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France.
4 LaBRI, 341 cours Libération, 33405 Talence Cedex, France.
5 CRPP, Association Euratom-Confédération Suisse, EPFL, 1015 Lausanne,
Switzerland.

E-mail: virginie.grandgirard@cea.fr

Abstract. Critical physical issues can be specifically tackled with the global full-
f gyrokinetic code Gysela. Four main results are presented. First, the validity of
simulating a fraction of torus is shown to increase with decreasing ρ∗. Second, the self
consistent treatment of the equilibrium and fluctuations highlights the competition
between two compensation mechanisms for the curvature driven vertical charge
separation, namely parallel flow and polarization. The impact of the latter on the
turbulent transport is discussed. Third, the transport scaling with ρ∗ is found to
depend both on ρ∗ itself and on the distance to the linear threshold. Finally, a
statistical steady-state turbulent regime is achieved in a reduced version of Gysela

by prescribing a constant heat source.
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1. Introduction

Gyrokinetic codes are now mature enough to address experimentally relevant pieces of

physics [1, 2, 3, 4]. In this framework, global and full-f codes allow one to specifically

address physical issues of outermost importance in fusion devices. Due to their huge

demands in terms of both numerical memory and CPU time consumption, such full-f

simulations have become possible only very recently. One the one hand, simulating

a whole part of the tokamak cross-section allows one to capture large scale transport
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events, eventually leading to non-local transport and turbulence spreading. Especially,

such processes can bring new ingredients into the physics governing scaling laws. On

the other hand, full-f codes solve self-consistently the equilibrium and the fluctuations,

without any scale separation assumption. In this case, properly defining the gyrokinetic

equilibrium reveals crucial to discriminate between instability driven fluctuations and

time evolution towards the equilibrium. Besides, non-equilibrium initial states can also

impact the turbulence dynamics itself. Finally, full-f codes open the route towards

more realistic flux-driven models, where the turbulence drive is no longer ensured by a

prescribed gradient or fixed thermal baths at the boundaries, but by an incoming heat

and/or particle source such as in the experiments.

The present paper focusses on some of the physical implications of global and full-f

gyrokinetic code. The 5D Gysela (GYrokinetic SEmi-LAgrangian) code is used. It

models the Ion Temperature Gradient (ITG) driven turbulence in a simplified toroidal

geometry with a Semi-Lagrangian numerical scheme [5]. The model is detailed in section

2. The problem of solving the gyrokinetic equilibrium, especially in full-f codes as

Gysela, is addressed in section 3. As reported earlier [6], the code has already been

benchmarked, both linearly and non-linearly against the CYCLONE test case [7]. In

section 4, a further validation based on non-linear comparisons with the ORB5 code

[8] is presented. In section 5, the effect of reducing the fraction of the torus that is

simulated is discussed. Results on the ρ∗ scaling of the turbulent transport, ρ∗ being

the ratio of the ion Larmor radius ρi to the minor radius a, are reported in section 6.

Consistently with previous works, the correlation time and correlation length are found

to be consistent with the gyroBohm, respectively Bohm, scaling at small ρ∗ and above

the linear threshold, resp. at large ρ∗ and close to the threshold. Finally, turbulence

in the flux driven regime is investigated with a reduced 3D gyrokinetic model, used as

a paradigm, section 7. The bursty character of the dynamics, as well as the departure

from the Maxwellian, are reported.

2. Gyrokinetic system solved by Gysela

The model focusses on the turbulent transport driven by the collisionless Ion

Temperature Gradient (ITG) driven instability in a simplified toroidal geometry: the

magnetic flux surfaces are concentric torii with circular poloidal cross-sections. The

magnetic field is ~B = (B0 R0/R) (~eϕ + (r/q R0)~eθ). B0 and R0 being the magnetic field

and the major radius of the torus computed at the magnetic axis, with R = R0 +r cos θ.

