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Abstract

This work introduces the idea of Bayesian experimental design to the field of high tem-
perature plasma physics and gives examples for the optimisation of diagnostics as well as
for the planning of future experiments.

The method of Bayesian experimental design is based on the idea of maximisation
of the information gain expected from the future measurement. This information gain
is expressed by the Kullback-Leibler distance, an information measure which compares
the prior knowledge about the parameters of interest with the state of knowledge about
these parameters given the data. Bayesian theory is applied as a tool for the treatment of
different probability distributions.

The key element of this method is the Expected Utility, which is an absolute measure
for the information gain averaged over all possible data outcome. Bayesian experimental
design means the maximisation of the Expected Utility with respect to the design para-
meters. Furthermore, different Expected Utilities from different designs can be compared
quantitatively. Physical questions and problems, encoded as parameters of interest, are
implemented directly as design criterion. Boundary conditions like technical limitations
can be included as well.

The approach is validated using data sets from the Wendelstein 7-AS experiment: The
data was analysed and compared with the respective Expected Utility, which itself was
calculated independently. A monotonous relationship between Expected Utility and the
deviation χ2 of the measurement result was found.

As a first application, a multi-channel interferometer at the Wendelstein 7-X stellarator
is optimised using Bayesian experimental design. Three different density effects (measure-
ment of the effects of Core Electron Root Confinement, estimation of high confinement
regimes and the analysis of pellet injections) were used as design criteria. The results
were analysed and compared, a final proposal for the sight line configuration is given and
discussed.

Bayesian experimental design can used as a tool for experimental planning, too. Here,
the optimal experimental setting can be found to gain maximum information about a
certain problem. For this, also data from previous experiments are incorporated, their
respective usefulness can also be expressed by the Expected Utility. As an example, a
data set from the stellarator database was examined with respect to the approach of
power scaling laws.

It was found out, that a good signal-to-noise ratio is preferred by Bayesian experimental
design. Furthermore, a significant impact of the measurement error and the error statistics
could be verified. The final design is determined by a combination of these criteria. For
the interferometer, the optimal design is given for a beam line configuration where a
change of the parameters of interest has maximum impact on the expected data. In the
case of experimental planning, the most informative experimental configurations for future
measurements is found for settings which are not yet provided by the given database.
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Chapter 1

Introduction

1.1 General motivation: Physical design

Every experiment is designed with respect to the scientific question of interest. An expe-
riment with an optimal design should give the most informative results for the respective
scientific problem. Therefore, an effective design method has to implement the scientific
question as a design criterion. It must also cover the boundary conditions which may
give limitations to the experiment. This work will introduce a general and consistent
framework for experimental design which fulfills these demands.

Experimental design in this context covers two sub-problems:

• The optimisation of a diagnostic unit according to a defined set of design parameters
is called diagnostic optimisation.

• In experimental planning, the best experimental configuration has to be found, with
respect to results from previous experiments in this context.

It is the goal of this work to introduce a method based on probability theory, which
will meet with these criteria.

The work is embedded into the assembly of Wendelstein 7-X, a stellarator type fusion
experiment currently under construction. Examples for both applications, experimental
planning and diagnostic design, will be presented.

1.2 Specific motivation: Nuclear fusion

This section will introduce the physical background of this work: The main issues of
nuclear fusion and, in particular, the experimental challenges for plasma confinement are
outlined. Therefore, the stellarator concept is explained shortly.

1.2.1 The energy problem

Since the beginning of the industrial age in the 19th century the global energy consumption
has increased rapidly, by nearly a factor of ten since 1850 [1]. One of the major challenges of
the future is to find energy sources which can satisfy the continuously increasing demand
for energy. In particular, the need for carbon dioxide neutral energy sources becomes
evident, since recent findings imply that CO2 emissions result in significant climate effects
[2].

These energy sources have to match three main demands:
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1. Sustainability: The necessary resources should be available at long sight.

2. Independency of locally restricted resources to provide global access

3. Avoidance of CO2 emission and other dangerous waste products

Furthermore, the energy source has to fulfill additional requirements like security of
the power plants and the time-independent availability of energy. One proposal for such
an energy source is a fusion power plant, which gains energy from the fusion of light nuclei
into heavier ones.

1.2.2 Nuclear fusion as an energy source

Nuclear fusion was identified as the energy source of the sun by von Weizsäcker in 1937
[3, 4]: . The sun, which mostly consists of hydrogen, gains energy by fusing protons to
helium. The main fusion reactions are:

p+ p → D + e+ + νe + 0.42 MeV

D + p → 3He+ γ + 5.49 MeV
3He+ 3He → 4He+ 2p+ 12.86 MeV

The net reaction remains

4p→ 4He+ 2e+ + 2νe + 12.34 MeV. (1.1)

The energy release in this reaction is about 6 orders of magnitude larger than in typical
chemical reactions (hydrogen ionisation energy: 13.6 eV ). It results from the difference
of the mass of a complete nucleus and the sum of the masses of its constituents, the
nucleons. The mass of the nucleus is slightly smaller, the mass difference corresponds
to the nuclear binding energies, which are related to the mass difference via Einsteins
energy-mass-relation ∆E = ∆mc2.

The contributions to the total binding energy of the nucleus by the nucleons on the
surface are small because of missing partners. So, smaller nuclei have smaller binding
energies per nucleon according to the relatively large surface-to-volume ratio of the nucleus,
larger nuclei have larger binding energies per nucleon. This effect reverses at a nucleon
number of ≈ 60, then the repulsive Coulomb force starts to play a role.

The highest energy gain per nucleon can therefore be achieved from the fusion of
very light atoms like hydrogen (see figure 1.1), the same process takes place in the sun.
However, the reaction rates of equation (1.1) are unacceptable small for the use in power
plants. This argument does not play a role for the sun, because of its giant volume, but
similar conditions cannot be achieved on earth.

Therefore, other fusion reactions have to be taken into account. The most promising
one is

D + T → 4He+ n+ 17.59 MeV. (1.2)

Here, the hydrogen isotopes deuterium and tritium are used, the energy gain of 17.59 MeV
is relatively high. In addition, the reaction rate coefficient 〈σv〉 is relatively high compared
to other possible reactions below an ion temperature of 100 keV (see figure 1.2). Deuterium
is found in the oceans, whereas tritium can be bred from lithium by neutron attachment.
Lithium itself is found in minerals.

A fusion power plant basing on this reaction turns out to be comparable with other
possible energy sources in its costs [6]: The direct costs (constructing, fueling, operating
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Figure 1.1: Binding energy per nucleon related to the nucleon number (from [5]).

disposing) are comparable with renewable energy sources and ”clean coal” (fossil energy
source including emission abatement costs). Also, fusion belongs to the class of low ex-
ternal cost power sources. That means that costs form environmental damage or adverse
impacts upon health are significantly low (about 2.5 % of the direct costs), because of the
anticipated high safety standard of a fusion power plant. In result, fusion power turns out
to be a technology with a long term potential (approximately 50 years from now).

1.2.3 Physical challenges

The main problem in the realisation of a nuclear fusion device is the Coulomb force, which
acts repulsive for positively charged nuclei. The typical diameter of an atom lies in the
range of 10−10 m, whereas the strong force of the nucleus is operant at some 10−15 m.
The Coulomb barrier (Z - charge number, r - distance)

ECoulomb =
1

4πε0
Z1Z2e

2

r
(1.3)

in this range lies about some hundred keV and has to be overcome by the kinetic energy of
the fusion reactants. The necessary amount of energy corresponds to temperatures in the
order of 109 K, which is much more than a particle, even in the sun, can be achieved. The
reason why nuclear fusion works anyway was found by Gamov [7] in 1928: The Coulomb
barrier can be overcome by tunneling.

Nevertheless, for a sufficient number of fusion reactions high temperatures are still
necessary: The reaction rate R for D-T fusion reactions per volume is given by [5]

R = nDnT 〈σv〉, (1.4)

where nD and nT are the densities for deuterium and tritium, respectively. The reaction
rate coefficient 〈σv〉 depends on the temperature (figure 1.2), sufficiently high values are
given for temperatures of 10 keV (approximately 108K). At these conditions the hydrogen
atoms are fully ionised, this state is called plasma.

The plasma state is often referred to as the fourth state of matter, but one has to
remember that whereas phase transitions exist between the other three states (gaseous,
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Figure 1.2: Reaction parameter 〈σv〉, related to the ion temperature Ti for D-T , D-D and
D-3He fusion reactions (from [5]).

liquid and solid), no exact transition occurs between the gaseous and the plasma state.
A plasma offers some unique properties in comparison to the normal gas: Because of
the ionisation, the plasma contains of charged particles (electrons, ions). Nevertheless
it is assumed as quasi-neutral, i.e. the negative and positive charges neutralise on a
macroscopic scale [8].

In an effective fusion reactor a positive energy balance between the energy gain from
the fusion reaction and the loss mechanisms (bremsstrahlung, and transport processes),
characterised by the energy confinement time τE , is necessary [5, 9]:

nDnT 〈σv〉Eα︸ ︷︷ ︸
energy gain

= 3nkBT/τE︸ ︷︷ ︸
transport losses

+ c1n
2Zeff (kBT )1/2︸ ︷︷ ︸

bremsstrahlung

. (1.5)

Here, c1 is the bremsstrahlung constant and Zeff the effective charge of the plasma,
including all species (also impurities). Eα is the energy of the α particles (helium nuclei),
which are confined due to their charge and contribute to the heating of the plasma.

For T ≈ 10 keV one finds 〈σv〉 ∝ T 2, resulting in a criterion for the triple product
nτET

nτET =
12kBT 2

〈σv〉Eα − 4c1Zeff (kBT )1/2
. (1.6)

It turns out that the triple product shows a minimum of about 35 · 1020 keV s/m3 for
temperatures around 10 keV , this minimum has to be applied by an adequate confinement
time τE .

1.2.4 Plasma confinement

For the confinement of a high temperature plasma, the unique characteristics of a plasma
are utilised: Charged particles in electro-magnetic fields are exposed to the Lorentz force

FL = q (E + v×B). (1.7)

In electric fields E they are accelerated along the field lines, in magnetic fields B the
Lorentz force constraints the particle movement (velocity v) to a helix like trajectory,
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Figure 1.3: Rotational transform (from [11]): After one toroidal circulation a magnetic
field line (red), which has started at the point A, ends up in B1. After several circuits the
field line forms a magnetic surface.

winded around the magnetic field line. Because the particles cannot move perpendicular
to the field line, this seems to be an appropriate method to confine a plasma.

A homogeneous magnetic field can be found inside a long coil. To avoid particle losses
at the ends, the coil can be bend to a torus, which leads to closed magnetic field lines
inside the coil tube. As an effect of the bending, the distribution of the magnetic field lines
becomes inhomogeneous: They are more dense at the inner side of the torus than at the
outer side. As a consequence, a particle drift appears perpendicular both to the magnetic
field B and its spacial derivation ∇B, resulting in a loss of the plasma confinement.

To avoid this, the idea of rotational transform was introduced by Spitzer in 1958 [10].
The basic principle is a twisting of the magnetic filed lines in a way that one and the
same field line can be on the outer and on the inner side of the torus at different toroidal
positions.

As a consequence, a magnetic field line does not necessarily match its starting point
after one toroidal circulation (see figure 1.3). In fact, only one field line does this for sure, it
is called magnetic axis. In a poloidal cross section, a field line, which has started in point A,
normally crosses the plane several times in different points B1 . . . Bn. The transformation
of a set of points A into a set of points B1 is called rotational transformation  ι. It is
characterised by the relation of poloidal to toroidal circuits:  ι = Np/Nt = θ/(2π), where θ
is the poloidal angle between A and B1. For closed magnetic field lines this is a rational
number. It becomes irrational in case of field lines which are not closed.

The crossing points B1 . . . Bn lie on a closed curve in the cross section plane. Taking
into account the whole torus, one field line forms a magnetic flux surface after many
circuits around the torus (see figure 1.3). These surfaces are of strong importance for
plasma confinement.

Assuming a simple approximation for plasma equilibrium, the pressure gradient is
balanced by the magnetic force:

∇p = j ×B, (1.8)

where j is the current density, leading to

j · ∇p = 0 and B · ∇p = 0. (1.9)

As a result, on a magnetic surface with a magnetic fieldB0 the pressure p can be assumed as
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Figure 1.4: Schematic view of a tokamak: The external primary winding (red), toroidal
coils (green) and an iron yoke (blue).

constant. In addition, the toroidal magnetic flux is independent on the toroidal position of
the cross section plane, therefore the magnetic surfaces are also flux surfaces. The enclosed
magnetic flux can be used as a label of the surfaces, whereas the innermost one (identical
with the magnetic axis) encloses no volume and is often labeled with 0.

To generate the rotational transform, two basic ideas are realised in experiments: the
tokamak and the stellarator.

In the tokamak configuration, the rotational transform is generated by a toroidal
plasma current It, which is driven by an additional external coil (primary winding) by
induction (see figure 1.4). The toroidal plasma current It generates an poloidal magnetic
field Bp, which superposes with the toroidal field. In result the magnetic field is heli-
cally twisted. As a disadvantage, the inductive generation of the plasma current prevents
steady-state operations for a long time.

The largest fusion experiment in the world is a tokamak: the JET (Joint European
Torus) experiment in Culham, England. Here, a significant amount of fusion energy was
produced by D - T experiments in 1997 [12], about 70 % of the heating energy was re-
generated.

The next step in the tokamak line will be the International Thermonuclear Experi-
mental Reactor (ITER), currently under construction in Cadarache, France [13].

1.2.5 The stellarator principle

The second type of fusion machines which realises the rotational transformation in a torus,
is the stellarator. Whereas the early stellarator configurations were not necessarily torus-
shaped (eight-shaped versions have also been tested), todays stellarator experiments are
always toroidal set-ups. In comparison with other fusion experiments (like pyrotrons,
pinches, even tokamaks), the stellarator concept offers at least in principle the advantage
of an almost complete confinement and the possibility of steady-state operations. Both
properties are advantageous for the use of a fusion device as a power plant.

The main characteristic of the stellarator concept is the absence of an induced toroidal
current. In contrast to tokamaks, the rotational transform is produced by external coils
only. For this, in addition to the toroidal field coils a system of helical windings is necessary
(figure 1.5 (a)). The so-called advanced stellarators merge poloidal and helical windings
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(a) (b)

Figure 1.5: Types of stellarators [11]: In W7-A (a) the magnetic confinement was realised
by poloidal coils (green) and helical windings (red). The modular stellarator W7-AS (b)
used a combination of planar (green) and non-planar coils (light blue). The plasma is
indicated by the mesh structure.

Figure 1.6: The coil system of W7-X (light blue) is a superposition of poloidal and helical
windings [11]. The plasma is indicated by the mesh structure.

to a set of modular coils with a geometry of high complexity (figure 1.5 (b)).
The latest approach for an advanced stellarator experiment is Wendelstein 7-X, cur-

rently under construction at the Greifswald branch of the Max-Planck Institute for Plasma
Physics. Key element is a modular and supra-conducting coil system (see figure 1.6). The
design of the experiment was done with respect to several physical criteria [14]:

• Closed and well-shaped magnetic surfaces in the bulk plasma. Magnetic islands
and stochastic regions should be avoided here, nevertheless they may be utilized for
divertor operations in the plasma edge regions.

• Low Shavranov shift (movement of the plasma centre) and a stiff equilibrium confi-
guration.

• Good magnetohydrodynamic (MHD) stability.

• Reduced influence of the plasma pressure on the rotational transform.

• Vanishing neoclassical particle losses (in the 1/ν transport regime).
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Figure 1.7: Schematic view of the W7-X diagnostic system: The access to the plasma
vessel is realised by a complex port system.

• Small bootstrap currents in the low mean free path (lmfp) regime to avoid distur-
bances of the magnetic field.

• Good collisionless α particle confinement.

• From the technical point of view, the coil system should provide a good feasibility
and sufficient access to the plasma by an adequate large space between the coils and
the plasma for diagnostic purposes, shielding and, later, operations with lithium
blankets.

1.2.6 Diagnostic approach for W7-X

Taking into account these design specifications for W7-X, it is obvious that a well-structu-
red diagnostic concept is needed to test and to analyse whether these criteria are fulfilled.
Therefore, the diagnostics have to be designed to assure that the effects of these criteria
can be measured in an optimal way. The boundary conditions of the experiment have to
be taken into account, too. An overview over the diagnostic strategy of W7-X is given in
[15].

Fusion plasmas are characterised by extreme conditions: A direct contact of a diag-
nostic with the plasma is nearly impossible due to the very high temperatures. The strong
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magnetic fields, which are generated to realise the plasma confinement, may disturb the
measurements. Furthermore, the complex assembly of the experiment in case of W7-X
leads to restrictive technical boundary conditions for the access to the plasma.

For the measurement of different plasma parameters, e.g. the distributions of the
plasma density and the temperature, several types of diagnostics have to be applied to
gain reliable information. Figure 1.7 shows the diagnostic concept for W7-X in a schematic
view, where the different diagnostics are assigned to their respective ports at the plasma
vessel.

The complex situation outlined here confirms the need for a consistent treatment of
the diagnostic design. A logical choice would be a design approach with respect to the
scientific question of interest, in other words, to apply a physical experimental design
ansatz.

1.3 Physical design

The approach for physical experimental design is outlined in figure 1.8 for a diagnostic at
a stellarator, e.g. an interferometer. However, the ansatz is also valid for any other kind
of experiment.

In the beginning, the scientific background (plasma physics in general, stellarator spe-
cific problems in particular) leads to predictions about the expected physical scenarios.
These scenarios have to be parametrised in a way that one obtains a mathematical de-
scription of the physical problem. A set of parameters of interest has to be defined now:
The estimation of these parameters will be the goal of the experiment.

Also, the interest in the parameter space has to be specified, a weighting of this interest
is possible here. With the resulting limitations of the parameter range, the expected data
space can be calculated.

