surface average, and s is the field aligned parallel
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(poloidal) coordinate used in GEM. Comparing the second term on the right-hand side to Eq.

(4) leads directly to expression for the Shafranov shift coming from GEM

∆
GEM =

R0〈A‖ coss〉
rBC

(6)

that can be included in Eq. (2), with R0 + ∆
GEM instead of R0. The complete expression for

the poloidal magnetic potential providing the magnetic field geometry becomes time dependent

since it now includes the changes to the MHD equilibrium due to the turbulence

Ψ(ρ, t) = ΨC(r)+Ψ
GEM
0 (r, t)+Ψ

GEM
1 (r, t)cosη (7)

R

Z

(R,Z)Ψ

Figure 2: Matched poloidal magnetic flux Ψ from

both the circles and hyperbola models. The separa-

trix is also represented.

To handle the problem consistently, and avoid

double counting the shift, the axisymmetric

part must be stripped out of the magnetic vec-

tor potential A‖ within GEM, as it yields a

perturbed magnetic field that acts on the vari-

ables (through the parallel gradient operator),

and such information has already been ac-

counted for by the magnetic field geometry

through Eq. (7). Further discussion on this

subject can be found in Ref. [2].

To include an X-point that deforms the cir-

cular flux surfaces yield by Eq. (2), one needs

to find the appropriate poloidal flux function

which contains such a singularity, and then

patch it together continuously with Eq. (1) across a given boundary curve in the poloidal plane.

The following function fulfils such requirements

ΨH(R,Z) = −BC

2

[

(R−R0)
2 − (Z −ZX)2] (8)

provided that the location of the X-point is set to be (R0,ZX = Z0−
√

2a), and that the boundary

between both models ΨC and ΨH is placed at ZB = Z0 − a√
2
. Such a model, with Ψ = ΨC for

Z < ZB and Ψ = ΨH otherwise (Ref. [3]), is C 1 (continuous up to the first derivative), as can be

seen from Fig. 2. This property holds even when a Shafranov shift is considered since it is flux

function ∆ = ∆(Ψ). Hence, the previous considerations on this matter apply to Eq. (8) as well.

Preliminary results: Here, the first results from the first GEM simulations in the edge region

including the self-consistent MHD equilibrium evolution outlined in the previous paragraphs
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are reported. These were made as follows: the initial flux surfaces were constructed from Eqs.

(1) and (8) and yield the geometrical information needed for GEM that calculated using the

METRICS code [5]. Then, as the turbulence was evolved in time, its contribution to the field

pitch and Shafranov shift was calculated from Eqs. (5) and (6) and included back into the

flux surfaces, which provide the geometry for the next time step, while the axisymmetric part

stripped out of A‖ within the current time step. The METRICS code was then run on the new

flux surfaces, and the next GEM time step was calculated. The loop was repeat afterwards

until the end of the simulation. Another simulation using the S−α geometry of Ref. [2] was

also performed for the same parameters (T = 80eV, n = 2.2× 1013cm−3, Mi = 3670me, R =

165cm, a = 50cm, L⊥ = 4.62cm, B = 1.2T and q = 3.9), to allow a comparison between the two

geometry models. Although the results obtained require further analysis, it is still noteworthy

that the reduction observed in the electron heat flux compared to the S − α geometry case

is consistent with the ability of the local shear, which is particularly strong near the X-point

in the model of Eq. (7) and absent in the S−α model, in facilitating processes of nonlinear

decorrelation of vortical turbulent structures [4].

Figure 3: Time traces of free energy amplitudes and transport for (left) S−α geometry and (right) the
geometry given by Eqs. (1) and (8), in units of L⊥/cs. The domain averages of the E ×B energy, total
energy, φ̃ 2/2 (electrostatic potential), Ω̃

2/2 (vorticity) and electron heat flux are denoted by Ee, ET , Ap,
Aω and Qe, respectively.
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