~eθ and ~eϕ are the unit vectors in the two periodic directions, poloidal and toroidal

respectively. The safety factor q is given a standard monotonous profile, from q ≈ 1 in

the core towards q ≈ 2.5 at the edge of the simulation domain. Within the electrostatic

approximation, the electric field ~E = −~∇φ, where φ is the electric potential. In the

low frequency turbulence regime, such that ω is much smaller than the ion cyclotron

frequency ωc = eiB0/mi, the gyrokinetic description is appropriate. v‖ is the velocity

parallel to the magnetic field, and the magnetic moment µ = miv
2
⊥/(2B) is an adiabatic
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invariant. In the code the time evolution of the guiding-center 5D distribution function

f̄(r, θ, ϕ, v‖, µ, t) is governed by the following gyrokinetic equation:

∂tf̄ + (~vE + ~vD) · ~∇⊥f̄ + (v‖/R)∂ϕf̄ + v̇‖∂v‖ f̄ = 0 (1)

with ~∇⊥ = (∂r,
1
r
∂θ). ~vĒ = ~B × ~∇(J .φ)/B2 is the E × B electric drift velocity.

The gyro-average operator J corresponds to the zero order Bessel function J0(k⊥ρi)

in Fourier space, ρi being the ion Larmor radius. At low β, the curvature drift

velocity is equal to ~vD = ((miv
2
‖ + µB)/eB3) ~B × ~∇B. In the large aspect ratio limit,

miv̇‖ = eiE‖ − µ∇‖B + mv‖~vE · ~∇B/B with ∇‖ = 1/R [∂ϕ + (1/q(r))∂θ]. The self-

consistency is ensured by the quasi-neutrality constraint:

− 1

n0(r)
∇⊥ ·

[
n0(r)

B0 ωc

∇⊥φ

]
+

e

Te(r)
[φ− 〈φ〉] =

1

n0(r)
[nGi(r, θ, ϕ)− nGiinit

(r, θ)] (2)

The polarization term (first term on the left hand side) accounts for the difference

between the ion guiding-center density nGi = 2πB(r, θ)/mi

∫
dµ

∫
dv‖J .f̄ and the

particle density. The brackets 〈·〉 refer to the magnetic flux surface average,

i.e. 〈·〉 = 1/(2π)2
∫ ∫

· dθ dϕ. The correction term nGiinit
is equal to nGiinit

=

2πB(r, θ)/mi

∫
dµ

∫
dv‖J .finit where finit is the initial distribution function. More details

on the system are given in [6].

Since the electrons are adiabatic, there is no net particle transport. The radial

density profile remains thus constant in time. The distribution function is prescribed

to be a Maxwellian at both radial boundaries with two different temperatures. Periodic

boundary conditions are applied along θ and ϕ. The initial condition consists of an initial

distribution function finit, which can be a local Maxwellian or a canonical Maxwellian, as

discussed in section 3, perturbed by a sum of (m,n) Fourier modes with random phase

and prescribed magnitude. Here, m and n are the poloidal and toroidal wave numbers,

respectively. The quasi-neutrality equation (2) is solved in Fourier space for the poloidal

and toroidal directions, while finite differences are used in the radial direction. The

Bessel function of the gyroaverage operator is replaced by a Padé approximation [9].

The gyrokinetic equation (1) is solved with a semi-lagrangian scheme [10]. Such a

method has proven to be powerful in a 4D version of the code, focusing on the slab

branch of the ITG turbulence in the drift-kinetic limit [5]. Significant effort has been

devoted to improving the code parallelization [11, 12], that is especially difficult for

Eulerian-like numerical schemes. The present version exhibits an efficacity of about

70% on 1024 processors.

3. Non linear simulations with a global full-f code

Several publications [13, 14] have stressed the importance of initializing gyrokinetic

simulations with a well-defined equilibrium. In the absence of collisions, an equilibrium

distribution function fulfills [Heq, feq] = 0, with [., .] the Poisson bracket. The

equilibrium gyrokinetic Hamiltonian Heq depends on the motion invariants only, namely

the energy E , the magnetic moment µ and the toroidal momentum Pϕ. Consequently,
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any function of E , µ and Pϕ will satisfy the equilibrium conditions. A convenient

form is provided by a local Maxwellian where the radius is replaced by an effective

radial coordinate r̄ function of the invariants [15, 16]. This corresponds to the so-called

canonical Maxwellian initialization fCM. In such an equilibrium, the curvature drift

which induces a vertical charge polarization is compensated by the ion parallel flow.