For this, a mathematical model of the measurement (forward function) has to be ap-
plied, it transforms a physical situation, described by the parameters of interest, into
(expected) data points. Here, an exact knowledge about the experiment and the diag-
nostics is necessary, also a description of the error statistics. The resulting mathematical
model can be seen as a virtual measurement and can also be used for the analysis of
measured data later on.

Finally, a expression of the utility of the measurement with respect to the data has to
be found. For the expected data used here, it is called Expected Utility (EU ). It describes
the usefulness of the expected data with respect to the physical problem.

The approach described here would provide some remarkable advantages:

• Physical design: The physical parameters of interest are intrinsically implemented
as design criteria.

• Comparability: If the Expected Utility can be quantified, different designs are di-
rectly comparable.

• Independency: The framework of this approach is general, so it is possible to apply
it to different kinds of diagnostics.

The methodological ansatz presented in this work uses an information measure as the
expression of the utility. This approach is not only valid for the optimisation of diagnostic
units, but also for the planning of experiments and experimental campaigns.
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Figure 1.8: Concept for physical experimental design

1.3.1 Overview

This work will present a method for physically motivated experimental design by using an
information measure as utility function. It will be shown, how stellarator-specific problems
can be utilised for the design of a diagnostic unit as well as for the planning of experiments.

In the next chapter, the basics of the design method will be introduced. Therefore,
the principles of Bayesian theory, which offer a consistent framework for the handling
of probability density distributions, are illustrated. Furthermore, a short introduction
into information theory is given, presenting the necessary basics for the quantification of
information gain.

The diagnostic to be optimised, the infrared multi-channel interferometer at W7-X, is
described in the third chapter. Here, the virtual measurement (see figure 1.8) is discussed
by analysing the forward model as well as the error statistics of the diagnostic.

Next, some previous results of diagnostic design for this interferometer will be dis-
cussed. The use of an information measure as utility function is validated by case studies.
For this, data sets from the W7-AS experiment are analysed, the respective Expected
Utility is calculated independently. By comparison, the relationship between measure-
ment result and EU is displayed and discussed.

The fifth chapter of this work will at first present an overview over some selected topics
of physical problems to be solved with W7-X: The problem of the Core Electron Root
Confinement (CERC), the estimation of high plasma confinement regimes and the mea-
surement of density effects during the injection of hydrogen pellets. From these physical
problems, the parameters of interest are derived. In the second part, the design results
for a multi-channel interferometer are presented, according to the different physical prob-
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lems. The optimisation results are shown for configurations with and without technical
constraints, taking into account several boundary conditions.

The last chapter deals with the problem of experimental planning. The concept of
empirical scaling laws will be introduced as a physical question. The use of the design
method for the evaluation of given data and for the estimation of the best experimen-
tal configuration for a future experiment is shown. The application of this method for
experimental planning is outlined.
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Chapter 2

Bayesian Experimental Design

In this chapter the method for Bayesian experimental design (BED) will be introduced.
It applies Bayesian probability theory, which itself is derived from first principles. Three
advantages of this approach will be pointed out: First, it is independent of the experiment
to be optimized, therefore it can be seen as a general method. Secondly, the quality
of the design is quantifiable, so different designs can be compared directly. And finally,
it allows the inclusion of physical motivated background knowledge (e.g. quantities like
temperatures cannot be negative) into the data analysis process.

A brief introduction to Bayesian theory and information measures is given in the first
part of this chapter. Both theories are used for the approach of BED, which will be
explained in the second part.

2.1 Bayesian probability theory

Bayesian probability theory combines first principles for the calculation of conditional
probabilities. This allows the self-consistent implementation of different sources of infor-
mation. Examples are, e.g., the inclusion of (physical) background knowledge and the
handling of unknown, so-called nuisance parameters. An intelligible and more extensive
introduction into Bayesian theory is given, e.g., by Sivia [16] or Gregory [17].

Two different approaches exist to define the term probability (see, e.g., Cox [18]). First,
the idea of frequency in an ensemble and, second, the idea of uncertainty. In the frequency
approach, probability is defined as the repetition frequency of an event in an ensemble.
Here, the ensemble may be a large number of identical experiments or an experiment which
is repeated many times in the same way. The term ”probability” is therefore defined by
the ensemble.

The frequency approach fails in cases where no repetition is possible or, in other words,
where no ensemble exists. For instance, the question whether there is life on Mars cannot
be treated in this way, because there is only one Mars, not a large number of planets. The
same issue arises in the case of physical constants, which are not exactly known: Defining
the probability of a constant in such a way would mean that in different experiments
different values for the constant are possible - which is a contradiction [19].

In the Bayesian approach, probabilities are understood as the uncertainty of the quan-
tities of interest, which have a well defined value, but one is not certain about it. This
uncertainty may be diminished by measurements.

Uncertainties can be formulated as probability density functions (PDF ). The PDF
p(X|Y ) encodes the probability distribution of the quantity X, given the quantity Y ,
whereas p(X,Y |Z) expresses the probability distribution of X and Y given Z. As a
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common convention, probabilities of a quantity are normalised to 1 if there is no other
state of the quantity possible, in other words, there is no uncertainty about this quantity.
On the other hand, the probability is zero if the state of a quantity is impossible.

Some basic rules, which can be derived directly from Boolean algebra [18], are used
to handle probabilities and probability distributions. The two basic laws are the product
rule and the sum rule.

The sum rule is based on the consideration, that if one knows the probability that X
is true, one also knows the probability that X is not true:

p(X| I) + p(X| I) = 1. (2.1)

Here X denotes that X is not true, I stands for all context information available. If more
than one state for X is possible, one obtains (for disjoint Xm, M is the number of all
possible Xm)

M∑
m=1

p(Xm| I) = 1. (2.2)

The aforementioned product rule as the second basic law involves conditional proba-
bilities. Here, the probability of a quantity is not independent of other quantities. The
product rule covers the following case: If one knows the probability that Y is true inde-
pendent of X, and the probability that X is true if Y is true, one knows how probable
both X and Y are true:

p(X,Y | I) = p(X|Y, I) · p(Y | I). (2.3)

The sum rule in (2.1) can also be written for conditional probabilities: For a PDF
M∑
m=1

p(X,Ym| I) one obtains from (2.3)

M∑
m=1

p(X,Ym| I) = p(X| I)
M∑
m=1

p(Ym|X, I) = p(X| I), (2.4)

because of the normalisation

M∑
m=1

p(Ym|X, I) =
M∑
m=1

p(Ym| I) = 1. (2.5)

Equations (2.2) and (2.4) finally lead to

p(X| I) =
M∑
m=1

p(Ym| I) · p(X|Ym, I) =
M∑
m=1

p(X,Ym| I) (2.6)

as the sum rule for conditional probabilities.
The sum rule (2.6) can be extended to continuous probability distributions:

p(X| I) =
∫

dY p(Y | I) · p(X|Y, I). (2.7)

This procedure is called marginalisation. It offers a very powerful tool to deal with nuisance
parameters: Quantities, whose exact value is unknown (here: Y ), can be integrated out.
The resulting probability distribution of the parameters of interest (X) becomes broader
but it does no more explicitly depend on Y .
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In data analysis, this formalism is used to calculate the influence of the nuisance
parameters (e.g. calibration parameters) on the probability distribution of the parameters
of interest. Therefore it can be seen as a general description for error propagation.

The marginalisation rule (2.7) is one of the two basic formulas of Bayesian probability
theory. The second one, called Bayes theorem, is derived from equation (2.3). Because of
p(X,Y | I) = p(Y,X| I) one obtains

p(X|Y, I) · p(Y | I) = p(Y |X, I) · p(X| I), (2.8)

which leads to

p(X|Y, I) =
p(Y |X, I) · p(Y | I)

p(X| I)
(Bayesian theorem). (2.9)

This theorem is a rule for inverse conclusions. The probability distributions of the
quantities X and Y , p(Y | I) and p(X| I) have to be taken into account, if the PDF
p(X|Y, I) has to be calculated.

Bayesian data analysis

The Bayesian approach for data analysis is a framework to merge probability distributions
in a consistent way. The result is a probability density distribution for the parameters of
interest.

The subsequent part of this section is devoted to Bayesian data analysis. The notation
used in the following chapters will be introduced, all quantities may be understood as
vectors.

If Bayes theorem is used for data analysis, the quantities and terms are interpreted in
the following way: A model H is used to describe the physical problem. It is characterised
by a set of parameters θ, the goal of the experiment is to estimate these parameters by
a measurement. Therefore, θ will be called parameters of interest. The knowledge about
θ without any given data is encoded in a PDF p(θ|H, I). This function is called prior.
Again, I represents all kind of background information.

The formulation of the prior function contains the available information about the
parameters of interest. Typical prior knowledge is, e.g., given by physical constraints
(densities and temperatures are positive). Identical knowledge about the parameters of
interest will always lead to the same prior, invariance arguments can be used to determine
the prior PDF uniquely. In addition, the principle of Maximum Entropy allows one to
deal with testable constraints [16, 20].

When the experiment is done, data D are available. One knows that the data is un-
certain because of systematic and statistical uncertainties in the measurement. Therefore,
for a given parameter set θ different data sets are possible. The probability distribution
of the data is given by the likelihood p(D| θ,H, I). It contains the forward function, i.e. a
mathematical model of the experimental set-up describing the emergence of a data point
at a certain state of θ. The likelihood also covers the error statistics of the measurement,
in other words, it is, in principle, a model of the experiment. A common ansatz for a
likelihood function is a Gaussian distribution:

p(D| θ,H, I) =
1

σ
√

2π
exp

[
−(D − f(θ))2

2σ2

]
, (2.10)

where f(θ) is the forward function and σ is the standard deviation of the measurement
noise.
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The result of the data analysis is the posterior function p(θ|D,H, I), a PDF describing
the knowledge about the parameters of interest when data D are available. With these
notations, Bayes theorem (2.9) reads as

p(θ|D,H, I) =
p(D| θ,H, I) · p(θ|H, I)

p(D|H, I)
. (2.11)

The term p(D|H, I) is called evidence (sometimes also prior predictive value (PPV)), it
is the probability for the occurrence of the data D, independent of the parameters θ. The
evidence is a normalisation factor which can be ignored if estimates from a posterior are to
be derived. However, it becomes important for the comparison of different models where
p(D|H1, I) 6= p(D|H2, I). It also plays a crucial role for experimental design, where it is
calculated by marginalisation (equation (2.7)):

p(D|H, I) =
∫

dθ p(D| θ,H, I) · p(θ|H, I). (2.12)

There are many examples of successful application of the Bayesian formalism in data
analysis. In plasma physics one finds, e.g, straight forward analyses from Ertl et al. [21]
and Anton et al. [22] for soft X-ray tomography and from Koponen and Dumbrajs [23] for
interferometry. Different approaches for the prior function (Maximum Entropy, Minimum
Fisher) were applied in these works.

Studies for model comparison were made by Preuss et al. [24, 25] for scaling laws
(see chapter 6). And, as a step for future analysis work, the concept of Integrated Data
Analysis (IDA) was presented by Dinklage et al. [26]: Several different diagnostic units
(Thomson scattering, interferometry, soft X-ray) were analysed together, the capability
of handling the interdependencies between the different diagnostics in a consistent way
shows the advantages of the Bayesian approach.

2.2 A brief introduction to information theory

The goal of every experiment is to learn something about the parameters of interest, in
other words, to gain information about them. Information shall be understood here in a
way that it constraints our belief about the parameters to be measured (see Caticha and
Griffin [27]), i.e., that one gains information if the uncertainty of the parameters after the
experiment is not the same as before.

A maximum of information gain in that way seems to be an effective criterion for
experimental design. However, it is necessary to define ”information” mathematically
first. In information theory, several measures are given to quantify the information gain
of an experiment.

Information theory basically deals with storage, coding and transmission of informa-
tion. Electronic communication is a typical example: Words, consisting of letters from
an alphabet A, are encoded using an alphabet B for transmission. Here, B may be of
advantage from a technical point of view (one may think of the binary code), whereas A
could be the normal alphabet. The decoding of the transmitted signals will give back the
original words, if the transmission was not disturbed (e.g. by noise).

One can see the process of a measurement in a similar way: The parameters of interest
- described by the alphabet A - are encoded by the measurement into a new alphabet B,
the data. It is decoded later by the data analysis process, finally the diagnostician gets
the original parameters.

In the following section, the principles of information measures are introduced. Here,
the argumentation of [28] is followed.
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2.2.1 Hartley information

An alphabet
A : {a1, a2, . . . , a|A|} (2.13)

shall be assumed, as well as a source sending a sequence of letters

am1 , am2 , . . . , amT (2.14)

during the time interval T , where

mt ∈ {1, 2, . . . , |A|} (2.15)

is the index at the point in time t ∈ T . For the sequence of letters, |A|T different possibi-
lities exist, therefore it seems to be a reasonable approach to define the information I of
the sequence as

I = T. (2.16)

For a sequence twice as long as the original one, one gets double information. If the
source did not send any letter, no information is gained: I = 0.

If one maps A one-to-one on a new alphabet

B : {b1, b2, . . . , br}, (2.17)

one also finds a one-to-one transformation of (2.14) on a sequence

bm1 , bm2 , . . . , bmT , (2.18)

which contains the same information as (2.14).
If there are less letters in B than in A, the transformation cannot be inverted. In this

case the Cartesian product

⊗lBr = Br ×Br × · · · ×Br︸ ︷︷ ︸
l−times

(2.19)

can be employed, which gives a one-to-one transformation if l is sufficiently large. As a
necessary condition, r has to be r ≥ 2, because | ⊗l Br| = rl. The letters of ⊗lBr are
called code words, in case of r = 2 B is called binary code with b1 ≡ 0 and b2 ≡ 1.

When a sequence of letters from alphabet A of length T is expressed by the alphabet B,
one gets a new sequence of length l · T . Defining the information as in (2.16), one obtains
I = T for the old and I = l · T for the new sequence. Apparently, this is a contradiction,
since a one-to-one transformation was used and no additional information was introduced.

To avoid this problem, the smallest alphabet possible has to be chosen to define the
information. which is the aforementioned binary code with r = 2 different letters. Now
an alphabet A, containing of |A| = 2l letters, can be coded with binary code words ⊗lB2

of length ld 2l = l. The overall information is given by

Iall = lT, (2.20)

and (using ld for the base-2 logarithm)

Iall/T = ld|A| = l (2.21)

as the information per letter, respectively. With every letter of A one gains the information

IH = ld|A|. (2.22)

This information measure is called Hartley information. It is the basic measure for all
measures of information gain.

For two different alphabets X and Y , the Hartley information obeys the following
rules:
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1. additivity: IH(X × Y ) = IH(X) + IH(Y )

2. monotonicity: IH(X) < IH(Y ) for |X| < |Y |

3. unit: IH(X) = 1 if |X| = 1. By using the base-2 logarithm, the unit is called bit.

The unit bit may be interpreted as follows: An easy explanation is given by looking at
a cupboard with several drawers. An object is hidden in one of the drawers, and one wants
to find it just by asking yes/no questions. For two drawers, one needs exactly one question,
two questions for four drawers, three for eight drawers and so on. In other words: The
number of questions is equal to the logarithm dualis (ld) of the number of drawers. What
happens in the case of five drawers? Sometimes one will need two questions, sometimes
three to find the object. In average, ld 5 = 2.3219 . . . questions are necessary.

This explains how fractional numbers of bits can occur. In the example, a gain of one
bit halves the uncertainty about the position of the object. When a probability distribution
is given, the correlation between information gain and uncertainty (maybe given in form
of a standard deviation) is straight forward, but not necessarily log-linear.

However, the Hartley information measure fails if the letters from the alphabet have
different probabilities to occur: Drawing a letter with a small probability should intuitively
lead to a higher information gain than a letter with a large probability. Therefore, a new
expression for the information gain is needed taking into account that letters with different
probabilities must result in different amounts of information.

2.2.2 Shannon information

For introducing a probability based weighting to the information measure, the main idea
is to divide the original alphabet A into pairwise disjoint sub - alphabets:

A1, A2, . . . , Am, . . . , AM (2.23)

with

A =
M⋃
m=1

Am, Am1 ∩Am2 ∀m1 6= m2. (2.24)

Doing so, one obtains

pm =
|Am|
|A|

(2.25)

as the probability for finding a letter in the sub-alphabet Am. The overall information for
a letter in sub-alphabet m can now be divided in two parts:

ld|A| = Im︸︷︷︸
information that letter in Am

+ ld |Am|︸ ︷︷ ︸
information about position in Am

, (2.26)

leading to

Im = −ld
|Am|
|A|

= −ld pm (2.27)

as the information, that the letter is in sub-alphabet Am. The overall information for all
sub-alphabets needs a summation over all m, weighted with the probability pm:

IS = −
M∑
m=1

pm ld pm (2.28)

This expression is called Shannon information [29]. For the limiting case of uniformly
distributed letters (pm = 1/M), the Hartley information (2.22) is resembled.

Some characteristics of the Shannon information should be mentioned:
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1. IS is always positive, since 0 ≤ pm ≤ 1.

2. Is is symmetric in all arguments:
IS(p1, . . . , pm1 , . . . , pm2 , . . . ,M) = IS(p1, . . . , pm2 , . . . , pm1 , . . . ,M)

3. For a discrete probability distribution P = {p1, . . . , pm, . . . , pM} the Shannon infor-
mation is restricted:
0 ≤ IS(P ) ≤ ldM ,
where the lower limit is reached if all pm are zero except one, and the upper limit
for a uniform distribution as mentioned before.

For the quantification of the information gain it is necessary to compare different state
of knowledge.

2.2.3 Kullback–Leibler distance

Again, an alphabet A : {A1, A2, . . . , AM} is used, containing of pairwise disjoint sub-
alphabets Am. The probability of a letter from A in Am is pm = |Am|/|A|, the distribution
of all discrete probabilities is P = {pm}Mm=1.

Now a second alphabet A∗ with A∗ ⊆ A is considered, containing of sub-alphabets
A∗m ≡ A∗ ∩Am. Their probabilities are qm = |A∗m|/|A∗|, the probability distribution is
Q ≡ {qm}Mm=1.

The term ld|A| is identified as the overall ”a priori” information about a drawn letter
ai, and ld|A∗| as the ”a posteriori” information, i.e. the information about ai if

ai ∈ A∗ (2.29)

is known.
The information gain if P is replaced by Q is given by

ld|A| − ld|A∗| = ld
|A|
|A∗|

. (2.30)

This information can be divided in two parts:

1. The information, from which sub-alphabet Am a letter ai was drawn, when (2.29)
is known. This is the partial information gain one is interested in, it is written as
I(qm||pm).

2. The information, which letter from Am was drawn, when (2.29) is known. This can
be written as ld|Am| − ld|A∗m| = ld |Am||A∗m|

.

Combining both parts leads to

ld
|A|
|A∗|

= I(qm||pm) + ld
|Am|
|A∗m|

. (2.31)

By combining (2.30) and (2.31) one finds for the m-th partial information gain

I(qm||pm) = ld
qm
pm

. (2.32)

In general, one is interested in the average information gain, when P is replaced by Q.
Therefore, one has to summarise all partial information gains, each weighted by the pro-
bability of its occurrence, which is given by qm for ai ∈ Am if (2.29) is fulfilled. One
obtains

I(Q||P ) ≡
M∑
m=1

qmI(qm||pm), (2.33)
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and with (2.32)

I(Q||P ) =
M∑
m=1

qmld
qm
pm

. (2.34)

This expression gives a quantity for the information gain, if the probability distribution P
is replaced by the distribution Q. In general, this always happens when the uncertainty
of a parameter of interest changes by the analysis of a measurement.

Whereas the term ld qmpm can be positive and negative, the information gain (2.34) is
always positive [28].

For continuous PDF s equation (2.34) can be expanded straightforward: Let p(x) and
q(x) be two continuous probability distributions, the support of q(x), supp(q) ≡ {x ∈ R :
q(x) > 0}, is contained in supp(p).

Now supp(p) is divided into pairwise disjoint intervals pm with length ∆x, the same
is done for q(x). This generates the distributions P∆x = {pm} and Q∆x = {qm}. With
(2.34) one obtains

I(P∆x||Q∆x) =
M∑
m=1

qm∆x ld
qm∆x
pm∆x

. (2.35)

The ∆x - term in the logarithm cancels, so one finally gets:

lim
∆x→0

I(P∆x||Q∆x) ⇒ IKL =
∫
q(x) ld

q(x)
p(x)

dx (2.36)

This expression is called Kullback–Leibler information and provides an absolute mea-
sure for the information gain. It is a measure for the ”distance” between two continuous
probability distributions P and Q, or, in other words, for the information gain if P is
replaced by Q. It is measured in bit in case of using the base-2 logarithm as intended
here. Sometimes it is written with a minus sign and called Kullback–Leibler entropy.

2.3 Bayesian experimental design

Using the tools of Bayesian probability theory one is able to handle PDF s in a consistent
way. In addition, the introduced information measures offer an instrument to quantify the
information gain of an experiment. For experimental design only the design parameters
have to be included now.

As the figure of merit for the experimental design a utility function

U(D, η) (2.37)

is defined, which depends on the data D of an experiment and the design parameters
η. Design parameters are understood as quantities of an experiment and diagnostic unit
respectively, which are accessible and changeable. Examples are geometric coordinates for
a line of sight or the point in time for the next measurement. Experimental design in this
approach is a decision-theoretic problem, based on the optimisation (i.e. maximisation)
of the utility function with respect to η.

For the data D different results are expected, because the future data is often uncertain
due to systematic and statistical errors and, in addition, the data range changes due to
different physical scenarios in the experiment (parameter scans etc.). Nevertheless, the
experimental design has to cover all possible data sets. Hence, the utility function has
to be marginalised over the expected data space, which results in the so called Expected
Utility (EU):

EU(η) =
∫

dD p(D| η, I)U(D, η). (2.38)
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The PDF p(D| η, I) encodes the probability of the occurrence of the data D from relevant
scenarios for the optimal design. The EU itself only depends on the design parameters.

As introduced in section 2.2.3 the Kullback-Leibler distance provides an absolute mea-
sure for the information gain of an experiment on the parameters of interest θ. Therefore,
the uncertainty about θ before the measurement, p(θ| I), is compared with the knowledge
about θ when data from the experiment are available, p(θ|D, η, I):

IKL =
∫

dθ p(θ|D, η, I) ld
p(θ|D, η, I)
p(θ| I)

(2.39)

In this work, the Kullback-Leibler distance is used as the utility function for experimental
design. By inserting (2.39) into (2.38) one obtains

EU(η) =
∫∫

dD dθ p(D| I) p(θ|D, η, I) ld
p(θ|D, η, I)
p(θ| I)

. (2.40)

During the design process, no data D are given and p(θ|D, η, I) is not available. It can
be replaced by using Bayes theorem (2.11) and one gets

EU(η) =
∫∫

dθ dD p(D| θ, η, I) p(θ) ld
p(D| θ, η, I)
p(D| η, I)

. (2.41)

This expression is an absolute measure for the information gain from the experiment, now
averaged over all possible data sets.

In Bayesian experimental design, the Expected Utility (2.41) is maximised with respect
to the design parameters η.

Only the prior PDF and the likelihood have to be provided for the design, the evidence
is calculated by using these functions according to equation (2.12). The likelihood contains
all information about the experiment as described in section 2.1. The meaning of the prior
is different in a sense that in BED the prior encodes the area of interest, in other words,
the area of the parameter space one is interested in.

The Expected Utility can be tested with some limiting cases [30]:

1. No data are available: The posterior distribution p(θ|D, η, I) is equal to the prior
p(θ| I), (2.40) vanishes because ld 1 = 0, there is no information gain without data.

2. The data D are totally uninformative of the parameters of interest θ: The experiment
is completely ignorant about θ, leading to p(D| θ, η, I) = p(D| I). Equation (2.41)
results in EU = 0. So, if the data tells nothing about the parameters there will be
no information gain.

3. The parameters of interest are exactly known before the measurement: In this case,
p(θ| I) = p(θ|D, η, I), resulting in EU = 0 – one can not learn anything if everything
is known.

Historically, the characterisation of the average information gain from an experiment
was first proposed by Lindley [31]. Later, he introduced a decision theoretic approach
for experimental design using a utility function [32]. An overview of different approaches
for utility functions (e.g. Shannon entropy, Kullback-Leibler entropy, maximisation of the
inverse determinant of the covariance matrix) can be found by Chaloner and Verdinelli
[33]. In this work, the BED approach is also compared with the non-Bayesian design
approaches and Bayesian alphabetical optimality.

Applications of Bayesian experimental design in physics are very rare to this point.
One example is given by the work of Loredo [34], in which BED is used to find the optimal
observation points in time for an astrophysical experiment.
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Chapter 3

Interferometry at Wendelstein 7-X

3.1 Density measurement with interferometry

Interferometry is a well established method for the determination of the electron density
in a high temperature plasma. It is a line-integrated density measurement, using the effect
of a changing optical path length due to the varying refraction index of the plasma. This
induces a phase shift on the probing beam, which is detected by interferometric compari-
son with a reference beam not affected by the plasma. Both beams are usually generated
by a laser to establish coherence. Although only the line-integrated density (along the line
of sight of the probing beam) can be measured, it is possible to extract a spatially resolved
density profile by using a multi-channel interferometer and an appropriate inversion pro-
cedure. Interferometry is a robust diagnostic and provides a good temporal resolution of
typical changes in the plasma density (e.g. due to injection of hydrogen pellets). These
effects can therefore be used as design criteria.

3.1.1 The principle: Phase shift and line integration

The principle of interferometry shall be introduced shortly by following the overview given
by Veron [35].

A plasma is transparent for an electromagnetic wave with wavelength λ, if the plasma
density n is smaller than the cut-off density nc:

nc =
4πc2ε0me

λ2e2
(3.1)

Here, c is the speed of light, e the elementary charge, me the electron mass and ε0 the
dielectric constant for vacuum. In case of an ordinary wave, i.e. the electric field is parallel
to the magnetic field, the refraction index of the plasma is

N =
√

1− n

nc
. (3.2)

For n� nc (3.2) can be approximated by

N ≈ 1− n

2nc
. (3.3)

Since the speed of light is different in media and the refraction index differs from one,
the optical path length in a plasma is not the same as in vacuum. In a plasma the refraction
index is typically N < 1, i.e. a plasma is an optical active medium. An electromagnetic
wave, e.g. a laser beam, which is sent through the plasma, gets phase shifted in comparison
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to a beam outside the plasma. The phase shift depends on the length of the beam line
inside the plasma and the difference of the local refraction index N from vacuum:

φ =
2π
λ

P2∫
P1

[NVacuum −N(r)] dr. (3.4)

Here, P1 and P2 are starting and ending points of the probing beam. The refraction index
is not necessarily constant along the beam line but depends on the spatial coordinate r.
Using the expression for the refraction index (3.3) one obtains with NVacuum = 1

φ =
2π
λnc

P2∫
P1

n(r)dr

=
λe2

4πε0mec2

P2∫
P1

n(r)dr. (3.5)

The phase shift is proportional to the line-integrated density and the wavelength of the
probing beam. Equation (3.5) suggests the use of higher wavelengths for interferometry
systems in order to increase φ, however, one tends to apply wavelengths in the infrared
range to suppress effects of beam diffraction and refraction which will be discussed later.

3.1.2 Phase shift measurements

In this section, the basic principles of interferometry and the estimation of the phase shift
will be discussed in detail. Technically, different types of interferometers exist. For W7-X
a Mach-Zehnder type interferometer is intended to be employed, a schematic view is shown
in figure 3.1. The phase shift detection is done by a heterodyne technique as explained in
the following, for this the frequency of the reference beam is changed by an acousto-optical
modulator (AOM). The interference signal is finally analysed with a phase comparator.

The electric fields of the probing and the reference beam, Ep and Er, are:

Ep(t) = E0p cos(ωt− φ)
Er(t) = E0r cos(ωt), (3.6)

where ω is the frequency of the beam and φ is the phase shift according to equation (3.5).
The power of the interfering beams is proportional to (Ep+Er)2. Using equation (3.6)

one obtains

P ∝ E2
0p cos2(ωt− φ) + E2

0r cos2(ωt) + E0pE0r [cos(2ωt− φ) + cos(φ)] , (3.7)

with cosx cos y = 1
2 (cos(x+ y) + cos(x− y)) [36].

For infrared or microwave interferometers, the terms varying with the frequency of the
probing waves, ω, are too fast to detect. The term to be measured in (3.7) is therefore
S ∝ E0pE0r cos(φ). Note that this signal is sensitive to the amplitudes E0p and E0r of
reference and probing beam, which may cause an error for the phase shift measurement if
one of the amplitudes changes (e.g. by disturbances of the beam). Furthermore, the sign
of φ cannot be detected.

To overcome these problems a heterodyne technique is employed. Here, a frequency
offset is added to the reference beam by an AOM (see figure 3.1). This offset ωψ (ωψ � ω)
is called intermediate frequency (IF). The electric field is now given by

Er(t) = E0r cos(ωt+ ψ); ψ = ωψt, (3.8)
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Figure 3.1: Schematic assembly of a Mach-Zehnder heterodyne interferometry system.
Reference and probing beam are split, on the reference beam the frequency is changed by an
acousto-optical modulator (AOM). After crossing the plasma, where the plasma generated
phase shift ∆φ is added to the probing beam, both beams interfere, the interference signal
is now modulated with the AOM frequency ωψ. The modulation signal of the AOM and
the detected interference signal are finally analysed by the phase comparator.

and the interference signal (only the part not depending on ω in equation (3.7)) becomes

S ∝ E0pE0r cos(φ+ ωψt), (3.9)

which is of sinusoidal form. This signal is compared with the modulation signal of the
AOM by a phase comparator. To measure the phase shift of the probing beam, the nodes
of both signals have to be detected. They are given at (k1, k2 ∈ N)

ψAOM = 2k1π at the AOM
ψ + φ = 2k2π at the detector

(3.10)

leading to
φ = ψAOM − ψ + 2π(k2 − k1). (3.11)

Obviously, the estimation of the phase shift is only possible modulo m · 2π (m ∈ N).
For this reason, a uninterruptible measurement has to be realised, only by knowing the
”history” of the measurement process phase shifts larger than 2π can be detected. In
particular, the zero-crossings of the signals have to be counted.
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With ψAOM = ωψt1 and ψ = ωψt2 and introducing the pseudo-period τ : ψ(t + τ) =
ψ(t) + 2π one obtains

φ =
t1 − t2
τ

· 2π. (3.12)

Equation (3.12) shows that measuring the instants of the nodes of both the AOM (t1)
and the detector signal (t2) the phase shift φ can be estimated. Because the phase shift is
determined only once per time interval τ , this period has to be chosen adequately small
for a sufficient phase resolution. The phase shift φ is then assumed to be constant during
one time period τ . In result, the estimation of φ does no more depend on the amplitude
but only of the nodes of the sinusoidal interference signal S. In addition, the sign of dφ/dt
can be derived from the sign of d

dt
t1−t2
τ .

For interferometry systems operating in the far infrared (FIR) region, the additional
frequency shift ωψ is normally generated by utilising the Doppler shift of a moving mirror
or a rotating cylindrical grating. For systems at medium infrared (MIR) or visible (VIS)
range, acousto-optic modulators or electro-optic modulators (EOM) are used (see, e.g.,
[37]): The probing laser beam is sent through a crystal, in which a sound wave is induced,
e.g. by a piezo-electric transducer. The sound wave in the crystal forms an optical grid,
which leads to a diffraction of the probing beam. In case of a moving sound wave, the
diffracted beam is frequency-shifted due to the Doppler effect, whereas the 0-th order
diffraction is not influenced. These modulators can therefore be used as beam splitter
(separating reference and probing beam) as well as for the shift of the frequency of the
reference beam. As an advantage of this method, the number of optical elements in the
beam line is reduced. For Wendelstein 7-X, a modulation frequency of ωψ = 40 MHz is
planned for the CO2 laser and ωψ = 25 MHz for the CO laser (see below).

Vibration compensation

The leading source of errors in the measurement of the plasma density by interferometry
are vibrations. Vibrations are due to, e.g., effect of vacuum pumps or vibrations of the
building and cannot be avoided in most cases. If short wavelengths are used for the
probing beam (see section 3.2), the phase shift induced by vibrations can be much larger
than the shift generated by the plasma density: E.g., for a CO2 laser (λ = 10.6 µm) and
a line integrated density of 1020 m−2 one obtains a phase shift of φ ≈ 3 rad, whereas a
displacement of an optical element (mirror) of δ = 0.1 mm due to vibrations would cause
a phase shift of φvib = 2π δλ ≈ 59 rad.

While the phase shift due to the plasma scales with λ (see equation (3.5)), the vibration
induced shift is inversely proportional to the wavelength, in result, the ratio φ/φvib ∝ λ2.
To reduce the effect of vibrations, the use of higher wavelength is therefore an appropriate
choice [38]. But as mentioned before, for an interferometry system working in the sub-
millimeter or millimeter range, effects of diffraction and refraction occur as an additional
error source.

If wavelengths in the infrared range are used, a common method for vibration com-
pensation is a two-color (or two-wavelength) interferometer, as planned for W7-X. Here,
the interferometer set-up of figure 3.1 is doubled: Two probing beams with different wave-
lengths λ1 and λ2 are guided on an identical path through the optical system, both beams
are exposed to the same vibrations and the same plasma density effects.

Vibrations yielding a change δ in the optical path generate a phase shift 2π δλ to each
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beam, so the phase shifts of both probing beams are given by

φ1 = ϕ1 + 2π
δ

λ1

φ2 = ϕ2 + 2π
δ

λ2
;

ϕi are the phase shifts generated by the plasma. Because the vibrations are the same for
both beams, one obtains

φ1λ1 − φ2λ2 = ϕ1λ1 − ϕ2λ2

=
(λ2

1 − λ2
2)e2

4πε0mec2

∫
n(r)dr (3.13)

and finally ∫
n(r)dr =

4πε0mec
2

e2

φ1λ1 − φ2λ2

λ2
1 − λ2

2

≈ 4πε0mec
2

e2

φ1λ1 − φ2λ2

λ2
1

for λ2 � λ1. (3.14)

For λ2 � λ1, φ2 measures the vibration-induced phase shift directly. In practice the
diagnostician has to decide between two limits: On one side, a large wavelength difference
is beneficial as shown by Kawano et al. [39]: The accuracy of the density measurement
(resolution ∆n), assuming a resolution of ∆φ for the phase detection, is given by

∆n ∝ ∆φ
λ1

1
(1− λ2/λ1)

, (3.15)

i.e. a large difference in wavelength leads to a better density resolution.
On the other hand, a small difference is favourable for practical applications: Beams

with similar wavelengths have similar Gaussian beam characteristics, can use the same
optical elements along the beam path and are insensitive to wavelength-depending distur-
bances like, e.g., the thermo-optical effect in windows [40].

An effective vibration compensation requires, that as many optical elements as possible
are used by both beams simultaneously. Therefore, at W7-X it is planned to use only
one detector to measure the interference signal of both wavelengths. This is possible
by applying different intermediate frequencies (ωψ = 40 MHz for the CO2 laser and
ωψ = 25 MHz for the CO laser), the interference signal is later decoupled using a band
filter at the phase comparator.

3.2 The interferometry system at Wendelstein 7-X

The interferometry system planned for Wendelstein 7-X will be described next. After a
short introduction, the technical boundary conditions and error sources will be discussed.

3.2.1 A two-color, multi-channel interferometer

For Wendelstein 7-X, a multi-channel interferometer is proposed [15]. The diagnostic will
start as a four-channel interferometer, it is planned to be extended to eight or more beams
later.