This flow, analogous to the Pfirsch-Schlüter current carried by the electrons, naturally

emerges from the v‖ dependence of Pϕ. Indeed, the distribution function fCM is not even

in v‖ unlike standard local Maxwellian fLM. For the latter distribution function, there

is no parallel flow and the charge separation gives rise to a large scale electric field. In

this case, the charge separation tends to being compensated by a polarization flow. The

early dynamics of the resulting electric potential φ can be easily recovered analytically

[17]. At leading order, it is governed by the curvature drift. Especially, it is found that

φ ≈ φ00 +φs
10 sin θ+φc

10 cos θ, with eφ00/T0 ∝ ρ2
∗(ωct)

2 and eφs
10/T0 ∝ ρ2

∗ωct, consistently

with the numerical simulations. It should be noticed that such a ρ2
∗ dependence does not

mean that these flows remain weak at small ρ∗ values. Indeed, an upper boundary of

the time duration of the growth of these flows is given by the time at which the parallel

dynamics enters into play to counterbalance the charge polarization. In the end, the

saturation level of these polarization flows is significant, and of the order of a few tenth

of T0/e. Conversely, the cosine component φc
10 is orders of magnitude smaller. The sin θ

component φs
10 grows first, linearly in time, as a result of the up-down asymmetry of

the curvature drift. The oscillatory behavior at the GAM (Geodesic Acoustic Mode)

frequency is recovered at later times, when the E × B drift is no longer negligible and

enters the dynamics.

An interesting question is whether such sheared flows, which result from the

re-arrangement of non-equilibrium initialization, can durably prevent the onset of

turbulence. In this framework, two simulations at ρ∗ = 5.10−3 and with the same initial

temperature gradient – well above the threshold – are compared. They only differ by

their initial distribution function, either canonical or Maxwellian. The time evolution

of the heat diffusivity is plotted on figure 1 for the two cases. The turbulent transport

is clearly delayed when starting from an initial local Maxwellian, by about 1 500ω−1
c in

this case. As seen on the upper panel of figure 1, the effective growth rate is reduced for

the local Maxwellian (from γCM ≈ 2.3 10−3ωc to γLM ≈ 1.5 10−3ωc), when sheared flows

are present. Such a picture is in qualitative agreement with a reduction of the effective

linear growth rate by the shearing rate. Also, the turbulence overshoot at the end of

the linear phase is smeared out. However, both simulations yield similar diffusivities

in the turbulent regime, as exemplified by the values at the end of the simulations, see

figure 1.

4. Non-linear benchmarks with ORB5 code

The Gysela code has been benchmarked against the CYCLONE test case [7], both

linearly and non-linearly, as reported earlier [6]. Also, the now standard test of poloidal
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Figure 1. (Color online) Time evolution of the turbulent diffusivity χ⊥ (ρ∗ = 1/200)
when initializing the distribution function with a canonical equilibrium or a local
Maxwellian. Top panel: zoom in log-lin scale.

flow screening in the collisionless regime [18] has been performed successfully. Here,

we report first results of the non-linear comparison with the ORB5 code [8]. Both

codes are global, and model the same gyrokinetic equations. However, ORB5 uses a

completely different numerical scheme. It is a δf Particle in Cell (PIC) scheme, where

the perturbed part of the distribution function, δf = f − finit, is sampled by a random

distribution of markers, according to the MonteCarlo method. The positions of the

markers are evolved in time following the characteristics of the gyrokinetic equation

(Lagrangian method). The time evolution uses a 4th order Runge-Kutta scheme and

the quasi-neutrality equation is solved with a 3D Finite Element Method (FEM). The

gyroaverage is approximated by an adaptive numerical average. Another difference

resides in the zonal flow term φ̄ which is approximated by φ00 in Gysela, while the

full geometric coupling is kept in ORB5. Finally, the right hand side of the quasi-

neutrality equation is Fourier filtered along the magnetic field lines (m = nq(s)±∆m)

in ORB5. This filter allows one to reduce the statistical noise associated with the PIC

discretization by filtering out the nonphysical high k‖ modes [19].

The parameters for the benchmark are based on the CYCLONE test case [7].

The minor radius is a = 0.625 m, the inverse aspect ratio is ε = a/R = 0.36.