For the compensation of vibrations, the interferometry system will use two wavelengths
in the infrared (IR) region, generated by a CO2 and a CO laser. The wavelengths and
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Laser Wavelength λ Cut-off density nc

CO 5.4 µm 9.92 · 1024 m−3

CO2 10.6 µm 3.82 · 1025 m−3

Table 3.1: Laser wavelengths and cut-off densities for the W7-X interferometer

the cut-off densities are given in table 3.1, both densities are far beyond the expected
maximum densities of about 4 · 1020 m−3 for the W7-X plasma.

The probing wavelengths are short compared to previous experiments (see, e.g., [41]
for W7-AS), where millimeter waves (λ ≈ 1.87 mm in case of W7-AS) have been used.
As a result, the phase shift generated by the plasma will be much less for the W7-X
system. But this is not necessarily a disadvantage: Because the phase measurement can
be performed today with a resolution of ∆φ < 1/100 × 2π and better, counting a large
number of full 2π-shifts is not necessary for accurate density measurements. Moreover,
if only a small phase shift has to be detected, the danger of loosing the signal by phase
jumps of 2π (see section 3.1.2) is reduced.

The laser wavelengths have been chosen according to the arguments given in section
3.1.2: Both wavelengths are close enough to use the same optical components, AOM and
detectors. On the other hand, the difference is sufficiently large for a good resolution in
density measurement, the degradation factor (equation (3.15)) is given with

1
(1− λ2/λ1)

≈ 2. (3.16)

Furthermore, both the CO2 and the CO laser provide beams with a sufficient high
power output, they are commercially available as well as the necessary optical components
for guiding and manipulating the beams.

3.2.2 Technical boundary conditions

For the interferometry system at W7-X, three ports are available for the access to the
plasma vessel and the plasma itself. They are located at a toroidal angle of Φ ≈ 195◦

at the plasma vessel (see figure 3.2, left). The three ports allow different poloidal angles,
however, the beams will not be able to cross the plasma at the longest possible line (figure
3.2, right).

An important fact regarding the chosen ports is that the beam lines cannot cross the
plasma vessel directly, since the ports are localised only at the outer side of the vessel.
Therefore, the beams have to be reflected on the wall opposite to the ports and will cross
the plasma two times.

This restriction can be seen as an advantage, because crossing the plasma twice leads
to a higher phase shift and therefore to a better signal-to-noise ratio. On the other hand,
the incident beam has to be separated from the beam leaving the plasma, which makes
additional optical elements (semipermeable mirror) necessary, leading to a reduction in
the intensity of the laser beam.

Furthermore, the diagnostic is highly exposed to vibrations of the plasma vessel, since
the optical system, especially the mirrors inside the plasma vessel (corner cube retro-
reflectors), cannot be mechanically decoupled from the machine. In addition, the reflecting
components on the wall have to fit to the structure of in-vessel components (see figure 3.3).
This leads to restrictions of the mirror positioning, in fact, only 11 fixed reflector positions
are available.
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(a) (b)

Figure 3.2: A schematic view of the Wendelstein 7-X assembly (a): The vacuum vessel
(grey), the coil system (blue and brown) and the plasma vessel (yellow). Three of the
299 ports are dedicated to the interferometry system (green). A cross section of the
interferometry plane (b) shows that different poloidal angles are possible for the beam
lines (plasma: green area). (The plots were created using the VirtualWendelstein software
[42].)

Figure 3.3: Assembly of the wall elements at the inner side of the plasma vessel: The
corner cube retro-reflectors (grey) have to fit the in-vessel components, like carbon tiles
(green) and the cooling system (violet). The position of the assembly with respect to the
ports is indicated by the red square in the small picture.
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Figure 3.4: Additional interferometry channel: Cross section of the W7-X plasma vessel
(yellow) at a toroidal angle of ϕ ≈ 187◦, this plane is symmetrical to the diagnostic plane
of the Thomson scattering diagnostic. The extra beam (red), the plasma (green), the
plasma vessel (yellow) and the coil system (blue) are indicated.

An extra beam line can be positioned at a toroidal angle of approximately 187◦. The
plasma shape at this plane is nearly triangular (see figure 3.4), the beam is congruent to
the probing beam of the Thomson scattering diagnostic due to the symmetric properties of
the W7-X stellarator. This offers the possibility to use an interferometry beam as absolute
calibration for Thomson scattering, which provides density and temperature profiles with
high spacial resolution, but not independent of each other. The extra beam is a proposal
resulting from the requirements of an Integrated Data Analysis (IDA) [26]. The influence
of this beam to the design of the interferometry system will be discussed in chapter 5.

3.2.3 Error sources of the interferometry system

For the construction of the likelihood function (section 2.1) the error distribution of the
phase shift has to be estimated. The main errors should be therefore discussed here. The
leading error is given by the measurement of the phase shift, other errors (table 2.2) are
negligible.

The problems arising by refraction and the angular deviation of the probing beam
as described by Veron in [35], Chap. VII, can be neglected for the W7-X interferometry
system due to the very small wavelengths of the probing beams. The examples used by
Veron were made for FIR interferometry systems λ = 0.337 mm, therefore the effects are
about 1000 times larger than described for W7-X (the error is proportional to λ2): One
would expect errors in the order of some 10−4 percent of the phase shift, which can be
ignored.

The effect of Faraday rotation can also be ignored: The presence of a magnetic field
leads to a rotation of the polarisation plane of the probing beam. This influences the
interference of probing and reference beam, which would lead to intensity effects of the
interference signal. This does not play a role for the phase detection, where only the
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Error Description Comment

Refraction index N =
√

1− n
nc
≈ 1− n

2nc
∆N = 1, 3 · 10−11

for n� nc at n = 1 · 1020m−3

and λ = 10.6µm
ordinary and E ‖ B not established, W7-X:
extraordinary refraction index: ω = 1, 777 · 1014,

wave No = 1− ω2
p

2ω2 ; B = 3T , n = 1020m−3 →
Nx = 1− ω2

p

2ω2 · 1

1− ω2
ce

ω2−ω2
p

Nx
No

= 1.0000088

Veron [35]: additional phase shift for:
Angular deviation ε1 ∝ ∆φ/φ maximum deflection, para-
of probing and ε1 ≈ 1.5 · 10−4 % bolic density profile,
reference beam cylindrical plasma.

Change of optical parabolic density
path length ε2 ∝ ∆φ/φ distribution assumed

ε2 ≈ −6 · 10−4 %

Overall error ε = ε1 + ε2
ε ≈ −0.0004 % for W7-X

Stability laser additional phase shift: δf - frequency shift laser
∆φ = 2π δf ∆l

c ∆l - difference in
optical path of probing
and reference beam
∆φ ≈ 0.001 · 2π

Table 3.2: Negligible errors for the W7-X interferometry system. The error resulting from
beam deviation is approximated by assuming a circular shaped plasma and a parabolic
density distribution, which leads to an estimate for the error.

37



nodes of the sinusoidal interference signal are detected (see equation (3.12)). Assuming a
constant density for one time period τ , the Faraday rotation is also constant and does not
affect the estimation of the nodes.

An error source for the phase shift may occur, if the laser frequency f is not stable.
The instability of the laser lies in the range of some MHz in case of the CO laser: Due
to the long resonator of this laser, more than one laser mode may be activated. The CO2

laser frequency, however, is much more stable. By a shift of ∆f an additional phase shift
of

∆φ =
2π ∆f ∆l

c
(3.17)

occurs, where ∆l is the difference in the optical path between probing and reference beam.
For typical values of ∆l ≈ 10 cm the additional phase shift is about ∆φ ≈ 0.001 · 2π.

Several errors arise during the derivation of equation (3.5). First, the approximation
in equation (3.3):

N =
√

1− n

nc
≈ 1− n

2nc
(3.18)

For nc ≈ 1025m−3 and n ≈ 1020m−3 one gets a difference of ∆N ≈ 10−11, which will not
play any role.

Another error of this kind occurs if E ‖ B is not established as assumed in equa-
tion (3.2). In case of the ordinary wave where the electric and the magnetic field are
perpendicular the refraction index N is given by

No = 1−
ω2
p

2ω2
(3.19)

with ωp =
√

ne2

ε0me
as the plasma frequency. In case of an extraordinary wave (E ⊥ B) one

obtains

Next = 1−
ω2
p

2ω2
· 1

1− ω2
ce

ω2−ω2
p

, (3.20)

where ωce = eB
me

is the electron gyro frequency. For B = 3 T one finally gets 1.0000088 as
the correction factor for the extraordinary wave, which is also a negligible effect.

The leading error is given by the measurement of the phase shift by the phase com-
parator, which compares the AOM and the interference signal electronically. Both signals
are sinusoidal and are transformed into rectangular shape for better comparison. For
phase measurement, the phase comparator counts the edges of both rectangular signals,
the phase shift is estimated by counting over time intervals larger than the modulation
time tψ = 2π

ωψ
[43]. The phase comparator itself has a very high resolution (up to 1/500 ·2π

and better, see Kawano et al. [37]), the main error occurs during the transformation of
the interference signal into a rectangular shape.

The edges of the rectangular signal are defined by the zero-crossings of the interference
signal (see figure 3.5), which varies with the modulation frequency ωψ of the AOM. This
signal is noisy due to several disturbances on the beam line (e.g. vibrations, the vibration
compensation is done later by the phase comparator). This leads to an error of the phase
shift measurement, because the zero-crossing of the noisy signal may not be measured
correctly.

This error is independent of the magnitude of the phase shift and can therefore be
seen as a constant background noise. The error distribution will be assumed as Gaussian
for further calculations. Because no experimental experience is given so far, the error
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Figure 3.5: Transformation of the sinusoidal interference signal at the detector (above) into
rectangular shape (bottom). The edges of the rectangles are given by the zero-crossings
of the noisy detector signal.

is conservatively assessed with σ = 0.1 rad ≈ 0.016 · 2π. This corresponds to the ex-
pected resolution of a phase meter of about 0.01 · 2π [44] and takes into account the error
propagation by using two phase meters (one for each wavelength).
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Chapter 4

Basic Case Studies and
Methodological Validation

In this chapter the principle of using the Expected Utility as a measure for the quality
of a design will be analysed. As a reference, a previous design approach for the W7-X
interferometer is shown first, the results are compared with the outcome of Bayesian
experimental design. Case studies for a one-channel interferometer are presented to study
the ”working principle” of the EU on examples which can be explained in figures of the
signal-to-noise ratio, modified with respect to the parameters of interest.

Finally, the meaning of the bit-unit as an expression of the information gain will be
illustrated using old data sets from W7-AS, the predecessor experiment of W7-X. For
this, the data sets are analysed, and the EU of the respective measurement is calculated
independently. A monotonous relationship between the quality of the measurement result,
expressed by a global deviation χ2, and the EU is found.

4.1 Previous diagnostic optimisation results for W7-X

For the interferometer of Wendelstein 7-X an earlier optimisation has been performed by
Airila et al. [45]. The results will be discussed here shortly and be compared with the
new design later.

The approach presented in the work of Airila et al. is based on the idea of a plasma
structured in shells (figure 4.1). They are formed by the magnetic flux surfaces, the density
is assumed as constant inside a shell (see also section 4.3.1). Additionally, the shells are of
equal width in the effective coordinate system, their number is equal the number of beam
lines: four and eight, respectively.

Parameters of interest are now the densities in the respective shells. For the estimation
of the phase shift, equation (3.5) changes to

φi(θ) =
λe2

4πε0mec2

∑
j

Aij · θj , (4.1)

where θj is the density in shell j. The element Aij of the projection matrix A describes the
length of beam i inside shell j. Here, the mapping from magnetic to real space coordinates
is implemented in the projection matrix, too. The design ansatz of Airila et al. is to find
the optimal measurement of the density in every shell.1 For this, every single beam line
is assigned to a single shell.

1This is the reverse of the inversion procedure which will be introduced later in section 4.3.1.
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This leads directly to the requirement that the projection matrix has to be as diagonal
as possible: The contribution of shell i to beam i (described by Aii) should be large, so
that the phase shift of beam i is mainly determined by matrix element Aii:

φi ≈ Aii · θi. (4.2)

The optimisation goal of Airila et al. was to find a sight line configuration for which the
diagonality of the projection matrix is maximal. In result (see fig 4.1), the beam lines
cross ”their” shell at the longest possible way (restricted by the technical limitations due
to the port system). In particular, the beam lies as close as possible to the next inner
shell.

(a) (b)

Figure 4.1: Optimisation result for a four (a) and eight (b) channel interferometer at W7-X
from Airila et al. [45]. The beams are tangent to the next-inner shell, respectively.

Comments on the results

The design results were tested with five different density distributions: Using the optimised
interferometer for the generation of artificial data, the distributions could be reconstructed
quite well. Different to Bayesian experimental design, this test was done after the design
of the interferometer was finished. The reconstruction of the density distributions was not
implemented in the optimisation procedure, the directions of the beam lines are completely
determined by the parametrisation, i.e. mapping expressed by the shell structure. In
contrast, in the BED approach classes of density distribution functions are implemented
as parameters of interest.

The design of Airila et al. is fixed to the approach of equally sized shell widths (in the
space of effective coordinates), a change of the widths is not intended. As will be shown
later (section 4.2.2), this leads to a design where the optimised beam lines are strongly
related to the assumed shell structure.
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4.2 Case studies: One-beam interferometer

4.2.1 The basic setting

It seems to be useful to start the presentation of the results from Bayesian experimental
design with some simple cases to introduce, on the one hand side, the parametrisation
chosen for the problem. On the other hand, the optimal design of such examples is often
known, which offers the possibility to benchmark the results from BED.

(a) (b)

Figure 4.2: Density distribution for a cross section of the W7-X plasma at the interferome-
try plane (a) and the expected information gain for one beam (b). The colour-coded lines
of sight in the left picture correspond to the star symbols on the right side, respectively.

To parametrise the line of sight of a probing beam, the starting and ending points of
the beam may lie on a circumventing circle outside the plasma whose centre is identical
with the plasma centre. Both starting and ending point can therefore be described by
two angles η1 and η2. These angles are the design parameters which have to be varied in
order to optimise the diagnostic design. The concept is shown in figure 4.2: For a cross
section of the W7-X plasma at the diagnostic plane of the interferometer (toroidal angle
Φ ≈ 195◦), several possible beam lines are indicated. The beam lines correspond to the
star symbol in the plot of the information gain (figure 4.2 (b)).

A simple optimisation problem occurs, e.g., for a cylindrical plasma. In the first
example, the maximum density of the plasma, θmax, shall be measured with only one line
of sight, assuming a quadratic density profile:

n(reff ) = θmax · (1− r2
eff ) (4.3)

This question may arise, e.g., if the density control in a plasma is realised by an interfe-
rometer beam. For simplification, the probing beam has to be perpendicular to the axis
of the plasma cylinder. For the error statistics a constant noise level independent of the
data is assumed.

Figure 4.3 shows the varied density profile and a cross section of the plasma. The beam
line is described by only two angles, the Expected Utility (EU ) is plotted with respect to
both design parameters. The plot is symmetric in η1 and η2, because the start and end
point are exchangeable.
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(a) (b) (c)

Figure 4.3: Estimation of the maximum density with one beam: The amplitude of a
quadratic density profile varies from 0.5 − 5 · 1020 m−3 (a) in a cylindrical plasma. The
plasma cross section is shown in (b). The probing laser beam is parametrised by the angles
η1 and η2. The EU is displayed in (c), the star symbol corresponds to the beam line in
(b).

(a) (b)

(c) (d)

Figure 4.4: Design for a one-channel interferometer for an elliptical plasma (upper row)
and for a W7-X shaped plasma cross section (lower row). The green beam lines in the
left pictures correspond to the star symbols in the respective right picture.
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As one can see in figure 4.3 (c), the EU shows a maximum for beam lines crossing the
plasma centre. This was already expected: For a parabolic density profile, these lines of
sight yield a maximum phase shift and therefore an optimal signal-to-noise ratio (SNR) in
case of a constant background noise. Also, the EU is zero for beams outside the plasma:
No information can be gained from these measurements.

For the same physical problem (estimation of the maximum density for a quadratic
distribution), a slightly more complex geometry is analysed in figure 4.4, upper row: In
an elliptical plasma (similar to elongated tokamak configurations), the EU shows a clear
maximum. It corresponds to a beam crossing the plasma through its centre at the longest
possible way: The SNR is maximised for this beam. In the lower row of the figure,
the design result is shown for a plasma cross section of Wendelstein 7-X, here for the
interferometry plane at a toroidal angle of Φ = 195◦. Again, the beam line traversing the
plasma on the longest way is preferred by the design.

Nevertheless, while this first example shows the principle of designing the interfero-
metry system, it has to be extended to more realistic conditions for the further design
process. As a first point, the parametrisation of the density function should not be re-
stricted to a parabolic approach, since this would limit the educible space of distributions.
The parametrisation of the density profile functions is therefore discussed next.

4.2.2 Parametrisation of the density distribution

The goal of interferometry measurement is to determine the density distribution of the
plasma. The parameters of interest are therefore the variables in the mathematical de-
scription of the distribution. Several approaches for such descriptions are possible, starting
from the already mentioned stepwise constant distribution to other classes of model func-
tions. In this section, these approaches are discussed, the model function which are later
used for optimisation are introduced.

Stepwise constant distributions

For the analysis of interferometric data it is possible to use stepwise constant density
functions, as it is shown later in section 4.3.1. Here, the parameters of interest are the
densities in the different shells. The question arises whether this parametrisation is also
useful for diagnostic optimisation.

Figure 4.5 shows a density distribution consisting of four shells and the expected utility
for the optimisation of a single beam line. The design parameters are the starting and the
ending point of the line of sight, parametrised by two angles, η1 and η2. The parameters
of interest are the densities in the individual shells, they were assumed as independent of
each other and varied between 0.0− 2.0 · 1020m−3.

The expected utility (figure 4.5 (b)) shows maxima in ribbon-like structures, corres-
ponding to beam lines tangential to the next-inner shell, respectively. These lines of sight
cross a density shell on the longest possible way, this result is equivalent to the diagonality
criterion of Airila et al. (section 4.1 and [45]). The EU drops rapidly if the next-inner
shell is intersected.

However, for the optimisation of the diagnostic the approach of shells with constant
densities does not seem to be appropriate: The maxima of the EU are clearly influenced
by the shell structure. But a design depending on the shell configuration seems to be
disadvantageous, since the number of shells and their width are not fixed quantities.
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(a) (b)

Figure 4.5: Optimisation for stepwise constant, shell-structured density distribution, a
constant density is assumed for each shell (a). The star symbol in the EU distribution
(b) corresponds to the beam line in the density plot.

Form-free parametrisation

To overcome the problem of stepwise constant density distributions, the use of other fitting
functions is also applied in data analysis, like linear, quadratic or cubic spline solutions
(see, e.g., [46]) as well as exponential splines [47]. These methods provide flexibility and,
in most cases, access to the first and higher derivatives of the profile function.

Parameters of interest as criterion for diagnostic design would be the number and
position of the spline knots as well as the spline coefficients. However, for the optimisation
process the range of these parameters of interest has to be restricted according to the
physical problem. This is different to data analysis, where the result of the measurement
is not known and therefore in principle all combinations of the parameters of interest are
allowed.

For diagnostic optimisation, physical questions as described later in section 5.1 would
lead to very restrictive limitations for the parameters of form-free distribution functions.
But these limitations may be hard to define due to the interdependencies of the spline
parameters.

Parametrised model function

For the illustration of density profiles at W7-AS some parametrised model functions were
applied [48]. An example is

ne(reff ) = θ1 · 1020m−3 ·

 1− θ4 ·
(
r2
eff/a

2
)

1 +
(
r2
eff/(θ2 · a)2

)θ3
 . (4.4)

Here, a is the minor radius of the plasma, i.e. the effective radius of the plasma at the
last closed magnetic flux surface. These function turns out to be very flexible, although
it is determined by only four parameters, θ1 − θ4. These parameters describe unique
characteristics of the function: maximum density (θ1), position of the steepest gradient
(θ2), steepness of the density decay at the edge (θ3) and the pronouncement of the bulge
(θ4). In figure 4.6 the effect of the parameters is shown.
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(a) (b)

(c) (d)

Figure 4.6: Effect of the parameters θ1 - θ4 from the density model function (4.4):
Maximum density θ1 (a): 0.5 ≤ θ1 ≤ 2.0; position of the steepest gradient θ2 (b):
0.6 ≤ θ2 ≤ 0.95; steepness at the plasma edge θ3 (c): 5 ≤ θ3 ≤ 30; and the bulge of
the profile θ4 (d): −0.2 ≤ θ4 ≤ 0.0.
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The advantage of this model function lies in the independency of the single parameters:
Changing one has no significant effect on the distribution properties described by another
parameter. Therefore, different effects can be analysed separately by varying the respective
parameter.

One may argue that using a model function restricts oneself to the class of density
distributions described by this model. This is correct, and in case of data analysis, where
the outcome of the measurement should not be biased by the model function, the use of
such parametrisation seems questionable. For diagnostic optimisation, on the other hand,
the diagnostic has to be designed according to some well-defined physical effects. If these
effects can be adequately described by a model function like (4.4), parametrised functions
can be applied. Using a form-free parametrisation like splines, on the other hand, may
lead to complex limitations of its parameter space, if the same physical effect shall be
described. This could also lead to an increase in computation time.

The function presented here can be easily extended to describe hollow profiles (equation
(5.8)) or peaked profiles (equation (5.10)). Therefore, it will be used in section 5.1 to
parametrise the density effects of interest.

4.2.3 One-beam design for density model function

The effect of the parameters in the density model function (4.4) on the design of a one-
beam interferometer shall be pointed out next. Therefore, the parameters were chosen
one by one as parameters of interest for the design of one line of sight. The computational
aspects for the calculation of the EU are described in appendix A.

(a) (b)

Figure 4.7: Optimal beam line (a) and distribution of the EU (b) for the estimation of
the maximum density according to the model function (4.4).

For the estimation of the maximum density, e.g. for density control in a fusion plasma
device, the expected utility shows a behaviour similar to the case of the quadratic density
distribution (see section 4.2.1): The maximum of the EU is given for a beam line crossing
the plasma through its centre on the longest path possible (figure 4.7). However, the
maximum of the EU is not as distinct as in the case of the quadratic distribution. This
can be explained by the plateau in the density distribution described by the new model
function (figure 4.6). Moving the beam slightly out of the plasma centre leads to only
small changes in the density and therefore in the signal-to-noise ratio. A broad maximum
of the EU distribution characterises a robust design: Small changes of the optimal beam
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(a) (b)

Figure 4.8: Optimal design for measuring the position of the steepest gradient: Density
distribution with the optimal beam line (a), the star symbol at the EU distribution (b)
corresponds to this line of sight.

line have only a small effect on the expected information gain of the measurement.
The expected utility for the best design to estimate the position of the steepest gradient

has a different shape: The maximum is given for a beam line at the edge of the plasma,
however, again a line of sight crossing the plasma on a long path is preferred (figure 4.8).
This result is reasonable: An effect occurring at the plasma edge is best measured with
a beam line at the edge. It should be mentioned that the variance of the parameter of
interest, θ2, ranges over a quite large interval as can be seen in figure 4.6 (b). For a smaller
range (e.g. as described in section 5.1.2) the design is slightly different: The optimal beam
moves outwards to the edge region of the plasma where the effect is located.

For the steepness of the density decay at the plasma edge described by θ3, the EU
shows a strongly peaked maximum (figure 4.9). This indicates a very sensitive design:
Changes of the beam line have a strong effect on the expected information gain. Again,

(a) (b)

Figure 4.9: Plasma cross section with the optimal line of sight for the estimation of
the steepness of the density distribution (a), the corresponding maximum of the EU
distribution is marked with a star symbol (b).
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(a) (b)

Figure 4.10: Optimal beam line configuration for the measurement of the bulge of the
density distribution (a), the corresponding maximum of the EU is marked with a star
symbol (b).

one finds for the optimal line of sight a beam at the plasma edge. The EU distribution is
also characterised by a ribbon-like structure for beam lines at the very edge of the plasma,
indicating that the steepness can also be measured there. This result can be explained by
comparison with the density plot in figure 4.6 (c): Changing the steepness of the density
distribution leads to an effect in the region of the plasma edge and at the brink of the
profile at higher densities. This results in a ribbon-like structure at the plasma edge and
a maximum of the Expected Utility near the density plateau.

The last parameter to be used as an optimisation goal is the bulge of the density
distribution (θ4, see 4.6 (d)). As in the examples before, the most distinct effect in the
density distribution can be found at the brink of the plasma profile, therefore the maximum
of the EU corresponds again with a beam line at the edge (figure 4.10). In comparison to
the third case, the maximum here is much broader, the design is therefore not as sensitive
against small changes of the beam line.

For the design with respect to θ3 and θ4 one has to be aware that there is a dependency
of the optimisation outcome on the value of θ2: The position of the steepest gradient de-
termines the localisation of the density effects of θ3 and θ4 and therefore the corresponding
design. From this point of view, the design examples presented here can be seen as case
studies, for a complete design all parameters need to be varied simultaneously.

However, it turns out that the positioning of beam lines at the edge region of the plasma
is very beneficial. Unfortunately, the preferred beam line positions are not accessible at
W7-X due to the port system (see section 3.2.2, figure 3.2). In figure 4.11 the allowed
regions are shown in the EU plot. The effect of the boundary conditions on the diagnostic
design will be pointed out in the next chapter.

4.2.4 Impact of the error statistics

A description of the measurement error at the interferometry diagnostic was given in
section 3.2.3, however, the influence of the error statistic on the diagnostic design shall
be demonstrated in more detail. As an academic example, the density distribution from
equation (4.4) is used, parameter of interest is the maximum density, θ1 [49].

Figure 4.12 shows the expected utility for three different error statistics: In the first
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Figure 4.11: The expected utility for the parameters θ1 - θ4: The shaded areas are not
accessible due to the port system of Wendelstein 7-X.

case, the standard deviation σ was chosen to be independent from the data value, descri-
bing a constant background noise. Second, the standard deviation was proportional to the
square root of the data value, which is typically the case in counting experiments. As a
last example, an error proportional to the data value, i.e. a ”relative” error, was assumed.

The EU for a constant background noise shows a distinct maximum for a beam line
crossing the plasma through its centre on the longest possible way. The same maximum
appears for the case where the standard deviation is proportional to the square root of
the data, but the maximum is not as distinct as in the first case. Finally, for the error
proportional to the data, the EU shows no maximum at all, but is equally distributed.

This result can be explained with the dependence of the EU on the signal-to-noise
ratio: The SNR is proportional to the data in case of the constant background noise - the
beam line with the largest data value - a line of sight crossing the plasma centre on the
longest way possible - is preferred. For the second case, the SNR is only proportional to
the square root of the data, resulting again in a maximum for the EU at large data values,
but a more smooth distribution - changes in the data value have a smaller impact on the
SNR and therefore on the EU itself. In case of a measurement error proportional to the
data the SNR remains constant for every line of sight: For a known density distribution,
the maximum density θmax can be measured everywhere. Here, the EU shows a constant
distribution.

Although the examples discussed here are limiting cases, they point out the tremendous
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(a) (b) (c)

Figure 4.12: Expected Utility for the estimation of the maximum density assuming a
measurement error independent from the data (a), proportional to the square root of the
data (b) and proportional to the data (c) [49].

influence of the error statistic. A detailed error analysis for the diagnostic is therefore of
particular importance even in the design phase.

4.3 Data analysis for interferometric measurements

The Expected Utility as introduced in chapter 2 is an absolute measure for the average
information gain of a future measurement. The averaging is done over the expected data
space, every possible datum corresponding to the parameter range of interest is taken into
account. This leads to an important characteristic of the EU : It does not give a hint about
the outcome of a single future experiment.

Even for an optimal experimental design extreme measurement errors may occur due to
the error statistics. In average, the optimised experiment would produce better measure-
ments than a non-optimal experiment, but no statement can be made about the quality of
a single data point from a future measurement. This characteristic makes it finally difficult
to prove, by a measurement, that the optimal design was found by the maximisation of
the EU.

However, in a few cases the influence of the EU can be illustrated. In this section,
interferometry measurements from W7-AS are used to illustrate the consequences of high
and low EU values. In the first part an introduction into the inversion procedure necessary
for the analysis of line-integrated measurements is given, in the second part the effect of
the EU on a measurement is examined.

4.3.1 Abel integral and inversion problem

To extract a spatially resolved density distribution from the line integrated measurement
of the interferometer, an inversion procedure has to be applied. This is only possible by
using a multi-channel interferometer.

If the probing beam of an interferometer crosses a circular plasma with radius R at
the distance r0 (closest point to the plasma centre, see figure 4.13), the phase shift is given
with [35]

φ(r0) =
2π
λnC

r0∫
r

n(r)(
r2 − r2

0

)1/2 r dr. (4.5)

This integral can be inverted, and one obtains an expression for the electron density
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Figure 4.13: Abel inversion: The inversion formula (4.6) is given for a circular shaped
plasma (light blue) with radius R, r0 is the smallest distance of the probing beam to the
plasma centre.

distribution:

n(r) = −λnc
π2

r0∫
r

dφ(r0)
dr0

dr0(
r2

0 − r2
)1/2 . (4.6)

Integrals of the kind
∫
f(x, y(x))dx are called Abel integrals, the inversion procedure

is often referred to as Abel inversion. It is solvable analytically for parabolic density
distributions.

For many practical applications this is not an appropriate assumption: First, non-
parabolic density distributions n(r) occur, and second, like in W7-X, the plasma is not of
circular shape. A general approach for inversion is therefore introduced next.

Plasma density distributions are often expressed in an appropriate coordinate system
to overcome the problem of a non-circular cross section of the plasma. One approach is
to transform the volume inside a magnetic flux surfaces into a cylinder with the same
volume. The radius of this theoretical cylinder is called the effective radius of the flux
surface. This conversion is called mapping, and it has to be provided for an interferometry
measurement. The mapping of the magnetic flux surfaces can be calculated or measured
with adequate diagnostics (e.g. soft X-ray tomography [21, 22]). The final outcome is
then a density distribution in effective coordinates: n(reff ).

For analysis purposes, the density distribution is discretised along reff , and the density
is assumed to be constant in every segment. The number of segments is in the order of the
number of beam lines, but not necessarily identical: If additional information is provided
by the regularisation functional (see below), the number of segments can be larger than
the number of beam lines. In real space, the segments correspond to onion-like shells given
by the magnetic flux surfaces. They are often chosen as equidistant, although this is not
required.

Two possibilities exist to extract the (discretised) density distribution from the mea-
surement provided by an multi-channel interferometer: If a backward calculation is applied,
the density of the outermost shell is estimated first by the measurement using the outer-
most interferometer channel. The density of the second shell is then given by the density
of the first shell, combined with the measurement of the interferometer channel next to
the outermost one. The densities of the inner shells are estimated iteratively in the same
way. The disadvantage of this method is its error propagation: The error of the density in
the innermost shell is large, since it accumulates the errors of all other shells. This result
is due to the analysis procedure (backward calculation) and is questionable, because the
measurement error of the interferometer channel at the plasma centre is the same as for
the other channels. Furthermore, the error does not decrease below the accumulated error
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of all other shells, no matter how many additional beams are applied through the plasma
centre.

The second method establishes forward calculation and can be regarded as a virtual
diagnostic: The data d is measured by the diagnostic and simultaneously the forward
function f(θ) is calculated in relation to the parameters of interest θ (here: the densities
in the different shells, θi = ne(rieff ). Then, both data and forward function are compared:

χ2 =
Nd∑
i

(
di − fi(θ)

σi

)2

(4.7)

Here, Nd beam lines are applied, σi is the error of the respective data point. To estimate
the density distribution, χ2 has to be minimised with respect to θ.

For piecewise constant density distributions, equation (3.5) becomes the sum

φi(θ) =
λe2

4πε0mec2

∑
j

Aij · θj ; (4.8)

where Aij is a matrix element of the projection matrix A containing the length of beam i
in shell j, and taking into account the mapping of the flux surfaces. Setting fi(θ) = φi(θ),
equation (4.7) becomes a system of linear equation to be minimised.

In case of noisy data the minimisation of (4.7) is an ill-posed problem, which requires
an additional boundary condition to find an unique solution. Some possible methods
regarding an interferometry system are presented by Koponen and Dumbrajs [23] for the
multichannel interferometer at W7-AS.

The boundary condition is implemented by the regularisation functional R. In detail,
the term

F =
1
2
χ2 − αR (4.9)

has to be minimised instead of χ2 only. α is a Langrage parameter, which weights the
regularisation functional so that is is neither over- nor underestimated.

Different regularisation functionals are possible and are strongly related to the inversion
problem to be solved. The approach to be chosen has to reflect the physical background
knowledge about the parameters of interest. For instance, information about the functional
behaviour of θ like smoothness or curvature can be encoded in R. Two approaches are
used in the fusion research (see, e.g., [23, 21, 22]) and shall be introduced briefly: the
method of Maximum Entropy (MaxEnt) and the Minimum Fisher approach.

The maximum entropy method is based on the Shannon entropy measure and prefers
the most uninformative solution. This avoids ”virtual” information, i.e. effects of the
noise are not interpreted as signal by mistake. The regularisation functional R is given by
the information entropy

R =
∑
i

[
θi −mi − θi ln

(
θi
mi

)]
. (4.10)

Here, m describes the model for θ in absence of any data, in case of no further infor-
mation it is a flat distribution m = const [21].

As a disadvantage, physical knowledge is completely ignored by the MaxEnt method.
For instance, in case of the plasma density one would always assume a smooth distribution
without large steps between the different shells. But using MaxEnt, the shells are assumed
as independent of each other, so that, in principle, large steps could occur.
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A second method is the principle of Minimum Fisher regularisation [22, 23]. Here, the
regularisation functional is given by the Fisher information

R = IF =
∫ [

θ′(reff )
]2

θ(reff )
dreff (4.11)

where ′ denotes the derivation with respect to reff . It has been shown that a minimum of
(4.9) using this regularisation functional provides the smoothest result possible [50].

The principle of Minimum Fisher regularisation is to cancel out noise effects of the
background, where the values of θ are small: Rapid changes of the distribution function

lead to large values of its derivative θ′. The term [θ′(reff )]2
θ(reff ) becomes large for small values of

θ and vice versa, in other words, the division by θ assures that regions of low θ and high
derivatives θ′ considerably contribute to the regularisation functional R. Minimisation
of equation (4.9) leads therefore to a smoothing of these regions of θ. This effect was
illustrated for data analysis of interferometric measurements by Koponen and Dumbrajs
[23] and for X-ray tomography by Anton et al. [22].

Beside the methods of maximum entropy and minimum Fisher, other regularisation
functionals are also possible and used for inversion: minimisation of the norm (R =
|θ|2), minimisation of the gradient (first order regularisation, R = |θ′|2) or curvature
(second order regularisation, R = |θ′′|2) of the density distribution [22]. All these methods
have different meanings as a boundary condition for (4.9), therefore their application
strongly depends on the physical problem. However, these boundary conditions seem to
be inappropriate for the reconstruction of a density distribution.

4.3.2 Analysis of interferometer data from W7-AS

Figure 4.14: Seven chords of the multi-
channel interferometer at W7-AS with
a contour plot of the magnetic flux sur-
faces (from [23]).

As examples for the analysis of interferome-
tric data two shots of the W7-AS experiment
shall be analysed (shot numbers # 35502 and
# 35504). The effect of the regularisation me-
thod and the influence of the measurement error
will be illustrated.

The multichannel interferometer at W7-AS
was a microwave system with wavelengths
around λ = 1.87µm. The channels were ar-
ranged nearly horizontal at a toroidal angle of
approximately 30◦ (see figure 4.14). In total,
nine channels were attached to the experiment,
for the shots analysed here only 7 channels were
available. A detailed description of the diagnos-
tic is given by Geist et al. [41].