The magnetic field on axis is B0 = 1.91T. The safety factor profile is given

by q(r) = 0.854 + 2.184(r/a)2. The initial temperature gradients are given by

d log /dr = −L−1
T

[
−1 + cosh−2((r − 0.1a)/0.04) + cosh−2((r − 0.9a)/0.04)

]
with the

conditions Te(r/a = 0.5) = Ti(r/a = 0.5) = 2 KeV. The ratio of the temperature

characteristic length over the density one is: LT/Ln = 0.21. Notice that the mean

temperature profile is not frozen. As a result of the turbulent heat flux, the temperature

gradient decreases with time. The boundary conditions are somewhat different in both
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codes: while temperature is kept constant at both radial boundaries in Gysela, leading

to steep gradients within thin boundary layers, the core boundary temperature is free

to evolve in ORB5, leading to a so-called decaying turbulence regime.

The two simulations have been performed at ρ∗ = 1/184.7. Gysela was run with

about 1 billion grid points in the 5D phase space, while ORB5 used about 33 millions

of grid points in space with 256 millions of pseudo-particles. Both simulations ran

approximatively 36 hours on 128 processors, using machines of similar performances.

The time evolution of the diffusivity χ, normalized by the gyro-Bohm diffusivity

χgB = ρ2
scs/Ln, and of the normalized temperature gradient R0/LT are plotted on

figure 2 for both codes. Both quantities are averaged over flux surfaces, as well as

over the radial interval 0.4 ≤ r/a ≤ 0.6. Time has been shifted by approximately

−7.103ω−1
c for the ORB5 simulation so as to account for the longer transient at the

beginning in this code. First, one observes that both codes, Gysela and ORB5, yield

the same level of turbulent transport in the non-linear regime. Also, such magnitudes

of χ are in agreement with those reported in other gyrokinetic simulations [7]. Second,

the temperature profile relaxes faster in ORB5 than in Gysela. Such a difference could

result from the difference in the boundary conditions. Indeed, while the whole profile

is allowed to freely evolve in ORB5, the temperature is kept constant at both radial

boundaries in Gysela. Also note that, at a given value of R0/LT , ORB5 predicts a

larger transport than Gysela. Such a mismatch could arise from the intrinsic difference

between full-f and δf schemes. Indeed, as discussed in section 3, the equilibrium electric

field is self-consistently computed in Gysela. This likely leads to a larger magnitude

of the zonal component φ00 and of the resulting poloidal velocity shear in Gysela,

eventually reducing the level of turbulent transport. This benchmark will be further

detailed in a future publication.

Figure 2. (Color online) Time evolution of the turbulent diffusivity χ⊥ (top) and of
the normalized temperature gradient (bottom) in Gysela and ORB5 for ρ∗ = 1/184.7.
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5. Validity of simulations on a fraction of torus

With the aim of reducing the large numerical resources required by such a global full-

f code, attempts to run on fractions of torus have been performed, with the toroidal

extent equal to Lϕ = 2π/p (p ∈ IN). The code is such that periodicity is always imposed

along the toroidal direction, whatever Lϕ. Consequently, only those toroidal n modes

proportional to p are accessible for a fraction Lϕ = 2π/p: n = {0, p, 2p, 3p, · · · , N}.
Conversely, all poloidal m modes are retained. Four simulations have been performed

at ρ∗ = 1/128: Lϕ = 2π/p, with p = 2, 4, 8 and 16. For each case, the corresponding

mesh is equal to (r, θ, ϕ, v‖, µ) = (128, 256, 128/p, 32, 8). In this case, each simulation

exhibits the same ratio of resonant modes with respect to the total number of modes

(m,n). For a given value of the temperature gradient ∇⊥T/T , the number of linearly

unstable modes scales like (ρ∗p)
−1. As a result, the smaller ρ∗, the larger p can be while

allowing one to trigger the same number of unstable modes. Since the turbulent regime

requires a sufficient number of unstable modes to reach saturation, simulations at small

ρ∗ should still be accurate at small fraction of torus (large p).

The time evolution of the diffusivity is plotted on figure 3. There is some

hint of departure from the average magnitude of χ for the Lϕ = 2π/16 case that

exhibits a slightly smaller diffusivity. When comparing the correlation time and

the radial correlation length of the electric potential fluctuations δφ = φ − 〈φ〉, a

more pronounced difference can be observed, figure 4. The Eulerian self-correlation

function is defined as Cδφ(∆r) =
∫

dΓ δφ(r, θ, t) δφ(r+∆r, θ, t) /
∫

dΓ |δφ(r, θ, t)|2, with∫
dΓ ≡

∫ t0+τ

t0

dt
τ

∫ 2π

0
dθ
2π

∫ r0+L

r0

dr
L

. The radial window typically covers the central 40% of

the radial domain. A similar definition is used for Cδφ(∆t). In figure 4, the reference

time t0 = 10000/ωc is in the turbulent phase and τ = 7500/ωc. Clearly, the most poorly

discretized case Lϕ = 2π/16 exhibits a different shape for both Cδφ(∆r) and Cδφ(∆t).