As a first example, discharge # 35502 is
analysed by using the aforementioned regula-
risation methods, Maximum Entropy and Mi-
nimum Fisher. The time traces of the interfe-
rometer signals are displayed in figure 4.15, the
analysis was done for t = 0.5 s.

For the analysis, the data traces were cor-
rected with the offset from the time interval af-
ter the discharge (t > 1 s). Because the line in-
tegrated density

∫
n dl was originally estimated
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Figure 4.15: Line integrated density measurement from shot # 35502 of the W7-AS expe-
riment (a), the time traces are colour coded according to the respective channel: S1 - red,
S2 - dark blue, S4 - green, S5 - yellow, S6 - black, S7 - light blue and S9 - magenta.

for an average wavelength λ = 1.87mm, a correction factor c = λi/1.87 was used for the
data of every channel. Here, λi is the wavelength of the i-th channel in mm as listed in
table 4.1.

The errors bars in the density plot were computed according to [21]: For the error
estimation the covariance matrix

Hij =
α

θi
δij +

∑
l

Ali
1
σ2
l

Alj (4.12)

was calculated. Here, σl is the error of channel l, θi the density in shell i and A the
projection matrix from equation (4.8). For this study, only the statistical error given by
the noise of the data traces was taken into account. The error of the density is now given
with

(∆θi)
2 =

(
H−1

)
ii
. (4.13)

It should be mentioned here, that this error is a function of the Lagrange parameter α
(equation (4.12)), too.

Figure 4.16 (a) shows the result of the data analysis using the Maximum Entropy
regularisation, comparing the outcome for the density distribution with and without chord
S9. This differentiation was done because of the larger variation in the S9 data time trace:
The noise for the other beams was determined with ∆

(∫
n dl

)
= 0.01 · 1019 m−2, whereas

for S9 ∆S9

(∫
n dl

)
= 0.03 · 1019 m−2 was assumed. In result, the solution including S9

shows a poor performance, leading to the assumption that the S9 signal can be regarded
as an outlier. Therefore, the S9 chord was excluded from the data set for the following
calculations.

beam: S1 S2 S3 S4 S5 S6 S7 S9

λ (mm): 1.873 1.872 1.87 1.869 1.867 1.865 1.863 1.858

Table 4.1: Wavelengths of the interferometer chords at W7-AS (from [41]).
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(a) (b)

Figure 4.16: Reconstruction of the density profile of W7-AS shot # 35502: Comparison
of the solution with and without beam S9 (a), and of different regularisation methods (b):
Maximum Entropy (black) and Minimum Fisher inversion (red).

Considering six beams (S1, S2, S4 - S7), the comparison between MaxEnt and Mini-
mum Fisher inversion is done in figure Figure 4.16 (b). The density distribution recon-
structed with Minimum Fisher is characterised by smaller slope compared to the Maxi-
mum Entropy result: The distribution calculated by MaxEnt shows a density plateau in
the plasma centre and a steep gradient at the plasma edge, whereas the edge gradient from
Minimum Fisher regularisation is somewhat more flat. This may imply that introducing
this smoothness would be misleading in case of density distributions with steep gradients
at the plasma edge.

It is important to mention that the inversion result strongly depends on the measure-
ment error. To illustrate this, another discharge from W7-AS (# 35504) was analysed.
During this discharge, 7 channels of the interferometer were available (see figure 4.17,
(a)), the data from channel S7 was slightly more noisy than the others. The error of the
other beams was given with ∆

(∫
n dl

)
= 0.01 ·1019 m−3, for S7 0.03 ·1019 m−3. The error

of S7 was varied, figure 4.17 (b) displays the results for MaxEnt inversion.
Even the small difference in the error of chord S7 results in a significant impact to the

density distribution: Assuming equal errors for all beams leads to scattered distribution
in the density plateau region, whereas the distribution becomes flat if a higher error for
S7 is taken into account, which seems to be more reasonable. The strong impact of the
error variation in this example illustrates the importance of an accurate estimation of the
measurement errors.

4.4 Validation of the EU

In this section, the impact of different beam line configurations shall be compared with
their respective Expected Utility, which is calculated separately. With this method, the
correlation between measurement outcome and the value of the EU can be demonstrated.

Basically, the meaning of the Expected Utility can hardly be interpreted by experi-
ments quantitatively. The reason for that is mainly the integration over the expected data
space which is done for the EU calculation (see equation (2.38)). This would mean that
for a reconstruction of the EU in principle every possible datum is needed to be measured,
resulting in the necessity for an infinite, or at least very large number of measurements.
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(a)

(b)

Figure 4.17: Influence of the error in MaxEnt inversion: Data traces of shot # 35504 of
the W7-AS experiment ((a), see figure 4.15 for the colour codes). The error of channel S7
(light blue) is slightly more noisy than the others. In (b) the inversion result is given for
assuming equal errors (black) and a slightly larger error for S7 (red).
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The integration over the parameter range of interest would lead to similar difficulties.
Nevertheless, a higher EU should correspond to a better estimation of the physical

parameters of interest. This can be illustrated also with single data sets in a qualitative
way. In the example chosen here the reconstruction of a density distribution using different
numbers and different combinations of interferometer beam lines is compared with the
density distribution calculated from the complete interferometer data set combined with
data from Thomson scattering.

4.4.1 Data set and parametric fit

Using a measurement for the validation of the Expected Utility has the disadvantage
that the ”real” physical situation, in this case the distribution of the plasma density,
is unknown. But by combining different data sets one may get a good estimate of the
distribution which can be used as a ”best estimate” for comparison in the following.

For this, shot # 35502 of the W7-AS experiment was analysed in the following way:
Six beam lines of the interferometer (S1, S2, S4 - S7) were used to calculate the density
distribution by MaxEnt regularisation. As discussed in the previous section, the S9 chord
was removed from the data set. In addition, the results from the Thomson scattering
diagnostic as shown in [23] were taken into account. Figure 4.18 shows both data sets and
a parametric fit. The fit function applied here is given in equation (4.4) and is commonly
used for the description of density distributions in W7-AS [48].

Figure 4.18: W7-AS shot # 35502: Reconstructed density distribution: Interferometry
(red) and Thomson scattering data (blue) [23], combined with a parametric fit (black).

The density profile is now reconstructed by using only a subset of beams from the
interferometer: A four-beam interferometer, consisting of the innermost chords S4 - S7 (see
figure 4.14), and two five-beam interferometers, consisting of the four-beam configuration
extended by the chords S1 and S2, respectively.

Figure 4.19 shows the results in comparison to the parametric fit from the complete
data set of interferometer and Thomson scattering. The solution using only four beams
gives the poorest result, which is not surprising: Without a beam through the plasma
edge, a good reconstruction of the plasma profile becomes difficult.
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Figure 4.19: Reconstruction of the density distribution with different beam line configura-
tions: Four beams (S4 - S7, blue), five chords including S1 (green) and including S2 (red),
respectively. The parametric fit from Figure 4.18 (black) is given for comparison.

Adding chord S1, which is the outermost beam, to the set-up leads to a significant
improvement of the result. At the supporting points in the plasma centre and at the very
edge the reconstructed profile shows a good agreement with the parametric fit. Differences
are found in the regions of the strongest density decay, again a region not covered by one
of the beam lines.

Finally, the four-beam set-up is extended by chord S2, which is located slightly closer
to the plasma centre than S1. The density distribution calculated from this data set shows
the best agreement with the parametric fit function, especially in the region of the density
decay.

4.4.2 Comparison with Expected Utility

The result of the different reconstructions shall now be compared with the corresponding
Expected Utility, which is calculated independently from the data analysis. For this, a
parameter range of interest has to be defined (see section 2.3). Here, the physical interest
is expressed by the parameters of the fit function (4.4). The variations of the different
parameters are displayed in figure 4.20.

The EU is now calculated for a simple design problem: Given the beams S4 - S7, what
would be the best position for a fifth interferometer chord to measure these variations in
the density distribution? As a boundary condition, the new beam line was assumed to be
horizontal, only the z coordinate was varied.

In Figure 4.21 the distribution of the EU with respect to the z coordinate is displayed.
The plot shows a nearly symmetric shape due to the fact that the plasma is approximately
symmetric at the interferometer plane (figure 4.14), and the given chords S4 - S7 are also
nearly symmetric to the plasma centre.

The flat parts of the distribution for large positive and negative values of z correspond
to beam lines which do not cross the plasma, in other words, these regions show the EU
for only four chords. Here, the EU is given with EU = (14.20± 0.07) bit.
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(a) (b)

(c) (d)

Figure 4.20: Variation of the parameter range of interest according to equation 4.4: Ma-
ximum density (θ1 : 0.3 ≤ θ1 ≤ 2.0, (a)), position of the edge decay (θ2 : 0.5 ≤ θ2 ≤ 0.9,
(b)), steepness (θ3 : 0.01 ≤ θ3 ≤ 0.2, (c)) and density behaviour at the plasma centre
(θ4 : −1.0 ≤ θ4 ≤ 2.0, (d)).

Figure 4.21: Expected Utility for a fifth beam line shifted on the z axis, given the chords
S4 - S7. The positions of the beams S1 and S2 are indicated.
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Figure 4.22: χ2 of the density reconstructions and the parametric fit, plotted with re-
spect to the Expected Utility EU. The χ2 is displayed on a log2 scale, resulting in an
approximately linear relation.

A small maximum of the EU occurs for beam lines through the plasma centre (z = 0).
This corresponds to beams with a high signal-to-noise ratio, similar to the findings of
section 4.2.3 and comparable to the results for W7-X as will be explained in detail in
chapter 5. However, this extremum is only marginal compared to the maxima at z ≈
±0.23. In these regions the density distribution as parametrised in figure 4.20 shows its
strongest changes, mainly the effects of the density decay are localised here. In addition,
no given beam covers this range of z directly, the given beams S4-S7 are located near
the plasma centre (figure 4.14). Therefore, a fifth chord traversing the plasma at these z
coordinates would be very ”valuable”.

The positions of the two available beam lines S1 and S2 are also indicated in figure
4.21. Their position is only an approximation, because the chords at W7-AS were not
exactly horizontal. As can be seen in the figure, the EU for S2 is much larger as for S1.
Calculated directly one obtains

EU(S1) = (16.3± 0.1) bit
EU(S2) = (17.9± 0.1) bit.

The EU of S1 is smaller, because the effect of the density distribution at the coordinates
of S1 is less distinct as in the region where S2 is located.

Finally, the outcome of the density reconstruction and the calculation of the EU can
be compared. For this, the quadratic deviation χ2 between the inversion results in figure
4.19 and the parametric fit was calculated for all three designs:

χ2(4 beams) = 12352.1
χ2(incl. S1) = 665.1
χ2(incl. S2) = 24.6

The χ2 values are plotted with respect to the respective EU in figure 4.22.
The plot shows a monotonous relation between Expected Utility and the χ2. Moreover,

the relation is linear on a log2 scale: In this example, an increase of the information gain
by approximately 3 bit leads to a reduction of χ2 by a factor two.
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Discussion

As pointed out at the beginning of this section, this result can only be interpreted qualita-
tively. It depends on the specific problem and is therefore not valid in general. The result
can be seen as a proof of a monotonous relationship between the Expected Utility and the
accuracy of the reconstruction of a density distribution, since both quantities, EU and
χ2, have been calculated independently. However, the specific relation between EU and
χ2 found here can not be translated directly to other examples. Especially the meaning of
a gain of 1 bit may be different, if the physical question or the parameter range of interest
changes.

Nevertheless, the working principle of the EU is illustrated in this example: A larger
EU leads to a better reconstruction of the parameters of interest.
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Chapter 5

Design of a Multi-Channel
Interferometer

This chapter presents the design results for a multi-channel interferometer at Wendelstein
7-X. The diagnostic is optimised according to three different physical problems, which
are introduced and parametrised first. The discussion of the design results follows in the
second part of the chapter.

5.1 Physical problems of interest

The physical and technological challenges and issues for the development of a stellarator
reactor are manifold and widespread. It is nearly impossible to cover the whole area,
therefore the focus of this work lies on three selected topics: analysis of the Core Elec-
tron Root Confinement (CERC), measurement of density effects of different high plasma
confinement scenarios and the observation of the density changes during the injection of
hydrogen pellets. This section will motivate the interest in these problems and introduce
the physical background.

The diagnostic to be designed is the infrared multi-channel interferometer at W7-X
(see chapter 3), which is a diagnostic for the estimation of density profiles from line-
integrated measurements. Therefore, the effects discussed here are analysed with respect
to changes in the density distribution.

5.1.1 Core Electron Root Confinement (CERC)

The Core Electron Root Confinement (CERC, see [51] and [52] for an overview) is a
plasma confinement scenario characterised by a strong positive radial electric field Er. It
is a stellarator-specific effect which does not appear in tokamaks. CERC occurs in the
regime of long mean free paths and confines the electrons, which would be lost due to ∇B
- drifts otherwise. Another characteristic is the highly peaked electron temperature profile
(see figure 5.2 right).

The electron root follows from a possible solution of the ambipolarity condition∑
α

ZαeΓα = 0. (5.1)

Here, Zα denotes the species of the particles, it is −1 for electrons and 1 for hydrogen ions.
Γα are the fluxes of species α. So, equation 5.1 describes the stationary state of particle
balance:

Γe = Γi =
1
v′

∫
v′ Sp(r) dr, (5.2)
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where Γe and Γi are the electron and the ion flux, Sp(r) is the particle source term and v′

is the derivation of the particle velocity with respect to r.
The particle flux is given by [51]

Γ = −nD
[
n′

n
− ZEr

T
+ δ12

T ′

T

]
, (5.3)

where n is the density and D the diffusion coefficient, which depends on the collision
frequency ν. The coefficient δ12 is of order one [48], for strongly peaked temperature
profiles the last term is large. To reduce the particle flux, high values for the radial
electric field Er are therefore favourable.

The three-dimensional transport regime in stellarators at low collisionalities is the
so-called 1/ν - regime, where D ∝ 1/ν. It arises at small Er and is suppressed for
large positive radial electric fields [52]. This transport regime is unfavourable due to its
dependency on the electron temperature [53]:

D1/ν ∝ T 7/2
e . (5.4)

This proportionality finally leads to a significant increase in diffusion even for a small
increase in the temperature. In consequence, it may limit a fusion experiment to lower Te
regions. Suppressing the 1/ν - regime is therefore one optimisation goal for stellarators
[14].

In the case where the electrons are in the 1/ν - regime with Te ≈ Ti, only one solution
for ambipolarity (5.1) occurs: In the long mean free path regime the electrons and ions are
helically trapped. Nevertheless, the ions are going to leave the plasma more quickly than
the electrons (the viscosity for ions is by a factor (mi/me)1/2 larger than for electrons [53],
the same dependency is found for the ratio Di/De at Er = 0), which leads to a negative
radial electric field generated by the still confined electrons. This field finally holds back
the ions, the solution is called ion root.

Other transport regimes occur at higher values of the radial electric field, namely the√
ν - and the ν - regime, where D ∝

√
ν and D ∝ ν, respectively. These regimes show

more favourable dependencies on Te:

D√ν ∝ T 5/4
e (5.5)

Dν ∝ T 1/2
e . (5.6)

For these transport regimes, more than one solution for the ambipolarity equation may
occur. Normally, electrons and ions appear in different regimes: If Te � Ti the electron
flux Γe rapidly grows, because the transport in the 1/ν- regime scales with T 7/2. The
electrons escape faster than the ions, resulting in a strong and positive radial electric field
generated by the ions. Now, the 1/ν- transport is suppressed, because the E × B drift
influences the particle transport [53], the

√
ν - or ν - regime, respectively, is established

instead. This leads to a better confinement due to a smaller dependency on Te of the
diffusion coefficients. This state is called electron root.

In general, for diverse species different collisionalities are found, resulting in different
solutions of ambipolarity. Typically, the electron root is established in the plasma cen-
tre, whereas the ion root is found at the plasma edge. In between, multiple solutions
are possible [54]. Therefore, for the electron root scenario the term Core Electron Root
Confinement was established [52]. In figure 5.1 both the ion and electron flux are plotted
for the ion root and the CERC case.
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(a) (b)

Figure 5.1: Electron (red) and ion flux (blue) with respect to the radial electric field Er:
Only one solution for ambipolarity condition Γi = Γe leads to pure ion root (left), whereas
in case of multiple solutions the electron root occurs (right).

Figure 5.2: Electron density profiles for Core Electron Root Confinement for the standard
configuration at the W7-AS experiment (from [51]): Electron density (left) and tempera-
ture (right) ECRH power scan (PECRH = 0.23MW (magenta), 0.46MW (blue), 0.77MW
(green) and 1.23MW (red)), CERC conditions are characterised by peaked Te profiles.
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In the case of three solutions of ambipolarity, the third one (in figure 5.1 (b)) is
thermodynamically unstable, because

∑
α

Zαe
∂Γα
∂Er

< 0 (5.7)

has to be fulfilled [55]. This is equivalent to the situation of first order phase transitions
in non-linear thermodynamics [56], where the middle solution for the characteristic ”S”
curve behaviour vanishes.

To achieve the Core Electron Root Confinement, the electron collisionality has to be
decreased. Two possibilities are at hand: heating the electrons or decreasing the electron
density. A possible way is using electron cyclotron resonance heating (ECRH) with highly
peaked power deposition for electron heating.

Measurements have indicated the occurrence of CERC at different experiments like
LHD, TJ-II, CHS and W7-AS [52]. A common feature is a strongly peaked profile of
the electron temperature Te emerging from the electron heating via ECRH, whereas the
electron density profiles differ from each other. Also, the ECRH power and the magnetic
field strength were different in the experiments.

Figure 5.3: Hollow density profile at
W7-AS, shot # 15155 [57].