In particular, a significant correlation still exists at large distances and at long time

duration. The correlation is equal to 0.2 for ∆r ≈ 17ρi and ∆t ≈ 3000ω−1
c . Such values

are consistent with the fact that, with such a small number of linearly unstable modes

(about 2), the system remains close to the linear regime and is dominated by the physics

of global modes. With a larger fraction of the torus Lϕ ≥ 2π/8, the number of linearly

unstable modes appears to be large enough to lead to comparable physics in terms of

the transport coefficients and correlation time and distance.

6. Transport scaling with ρ∗

The kinetic equation exhibits scale invariance properties [20]. As a consequence, the

energy confinement time τE is expected to be governed by a set of key dimensionless

parameters. A key quantity is the ρ∗ parameter. Indeed, present experimental devices

cannot access the small ρ∗ values expected in ITER, of the order of 2.10−3, while in the

JET tokamak the most performing discharges have 2 to 3 times larger ρ∗. Furthermore,

in the empirical scaling laws of τE, the power exponent of ρ∗ is the largest, namely
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Figure 3. (Color online) Time evolution of the diffusivity for four simulations with
different toroidal lengths Lϕ.

(a) (b)

Figure 4. (Color online) (a) Temporal self-correlation function Cδφ(∆t) and (b)
Radial self-correlation function Cδφ(∆r), for four values of Lϕ.

ωcτE ∝ ρ−2.8
∗ , with ωc the cyclotron frequency. Such a power law is consistent with the

so-called gyroBohm scaling (χ⊥ ≈ ρ∗χB and χB = ρ2
iωc), so that ωcτE ≈ ωca

2/χ⊥ ∝ ρ−3
∗ .

After the pioneering works using fluid models to investigate this critical issue [21], two

recent gyro-kinetic simulations [1, 22] report a transition from Bohm to gyro-Bohm

scaling when ρ∗ decreases towards ITER-like values. Two open issues remain: what is

the ρ∗ value of this transition and what is the physical mechanism? So far, two main

explanations have been proposed. On the one hand, shear flow stabilization leading to

χ⊥ ≈ ρ∗χB(1− αρ∗) [23]. This results from the scaling of the E × B shearing rate like

γE ≈ ρ∗γlin, with γlin ≈ (kθρi) cs/(RLT )1/2 the linear growth rate of the instability in

the absence of shear flow. On the other hand, large scale transport events can lead to

large correlation lengths of the form λc ≈ (aρi)
1/2. In this case, non diffusive transport
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or turbulence spreading are expected to be at work. Surprisingly, the latter mechanism

leads to the same type of scaling for the diffusivity, namely χ⊥ ≈ ρ∗χB/(1 + αρ∗) [24].

It is worth noticing that such a physics can only be addressed with global codes.

A scan in ρ∗ values has been performed with the global full-f code Gysela to

study this question. Three values have been analyzed, ranging from large (ρ∗ = 2.10−2)

to intermediate (ρ∗ = 10−2 and ρ∗ = 5.10−3) values. Since the equilibrium is allowed to

evolve in Gysela, the mean temperature profile tends to relaxe towards the threshold

(at R/LT ≈ 6) in the turbulent regime. Such dynamics are apparent on figure 5. The

dotted line refers to the best fit of the Lawrence Livermore National Laboratory results

(flux-tube PIC code) for the CYCLONE case, as discussed in reference [7]. Also, the

three cases do not start from the same temperature gradient. This results from the

difficulty in matching radial profiles at different ρ∗, when initializing with a canonical

distribution function [15] (see section 3). The correlation length and time of the electric

Figure 5. (Color online) Time evolution of the turbulent diffusivity χ⊥ as a function
of the normalized temperature gradient for three values of ρ∗.

potential fluctuations are presented on figures 6 and 7, for two different choices of t0:

either when the system is still well above the threshold (figures 6 (a) and (b)), i.e. rather

early in the simulation, or close to the threshold (figures 7 (a) and (b)), at the end of the

simulation. For both values of t0, the three curves are not far from overlapping with the

time lag ∆t normalized to a/cs. This suggests a rather weak dependence on ρ∗ of the

correlation time, whatever the departure from the threshold and the magnitude of ρ∗.

Such a scaling is expected when the correlation time scales like τc ≈ a/cs. This is the

case when the correlation is governed either by the parallel dynamics (τc ≈ qR/v‖ ≈ a/cs
at fixed aspect ratio R/a), or by the turbulence broadening (τc ≈ ∆ω−1 ≈ ω−1

∗ ∝ a/cs
at kθρi = const). Though, the small mismatches observed in figure 6(a) for the case

ρ∗ = 5.10−3 suggest that the correlation time weakly departs from this scaling at small

ρ∗ and far from the threshold. Since the correlation time seems to roughly scale like

τc ≈ a/cs, the Bohm or gyro-Bohm scalings would correspond to correlation lengths
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(a) (b)

Figure 6. (Color online) (a) Temporal self-correlation function Cδφ(∆t) and (b)
Radial self-correlation function Cδφ(∆r),for three values of ρ∗, well above the threshold.

(a) (b)

Figure 7. (Color online) (a) Temporal self-correlation function Cδφ(∆t) and (b)
Radial self-correlation function Cδφ(∆r), for three values of ρ∗, close to the threshold.

of the order λc ≈ (aρi)
1/2 or λc ≈ ρi, respectively. Such scalings are systematically

checked for the two sets of analyzes, above (figure 6(b)) and close to (figure 7(b)) the

threshold. The conclusions are as follows: λc scales like the ion Larmor radius ρi at

small ρ∗ and above the threshold, while it scales like (aρi)
1/2 at large ρ∗ and close to the

threshold. Such a trend towards Bohm scaling would be expected when moving close to

the threshold, due to possible long lived structures reminiscent of linear global modes.

In summary, it appears that the ρ∗ scaling depends on both the distance to the

threshold and on ρ∗. More precisely, Bohm-like scaling is observed close to the threshold

and for large ρ∗, while gyro-Bohm scaling emerges above the threshold at small ρ∗.

These results are consistent with previous publications. They put forward the need

to go towards flux-driven simulations, so as to reach a statistical steady-state with a
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well-defined mean temperature profile.

7. Flux driven gyrokinetics

Most present gyrokinetic simulations set the system out of equilibrium by imposing two

thermal baths as radial boundary conditions. As shown here, such system then evolve

leading to a relaxation of the gradients in the area of interest of the simulation domain.

This evolution stops as the turbulence approaches the threshold where transport

becomes very weak. In practice, during such a relaxation time, limited statistics are

available to investigate the physics of scaling laws. An alternative approach is to

maintain the system at prescribed gradients by prescribing ad’hoc sources to maintain

them. In the latter case, it is an issue to determine the impact of such a fluctuating

source on the turbulent transport properties. As achieved in standard fluid codes, a more

physical drive can be obtained by prescribing a source term in the system that imposes a

given flux and analyses the gradients as the response of flux driven turbulent transport.

However, when going to gyrokinetic simulations this one to one relationship between a

flux and a gradient is not as straightforward. Indeed, the gradients that are measured,

say the temperature gradient, stem from a moment of the distribution function while

the source term must be defined for each velocity of the distribution function and can

thus generate gradients of higher moments of the distribution function.

First calculations of gyrokinetic flux driven systems [25] have been performed with

a reduced gyrokinetic model that has been derived for deeply trapped ion turbulence

[26, 9]. This system is 3D with two dimensions in real space, namely a radial coordinate

and an angle and 1D in velocity space, the chosen coordinate being the energy. In such a

system the source term is implemented at small radius (core heat source) in the vicinity

of the core boundary layer where a vanishing gradient of the distribution function is

imposed (symmetry conditions). To satisfy the boundary conditions a buffer zone with

strong radial diffusion is imposed. In the simulations reported here, the source term

is located at the boundary of the core buffer zone. Statistical equilibrium of such a

system will of course not be satisfied unless one imposes a sink, typically at the radial

edge boundary. We have chosen a prescribed temperature at this boundary condition,

namely the distribution function is constrained to be a Maxwellian at fixed temperature

Tedge. The large radial diffusion coefficient in the edge buffer region then allows the

imposed heat flux to be transported through this boundary.