CERC was found at density ranges from 0.15 ·
1019 m−3 at LHD up to 5.3 · 1019 m−3 at W7-AS.
Figure 5.2 shows density profiles at CERC condi-
tions for a power scan with ECRH and a density
scan at W7-AS[51]. The profiles show the tendency
to become ”hollow”, meaning that the highest val-
ues for electron density are not found in the plasma
centre.

This feature was found at several CERC expe-
riments, one of the most outstanding examples was
given by Maaßberg et al. [57] (see figure 5.3). A
theoretical explanation may be that the outward di-
rected electron flux driven by ∂rTe (outward pinch)
is stronger than the inward pinch from the radial
electric field Er [52, 57]. This would theoretically
lead to an inward diffusion driven by ∂rne, however,
a detailed analysis of the particle balance and the
estimation of the particle sources are still needed
at this point.

With respect to the capabilities of a interferometry system, the estimation of the
hollowness of the density profile can be chosen as an optimisation goal for the best con-
figuration of the lines of sight. Therefore, the hollowness effect has to be parametrised
next.

Parametrisation of the CERC effects on the electron density

Calculations and measurements of the indentation in the density profile implicate different
depths and widths for the hollow part. In addition, the electron root was discovered for a
certain range of maximal densities. Therefore, the density effect of CERC can be described
by these three parameters: depth, width and maximum density.

The functional description of the density distribution is discussed in section 4.2.2. For
the parametrisation of CERC it is chosen with (ρ = reff/a, where a is the effective radius
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(a) (b) (c)

Figure 5.4: Variation of the hollow part of the electron density profile: (a) Maximum
density (θ1 = 0.1 dark, θ1 = 0.5 medium, θ1 = 1.0 light grey), (b) depth of the hollow part
(θ2 = 0.4 dark, θ2 = 0.2 medium, θ2 = 0.0 light grey) and (c) width of the indentation
(θ3 = 0.4 dark, θ3 = 0.25 medium , θ3 = 0.1 light grey).

at the last closed magnetic flux surface)

ne(reff ) = θ1 · 1020m−3 ·

[
1− 0.05 · ρ2

1 + (ρ2/0.972)20 − θ2 · exp

(
−
r2
eff

θ2
3

)]
. (5.8)

The parameters of interest can be identified as follows: θ1 describes the maximum
density, θ2 depth of the indentation and θ3 its width. The variation range is shown in
figure 5.4.

The maximum density can be very small (≈ 0.1 · 1020 m−3 as seen in LHD), but can
also reach regions up to 1 · 1020 m−3. Therefore, θ1 is varied from 0.1 to 1.0 to cover
all possibilities. The depth θ2 ranges from 0.0 (absence of hollowness) to 0.4 (decrease
of central density to 60% of maximum density). At last, the width of the indentation,
θ3, reaches from 0.1, which means 10% of the plasma radius, to 0.4, where the edge of
the indentation reaches the edge of the plasma, describing a concave density plateau. To
measure the effect of these variations, one expects lines of sight in the central region of
the plasma.

5.1.2 High confinement operational scenarios

At Wendelstein 7-AS, three regimes with improved confinement characteristics relative to
their preceding state have been found: the Optimum Confinement regime, the H-mode
and the so-called High Density H-mode. The effects on the density distribution generated
by these regimes are predestinated as an optimisation goal.

All three regimes are ion-root solutions of the ambipolarity condition (5.1). They show
high energy confinement times, making them favourable for possible operation modes for
fusion devices.

Optimum Confinement regime

The maximum values of the ion temperature Ti, the energy confinement time τE and the
triple product n · τE · Ti were achieved in the Optimum Confinement regime (OC) at low
to medium densities with relatively steep density gradients at the edge of the confinement
region ([58], see figure 5.5). The density decay is clearly located inside the last closed
magnetic surface (LCMS), so the density at the plasma edge is low.
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Figure 5.5: OC regime (W7-AS discharge # 39142) compared with a reference discharge
(# 39161) without OC [58].

Compared to the ISS95 scaling (see chapter 6) the energy confinement time in OC
regime is enhanced by a factor τOCE /τ ISS95

E ≈ 2 [59]. With OC, the highest confinement
time of W7-AS (τE ≈ 60ms) and a maximum triple product of n · τe · Ti = 5 · 1021 eV s/m
was established [60]. The maximum medium density under these conditions was stable
at n = 1.1 · 1020m−3 (figure 5.5). An upper density limit is given due to the increasing
core radiation, for instance at a medium density of 1.2 · 1020m−3 for a heating power of
P = 0.35 kW by neutral beam injection (NBI).

Establishing the OC regime requires sufficient ion heating, the neutral beam injection
(NBI) is favoured as a direct ion heating method. For the maximum confinement time
as described before, a minimum heating power of P ≈ 0.25 MW was needed at W7-AS.
Additional heating with electron cyclotron resonance heating (ECRH) is possible, for
sufficient high densities (ne ≈ 1020m−3), where the energy exchange between electrons
and ions is high, OC can be established with ECRH only (PECRH > 500 kW ) [58, 61].

The typical density profiles in the OC regime at W7-AS decline a few centimeters
before the last closed magnetic surface. The decay length is about 5 cm. For W7-X,
similar decay lengths in total are expected: The penetration depth of neutral atoms,
injected by, e.g., gas puffing to refuel the plasma, is defined by atomic processes (ionisation
by collisions). These processes do not depend on the plasma size, therefore the typical
length scale of the density decay at the edge will approximately remain the same in total
for W7-X as it was at W7-AS [48].

H-mode in stellarators

The H-mode regime was originally discovered at tokamaks [62]. Later, it was also observed
in stellarators, first at W7-AS [63]. The stellarator H-mode shows similar properties as
its pendant on tokamaks: It is mainly characterised by an edge transport barrier which
strongly reduces turbulent transport, the barrier is clearly located inside the LCMS. The
transition to H-mode occurs spontaneously and is characterised by a sudden drop and a
reduction in fluctuation of Hα radiation. In contrast to the tokamak regime the stellarator
H-mode does not show a dependence on the hydrogen isotopes in the plasma [64].

Two different states of the H-mode are known: In the quiescent H-mode, also H∗-
mode, a layer of nearly completely suppressed turbulence appears at the plasma edge.
This layer is localised in the outer 3 − 4 cm of the confined plasma, in a region with the
strongest gradients in density n, electron and ion temperature, Te and Ti. In this mode,
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Figure 5.6: HDH regime at W7-AS: The density profile shows a very steep gradient at the
edge of the confinement region in comparison to normal confinement (NC) regime (left,
from [67]). The energy confinement time τE is also increased, by a of factor 1.5− 2 to the
ISS95 scaling (right, [68]).

line integrated densities of about 2 · 1020m−3 have been observed [65].
The ELMy H-mode is characterised by occurrence of edge-localised modes (ELM),

which are transport events for particles and heat. A single ELM causes an energy loss of
< 4% of the stored energy, with a repetition frequency of 1−2 kHz (at energy confinement
times of about 25ms) ELMs cause a major part of non-radiative energy loss [66].

The H-mode can be achieved only within three narrow regions of the rotational trans-
form  ι:  ι ≈ 0.474,  ι = 0.525 and  ι = 0.556 [64]. At these small windows (∆ ι/ ι ≈ 1%),
H-mode occurs independently of heating scenario, gas program and toroidal magnetic field
as well as with and without divertor. The regime is highly reproducable.

Like the OC regime, H-mode is able to achieve high energy confinement times compared
to the ISS95 scaling: τHmode

E /τ ISS95
E ≈ 2 [65].

The HDH regime

As a last example for operational regimes with high energy confinement properties, the
High Density H-mode (HDH) shall be introduced. It was one of the first discoveries at
W7-AS after installing an island divertor.

The density profile in HDH mode shows a flat profile with a very steep gradient at the
plasma edge (figure 5.6, left). The decay of the profile is located at or even beyond the
LCMS so the density at the edge of the confinement region is significant.

In HDH mode, very high densities up to 4·1020m−3 have been achieved [67], therefore it
is sometimes called improved confinement regime (IC). Furthermore, HDH is characterised
by high energy confinement times (τe lies about a factor of 2 above ISS95 scaling, see figure
5.6, right), low impurity confinement times and edge localised radiation. The accumulation
of impurities is avoided [67, 68].

For establishing HDH regime the NBI heating was the only choice, because the ECRH
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(a) (b) (c)

Figure 5.7: Variation of the electron density profile according to the estimated profiles
for high confinement regimes: (a) Maximum density (θ1 = 0.6 dark, θ1 = 2.0 medium,
θ1 = 4.0 light grey), (b) position of the steepest gradient (θ2 = 0.9 dark, θ2 = 0.95 medium,
θ2 = 1.0 light grey) and (c) steepness (θ3 = 0.2 dark, θ3 = 0.4 medium, θ3 = 0.8 light
grey).

system at W7-AS operating at 140GHz was restricted by its cut-off density at approxi-
mately nc = 1.2 · 1020m−3. HDH was established at NBI heating power of P = 0.4 MW .

Whereas the build-up of an HDH mode is accompanied with typical H-mode phe-
nomena like the edge-localised transport barrier and the occurrence of ELMs, the HDH
regime itself is completely ELM-free. For establishing HDH, a balance is needed between
central fueling (via NBI) and edge density buildup by gas puffing [67].

Due to its very beneficial properties, the HDH mode is one of the most interesting
scenarios for future experiments at W7-X, which will be equipped with an island divertor
like W7-AS. The unique characteristics are therefore a logical choice as design criteria for
diagnostic optimisation.

Parametrisation of the density effects

Summarising the density effects of the three high confinement regimes, one finds three
parameters as unique characteristics: the maximum density, the position of the steepest
gradient at the edge of the confinement region and the steepness of this decay.

For a mathematical description, a similar parametrisation as used in the last section
is applied:

ne(ρ) = θ1 · 1020m−3 · 1− 0.05 · ρ2

1 +
(
ρ2/θ2

2

)θ3 (5.9)

Again, ρ is the normalised effective radius: ρ = reff/a.
The parameter θ1 describes the maximum density. According to the measurement

results at W7-AS, it is varied from 0.6 to 4.0. Parameter θ2 gives the position of the
steepest gradient at the edge and is varied from 0.9 to 1.0, corresponding to a shift of
the density decay of about 5 cm in effective coordinates. The steepness parameter θ3

lies between 0.2 and 0.8, resulting in decay lengths of about 1 − 5 cm. The effect of the
variations is shown in figure 5.7.

5.1.3 Density effects of pellet injection

As a third example for a stellarator specific physical problem, a new plasma state found at
the LHD experiment shall be a matter of discussion. The Large Helical Device (LHD) is a
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superconducting helical confinement fusion device of heliotron/torsatron-type, in operation
at the National Institute for Fusion Science (NIFS) in Toki, Japan [69, 70].

Super Dense Core at the LHD experiment

Recent findings at the Japanese experiment give indications for a new high dense plasma
regime, called Super Dense Core (SDC), created by injection of hydrogen pellets [71]. The
measured density profiles show maxima of about 4.6 · 1020 m−3, which are the highest
densities ever diagnosed in a stellarator. In addition, the peak seems to be stable for a few
milliseconds, until the next pellet is injected. This procedure may be a possible method
to reach fusion conditions in a stellarator.

Because pellet injection for refueling the plasma is also planned, the scenario discovered
at LHD may be also of interest for experiments at W7-X. Here, the infrared interferometry
system is an appropriate diagnostic to measure the expected high and peaked densities
with the necessary temporal resolution.

Fortunately, the results from LHD are not needed to be scaled for W7-X due to the
fact, that the plasma radii are of similar size (about 0.5 m). The effects in size are therefore
taken as absolute values.

Figure 5.8: The super dense core plasma found at LHD [71]: Peaked density profile with
very high densities in the core region (left, ρ = r/a), width of the centre density peak
before and after pellet injection (right).

The plasma density profile shows a strong peak at the plasma centre (see figure 5.8).
At the plasma core, a small plateau region with a diameter of 0.3− 0.4 m is formed. The
decay from plasma centre to the plasma edge is not very steep, near the plasma edge
indications for a small step structure can be found.

As pointed out by Ohyabu et al. [71], the core region is characterised by an internal
fusion barrier at a normalised radius of 0.3 ≥ ρ ≥ 0.5. The position of the barrier can be
influenced with an appropriate choice of the magnetic configuration.

After the pellet injection, a shift to a broader peak was observed (figure 5.8, right).
Then, the peak width decreases, until a new pellet is injected.

Parametrisation of the SDC effect

To parametrise the density effects shown above, three parameters of interest should be
estimated by the interferometer: the maximum density, the width of the density peak and
its decay length. For this, a combination of two of the density distributions from section
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(a) (b) (c)

Figure 5.9: The parametrisation of the density peak as expected for pellet injection: (a)
Maximum density (θ1 = 1.0 dark, θ1 = 2.0 medium, θ1 = 4.0 light grey), (b) peak width
(θ2 = 0.3 dark, θ2 = 0.4 medium, θ2 = 0.5 light grey) and (c) steepness of the peak decay
(θ3 = 2.0 dark, θ3 = 2.5 medium, θ3 = 3.0 light grey).

4.2.2 is chosen: The first one generates a basic plateau at 0.5 · 1020 m−3 (to form the step
effect at the plasma edge) and a second one generating the central peak:

ne(ρ) = 1020m−3 ·

0.5 · 1− 0.05 · ρ2

1 + (ρ2/0.972)20︸ ︷︷ ︸
basic plateau

+ θ1
1− 0.05 · ρ2

1 +
(
ρ2/θ2

2

)θ3︸ ︷︷ ︸
central peak

 (5.10)

The parameter θ1 describes the height of the density peak as shown in figure 5.9 (a).
Very high densities should be possible, therefore θ1 varies from 1.0 to 4.0 (corresponding
to central densities of 1.5 − 4.5 · 1020 m−3). θ2 parametrises the width of the density
peak, lying in the interval of 0.3 ≥ θ2 ≥ 0.5 like estimated for the position of the internal
transport barrier. The steepness of the peak decay (θ3) changes from 2.0 to 3.0, the effect
is illustrated in figure 5.9 (c).

It has to be mentioned that the parameter ranges, according to the actuality of the
SDC finding, are only an estimate from todays point of view. But by the measurement
results achieved so far, the parametrisation shown here seems to be appropriate.

5.2 Multi-channel interferometer design

In this section, the results for the multichannel interferometer will be presented and com-
pared. First, the designs for a four-channel interferometer are presented, based on the
different physical problems introduced in the last section. For a comparison, also ”ideal”
designs without technical restrictions of the port system were computed, so that the loss
of information due to the port system can be illustrated.

The influence of the magnetic configuration and the effect of the plasma outside the last
closed flux surface is analysed, too. Finally, the design of an eight-channel interferometer,
using the four-channel configuration as starting point, is presented.

5.2.1 Four-channel interferometer

The technical boundary conditions, namely the port system at W7-Xwhich restricts the
directions of the lines of sight, have been described in section 3.2.2. Given the 11 allowed
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positions for retro-reflectors inside the plasma vessel and the three port tubes (see figure
3.2, (b)), 101 beams in total can be realised in the interferometry plane: Four vacuum
flanges per port can be applied, and the beam lines have to fit the port system. Beams
which intersect with the plasma vessel and the in-vessel components were eliminated by
ray tracing calculations. As a remark it should be mentioned that every ”allowed” beam
crosses the plasma, no beam line lies outside the separatrix.

In addition to these beams, the extra beam at the plane symmetric to the Thomson
scattering diagnostic (figure 3.4) is also available. The designs presented in the following
are calculated with and without this beam.

Because of the discrete nature of the problem, no optimisation routine could be used to
find the optimal design. Therefore, the following procedure was applied: First, one beam
was optimised by scanning all possible beam configurations with respect to one parameter
of interest (normally the maximum density). Secondly, the best position for the second
chord was computed for two parameters of interest, while the first beam was kept fixed.
The calculation for the third and fourth beam was done for all three parameters of interest.
As a next step, all beams were varied again individually one after another, until the highest
EU value of the scan did not change anymore. In case of a configuration including the
(fixed) extra beam, only three beam lines were optimised, respectively.

In the scanning process, identical beam lines were not forbidden by default. Whereas
in reality identical beam lines cannot be realised (because it is impossible to separate them
after crossing the plasma), they were not excluded from the calculations to study their
possible influence on the design.

For the results without technical constraints, a scanning is not necessary, an optimisa-
tion routine can be applied instead. Here, the Amoeba routine from [46] was used. Design
parameters were starting and ending point, lying on a circle around the plasma cross
section (see section 4.2.3).

A description of the algorithms and the source code used for the computation of the
EU is given in appendix A.

Core Electron Root Confinement

The variation of density distributions for Core Electron Root Confinement (CERC) was
introduced in section 5.1.1: The density profile is characterised by a hollow part at the
plasma centre. Using the parametrisation of the parameter range of interest given there,
the Expected Utility was calculated to find the optimal beam configuration.

The density effect of CERC is mainly located at the plasma centre, for the design of
the four-channel interferometer a configuration with beam lines through the inner part of
the plasma is expected. The result of the calculations is shown in figure 5.10.

As expected, the lines of sight for the optimal configuration are located at the inner
part of the plasma. The chords fan out to cover the part of the plasma where the effect of
the hollowness occurs. In the configuration without the extra beam, two beam lines cross
the plasma centre directly, whereas only the extra beam does so in the second design.
However, calculating the Expected Utility, the latter is preferred:

EU = (6.43± 0.01) bit without and
EU = (6.86± 0.01) bit including the extra beam.

The explanation for this result can be given by taking into account the very long distance
the extra beam has to cross through the plasma: If, e.g., the maximum density is changed
from θ1 = 0.1 to θ1 = 1.0, the difference in the phase shift for the extra beam is ∆φ =
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(c) (d)

Figure 5.10: Design results for a four-channel interferometer with respect to the measure-
ment of CERC: Without the extra beam (upper row) and including (lower row). The
beams are shown with respect to the port system (left) and in relation to the density
distribution (right).