The choice of the source term must be as generic as possible, and with respect to our

present scope, steady-state. In the present versions of our gyrokinetic codes, adiabatic

electrons prevent particle transport so that the source term must not be a particle

source. A simple approach has been followed by introducing the basis of Laguerre

polynomials Ln(E), where E is the energy normalized to Tedge and n the order of the

polynomial (the exponent of the largest power in E). These Laguerre functions form an

orthogonal basis where the scalar product is the integral over the energy E weighted by

the Maxwellian exp(−E), see [9]. In such a framework, the projection of the distribution
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function on the Laguerre polynomials, Gk = 〈f |Lk〉 (here 〈f |g〉 is the scalar product of

f and g), is directly related to the fluid moments where the density is the projection

on the zeroth order polynomial L0 = 1 and the temperature
√

3/2(T − Tedge)/Tedge

to the projection on L1 =
√

2/3(E − 3/2). For this reason the source term that has

been used is S = S0(ψ) L1(E) exp(−E). Where S0(ψ) stands for the radial localisation

labeled by ψ. By definition of such a source term, it only contributes to building up

the moment G1 = 〈f |L1〉 and thus governs an increase of the temperature at the source

location. However, via the transport properties of the reduced Vlasov equation, such

a moment is coupled to all the other moments [9]. The transport problem at hand is

therefore the generation by the source of all Gk moments but G0 towards the sink at

the edge boundary where all moments Gk are vanishing but for k = 0. In practice,

one finds that the time averaged moments (averaging over several confinement times)

exhibit a flat profile between the very core and the source, and a smooth gradient from

the source towards the vanishing values at the edge. Furthermore, one finds that the

moment which exhibits the largest magnitude is the temperature moment,k = 1. The

higher order moments with k = 2 to k = 5 are one order of magnitude smaller. The

even higher moments k > 5 are negligible. Unlike the thermal bath boundary condition

[9], one finds that a limited number of moments are active in the system with a possible

truncation of the moment series at k = 5. However, such a property is related to the

specific kinetic properties that have been selected for the source and sink. In particular,

a less constrained sink allowing for a departure from a Maxwellian distribution function

would modify the kinetic distortion of the distribution function. A final remark is

related to the time averaged profiles that all appear to fit a diffusive transport process

although the evolution of the system is characterized by strong relaxation events and the

interaction between large E × B convection cells (extending over a significant fraction

of the radial box size) and zonal flows [25].

8. Conclusion

Global and full-f 5D gyrokinetic codes are able to address additional pieces of crucial

physics. Since they are facing new challenges in terms of numerical resources, they

have only started being developed rather recently. The Gysela code is one of those.

The semi-Lagrangian numerical scheme, as well as an efficient parallelization, allow it

to capture the dynamics of the whole ion distribution function in a simplified toroidal

geometry. Linear and non-linear tests have been performed successfully. This paper

reports a benchmark with the ORB5 code, modeling the same standard gyrokinetic

equations for the Ion Turbulence Gradient driven turbulence with a completely differ-

ent numerical scheme. Simulating a fraction of torus only reveals especially efficient in

reducing the memory requirement and the CPU time consumption. This simplification

is all the more valid since ρ∗ is small. Three main physical issues have been discussed.

First, the absence of scale separation assumption between the equilibrium and the fluc-

tuations requires the former to be evaluated accurately. If not, large scale sheared flows
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are shown to develop so as to counter-balance the curvature driven vertical charge po-

larization. Such sheared flows are observed to reducing the effective linear growth rate

as well as delaying the onset of turbulence. Second, the scaling with ρ∗ of the turbulent

transport is investigated in a global geometry. Consistently with previous observations,

the turbulence correlation properties are found to depend on ρ∗ itself and on the distance

to the threshold. The system exhibits a gyroBohm scaling well above the threshold at

small values of ρ∗. Third, flux driven conditions can be addressed in such full-f codes,

leading to statistical steady-state turbulent regimes. In this case, special emphasis is

put on the departure of the distribution function from the Maxwellian in a reduced 3D

model for interchange-like turbulence. It will be especially interesting to investigate how

such complex kinetic characteristics extrapolate to the more realistic 5D ITG turbulent

regime.
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