76



6.172 rad (for θ2 = 0.2 and θ3 = 0.25, see figure 5.4). The beam lines crossing the
plasma centre in figure 5.10 (b), will only show a phase shift difference of ∆φ = 4.0944 rad
(horizontal beam) and ∆φ = 4.1626 rad, respectively. Assuming a constant background
noise as leading error (as has been done here), the extra beam will show a better signal-
to-noise ratio for the change of θ1, which seems to be preferred by the EU.

This hypothesis can be confirmed by looking at the design result without technical
restrictions (figure 5.11). Here, all beam lines take the longest way possible through the
plasma, while they stay fanned out. Therefore, a change of the parameters of interest
results in a significant change of the measured phase shift: For the situation described
above, the maximum difference in the phase shift is given for beam 2 (figure 5.11) with
∆φ = 7.209 rad, which is even larger than for the extra beam in the constrained configu-
ration.

Figure 5.11: Design result for a four-
channel interferometer with respect
to the best estimation of CERC den-
sity effects, without technical restric-
tions.

The situation is similar for the other parame-
ters of interest: If θ2 is changed from 0.0 to 0.4
with θ1 = 0.5 and θ3 = 0.25, the maximum change
in phase shift for the unconstrained configuration
is given for beam 1 with ∆φ = 0.782 rad. For
the constrained configuration including the extra
beam the maximum difference in the phase shift
is smaller: ∆φ = 0.708 rad for the extra beam,
∆φ = 0.266 rad for beam 1 (figure 5.10 (d)). A
similar result is given for the variation of θ3.

The Expected Utility for the unconstrained con-
figuration is calculated with EU = (8.71±0.01) bit.
Approximately 2 bit of the possible information
gain are therefore lost due to the technical bound-
ary conditions. Taking into account the impact of
the parameter changes on the phase shift, one can
conclude here that the EU prefers designs where
the impact of the parameter of interest is strong.

High confinement regimes

As pointed out in section 5.1.2 the density effects of the different high confinement regimes
(optimal confinement, H mode and High Density H mode) are mainly localised at the
plasma edge. As a consequence for the interferometer design one would expect a configu-
ration with beams in this region of the plasma. This may become complicated, because
only a few beam lines matching this criterion are accessible.

Figure 5.12 shows the result of the optimisation, again for a configuration with and
without the extra beam. In both configurations, a chord nearly tangential to the plasma
is established, also a beam line crossing the plasma centre.

Whereas the design including the extra beam shows two chords near the plasma edge,
only one such beam is preferred for the other configuration. This is surprising, but can be
explained by a closer look at the calculation: The two nearly horizontal chords are not the
optimal design solution, the highest EU is given for a beam line which is identical to the
beam at the plasma edge. Because this is not realisable for technical reasons, the second
and third best result has to be taken, leading to the configuration as shown in the figure.
Nevertheless, this result again points out the meaning of the signal-to-noise ratio, which
would be theoretically increased by two beams propagating along the same line of sight.

As in the example before, the configuration including the extra beam shows a higher
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(a) (b)

(c) (d)

Figure 5.12: Design results for a four-channel interferometer for high confinement regimes:
Without the extra beam (upper row) and including (lower row); with respect to the port
system (left) and in relation to the density distribution (right).
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EU :

EU = (8.53± 0.01) bit without and
EU = (8.85± 0.01) bit including the extra beam.

The difference in this case is slightly smaller, which could be explained by the importance
of the measurements of the effects at the plasma edge, which cannot be provided by the
extra beam.

Figure 5.13: Design result for a four-
channel interferometer with respect
to the problem of high confinement
regimes, without technical restric-
tions.

For comparison, the beam design without tech-
nical boundary conditions was computed, too. The
result is shown in figure 5.13. Here, one finds two
beams tangential to the plasma edge, but travers-
ing the plasma on a very long path. The other
beams cross the inner part of the plasma. The
EU is much larger than in the restricted case:
EU = (28.3 ± 0.2) bit, i.e. the information gain
is reduced to less than one third by the boundary
conditions. This tremendous loss can be explained,
if the special situation of the chords at the plasma
edge is taken into account: One the one hand side,
the beams in the restricted configurations cross the
plasma only on a very small distance, whereas the
path of the unrestricted beams is about three to
four times longer. On the other hand, the density
in this part of the plasma is low, again reducing the
signal of the probing beams.

Quantitatively, this effect can be demonstrated by calculating the EU with only one
chord at the plasma edge for the unconstrained configuration. This leads to EU = 20.5 bit
by removing beam 1 in figure 5.13, and EU = 17.8 bit by removing beam 2, respectively.
Without both beams, the EU is given with only 7.48 bit.

These differences can be explained by taking into account the effect of the parameters
of interest: As shown in the hollowness example before, the EU increases if the variation
of the parameters of interest leads to significant changes in the measured phase shift. In
table 5.1 this effect is shown: The parameters θ2 and θ3, which describe the edge behaviour
of the density distribution, are varied, the effect on the measurement is given for the edge
beams of the unconstrained configuration (figure 5.13) and for the beams 2 and 3 of the
constrained design (figure 5.12 (d)).

The impact of the parameter change on the unconstrained configuration is three to six
times larger for the variation of θ2, and five to nine times larger for θ3. This remarkable

configuration and beam ∆φ for 0.9 ≤ θ2 ≤ 1.0 ∆φ for 0.2 ≤ θ3 ≤ 0.8

unconstrained, beam 1 4.53 rad 0.46 rad
unconstrained, beam 2 5.93 rad 0.03 rad
constrained, beam 2 0.96 rad 0.05 rad
constrained, beam 3 1, 53 rad 0.10 rad

Table 5.1: Change of the measured phase shift ∆φ if the parameters of interest for high
confinement regimesare varied. If θ2 was changed, θ1 = 1.0 and θ3 = 0.4 was set. For the
variation of θ3, θ1 = 1.0 and θ2 = 0.95 was chosen.
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difference explains the increase in the EU for the unconstrained design – the beam line
design in the restricted configuration obviously suffers from short path lengths through
the edge part of the plasma, where the variations of the parameters of interest lead to only
small effects on the data. For the variation of θ3, the difference in the measured phase
shift is in the order of the assumed measurement error: ∆φ = 0.05 rad and ∆φ = 0.1 rad,
whereas the error is given with σ = 0.1 rad (see section 3.2.3). Therefore, it may be
difficult to estimate θ3 with the constrained beam line configuration.

Pellet injection

As well as the problem of CERC, the injection of hydrogen pellets causes density effects
mainly localised in the centre regions of the plasma, so one expects beam lines crossing
the inner part of the plasma. The parametrisation and the variation of the parameters of
interest are given in section 5.1.3. Again, an optimal beam line configuration with and
without the extra beam was calculated, the results are displayed in figure 5.14.

The configuration of the chords confirms the expectations: The beam lines cross the
plasma through the central regions, in this case only marginally fanned out, but more par-
allel than in the CERC case. In case of the extra beam configuration, the three optimised

(a) (b)

(c) (d)

Figure 5.14: Four-channel interferometer design for the problem of pellet injection: With-
out the extra beam (upper row) and including (lower row); with respect to the port system
(left) and in relation to the density distribution (right).
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beam lines are localised near the expected edge of the pellet driven cone structure of the
density distribution in the plasma centre. Without the extra beam, two beams cross the
plasma approximately through its centre. As for the other two physical problems, the
Expected Utility for the configuration including the extra beam is the highest:

EU = (8.24± 0.01) bit without and
EU = (8.86± 0.01) bit including the extra beam.

Again, this can be explained with the effect of the parameters of interest on the data:
Varying the maximum density θ1 from 1.0 to 4.0 (with θ2 = 0.4 and θ3 = 2.5, see figure
5.9), one finds a difference in the measured phase shift of ∆φ = 10.45 rad for the extra
beam and ∆φ = 6.52 rad for beam 1 in figure 5.14 (b). This finding confirms the results
from the previous problems: The EU increases if the effects of the parameters of interest
on the measurement become larger.

Figure 5.15: Design result for a four-
channel interferometer with respect
to the problem of pellet injection,
without technical restrictions.

At last, again the optimisation result with tech-
nical restrictions shall be compared with the un-
constrained design (figure 5.15). The result is sim-
ilar to the case of CERC: The EU for the uncon-
strained design is higher: EU = (10.97± 0.01) bit,
also the difference to the restricted case (≈ 2 bit)
is comparable to the CERC problem. As expected,
the beam lines crossing the plasma on very long dis-
tances, covering the inner part of the plasma, were
the density effects of pellet injection are localised.

One can also conclude here that the extra beam
is the most valuable one for all three physical prob-
lems, therefore it makes sense to discuss only con-
figurations including this chord in the following.

At this point, three different designs for three
different physical problems are calculated. Only
one configuration can be realised, the selection is
made by quantitative comparison of the different designs next.

5.2.2 Finding the optimal design by comparison

The quantitative description of a design using the Expected Utility can be applied to
compare different designs by calculating the EU for every configuration and for every
physical problem, respectively. In table 5.2 the results for the three four-channel designs
and the three physical questions are listed. Only the designs including the extra beam
have been considered, because the designs without the extra beam always showed a smaller
EU. In addition, the design from Airila et al. [45] is listed for comparison.

The design for the problem of CERC shows a quite high EU for the pellet injection
problem, and vice versa. The difference is only 0.26 bit and 0.1 bit to the EU from the
optimal result, respectively, which is about 1.5−3 %. This is not surprising, because both
effects are localised in the centre region of the plasma – similar effects obviously result
in similar designs. On the other hand, both configurations result in a lower EU for the
problem of high confinement regimes (with a difference of 1 bit and higher compared to the
optimal design), which causes density effects at the plasma edge. The other way around,
the diagnostic configuration for the high confinement problem gives less information about
the centre region of the plasma. This results in a low EU for CERC and pellet injection,
with a difference of 0.4 up to > 2 bit to the respective optimal design, which is > 20 %.
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EU [bit] for: EU [bit] for: EU [bit] for: Sum
Configuration CERC High Confinement Pellet injection EU [bit]

CERC 6.86± 0.01 7.86± 0.01 8.60± 0.01 23,32
High Confinement 6.47± 0.01 8.85± 0.01 6.59± 0.01 21,90
Pellet injection 6.76± 0.01 7.52± 0.01 8.86± 0.01 23,14

Airila et al. [45] 5.845± 0.005 8.24± 0.01 6.78± 0.01 20,87

Table 5.2: Comparison of interferometer designs: The Expected Utility for different design
configurations (rows) with respect to the three different physical problems (columns).

To find the design which is the best for all three analysed problems, the different EU s
are added (see table 5.2). One has to be aware, that such a simple summation is only
possible if the physical problems are exclusive: Expected Utilities, calculated according to
equation (2.41), can only be added if the ranges of the parameters of interest θi do not
overlap. Only in this case the integrals for the calculation of the different EU s can be
separated. So, for the problems analysed here, the summation is only an approximation,
because the parameter spaces are not completely separated (e.g., the maximum density is
a parameter of interest for all three problems), and the overlap can hardly be quantified.

The configuration for the estimation of CERC shows the highest sum. This was ex-
pected because the design gives a high EU value for the problems of CERC and pellet
injection, and only a difference of 1 bit to the optimal design for the high confinement
problem.

Also in table 5.2 the EU s for the design from [45] are listed. They show small values
especially for the two problems located at the plasma centre. The result for the confine-
ment regime problem is slightly better, but if all results are summarised this diagnostic
configuration shows the worst performance for the problems analysed here.

Summarising that, the beam line configuration for the CERC problem including the
extra beam is the best design according to the problems analysed here. One has to keep
in mind that this result is valid only for the three problems of CERC, high confinement
regimes and pellet injections; other physical questions may result in different designs.

5.2.3 Influence of magnetic configurations

In the previous sections the results presented have been calculated for the so-called stan-
dard case at W7-X. This magnetic configuration is characterised by a rotational transform
of  ι = 1.0 at the last closed flux surface and a minor radius of a = 0.52m [72]. The re-
markable flexibility of the W7-X design also allows different magnetic configurations, two
cases with significant impact on the plasma shape - the so-called high- ι case and high-β
case - are discussed in this section (see appendix B for details). In addition, the influence
of the plasma outside the separatrix will be discussed.

The influence of these effects is analysed for the four-channel interferometer including
the extra beam. For the physical problem the measurement of CERC was chosen, because
the design resulting from this problem provided high EU values for the other physical
questions, too.

High- ι case

For this plasma configuration with  ι = 1.2 at the last closed flux surface the minor radius
is given with a = 0.48m [72]. In the interferometry plane, the plasma is slightly elongated,
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as it can be seen in figure 5.16 (b). In the same figure one can see the optimal sight line
configuration for the measurement of CERC, which is exact the same configuration as for
the standard case. So, in this case, the magnetic configuration has no effect on the design.

High-β case

The shape of the magnetic flux surfaces changes if the effect of the plasma is taken into
account. Whereas the aforementioned cases are vacuum configurations, i.e. the effect of
the plasma is neglected, the next example will consider a non-vanishing plasma pressure
for the standard case. As the describing quantity, β is the ratio of the volume-averaged
kinetic pressure of the plasma and the magnetic field pressure from the toroidal magnetic
field: β = 2µ0 〈p/B2〉. It was chosen as β = 0.04 [73] for this analysis. This has significant
impact on the plasma shape (see figure 5.16 (c)). The fan-like structure of the optimal
configuration of the beam line changes, but the beams still cover regions near the plasma
centre.

Plasma outside the separatrix

In the former analyses it was assumed that no plasma is located outside the last closed
magnetic surface (LCMS). This is not a realistic assumption, so the effect of this plasma
is analysed in the last example. For the standard case, a ”ribbon” of plasma with a width
of 5 cm in effective coordinates was added outside the LCMS. The density distribution
inside this ribbon was chosen as an exponential decay, starting with the plasma density
at the separatrix, the decay length was also 5 cm.

In principle, the mapping routine used for the calculation of the magnetic coordinates
works only inside the separatrix, but the flux surfaces can be extended by numerical
simulation. The 5 cm chosen for the plasma outside the LCMS are given by the numerical
resolution of this method [74].

The exponential decay is used here for a rough estimate of the influence of the plasma
outside the separatrix on the density measurement. The density effects in this region are
of enormous complexity (see, e.g., [75, 76]). However, the density is of two or three orders
of magnitude smaller than in the confined plasma region, and the path lengths of the
probing beams in the edge regions are small, so the effect of this approximation on the
data should be negligible.

In figure 5.16 (d) the plasma with an exponential decay outside the LCMS is shown,
also the configuration of the optimal beam lines for the measurement of CERC. Only
one beam has changed in comparison to the original design without an additional plasma
edge. This is not surprising, because the influence of the plasma edge on the measurement
signal should be small for beam lines crossing the centre part of the plasma. Therefore,
its influence on the design is not very large, too.

Comparing the EU s for the different designs (see table 5.3) one can state that the
original design leads to a sufficient good configuration even for different plasma conditions.
For the case of the high- ι configuration the beam line configuration is identical, in case of
plasma outside the separatrix the changes are minimal. Here, the error intervals of both
EU s overlap. The difference between the standard case design and the optimal design for
the β = 0.04 case differ a little bit more, however, the difference is only about one percent
of the EU.

In general, the configurations shown here are very similar from a technical point of
view: They all use the same port to access the plasma vessel (see figure 5.12). It may be
possible to realise all configurations, e.g. by a movable mirror at the outer side of the port,
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(a) (b)

(c) (d)

Figure 5.16: Different plasma configurations: Standard case (a), high- ι case (b), β = 0.04
case (c) and plasma outside the separatrix (d). In the latter case, the plasma inside the
LCMS is indicated as red for a better visualisation of the edge plasma.

EU in bit for: EU in bit for: EU in bit for:
Configuration High- ι case β = 0.04 case Density outside LCMS

CERC design 6.741± 0.005 6.748± 0.005 6.839± 0.005

Configuration
specific design 6.741± 0.005 6.822± 0.005 6.847± 0.005

Table 5.3: Different magnetic configurations: The performance of the original design from
standard case (upper row) and the best design for the respective configuration (lower row).
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so that the different magnetic configurations can be treated with the respective optimal
beam line configuration.

5.2.4 Eight-channel interferometer

The interferometer at Wendelstein 7-X is proposed to be a four-beam configuration in
the start-up configuration. However, it is also planned to extend the set-up later to an
eight-channel diagnostic. A possible configuration is outlined next.

First, it is assumed that the eight-channel configuration will be an extension of the
four-beam interferometer, so four chords (here: the design result for the measurement of
CERC) are taken as given. The configuration of the new four channels has to be designed.

The problem of the physical question of interest has also be discussed again in this
context. With eight lines of sight, it is possible to fulfill more than one design goal. Two
approaches are possible: A new parametrisation for the density profile with more than
three parameters of interest, or using the sum of several EU s calculated for problems
similar to the four-channel diagnostic.

For the interferometer, the first approach turns out to be unpracticable due to the
strongly increasing computation times (see table A.1 in appendix A): Even if calculated
on eleven double-core CPUs at the same time by using a parallelisation algorithm, the
computation of one EU for five parameters of interest takes about 10 hours. At least, one
and a half month would be necessary for the complete scanning of one beam over all 101
beam positions.

The second approach, finding the maximum of the sum of several EU s, does not suffer
from this problem, in addition, it also offers the advantage to implement a weighting to
the process: If necessary, the effect of one of the sub-problems can be highlighted by an
appropriate weighting factor. On the other hand, for two problems, where the spaces of
the parameters of interest overlap, this summation is only an approximation, as stated
out before in section 5.2.2.

For the example presented here, the combination of two problems was chosen: mea-
surement of CERC and the estimation of high confinement regimes. The effect of the first
problem is localised at the plasma centre, the latter at the plasma edge. Both problems
have been taken without weighting, so figure of merit for the optimisation was simply the
sum of both EU s.

For the optimisation, the chords from the four-channel interferometer (the design result
for the measurement of CERC) were taken as constant. Start configuration for the four
new channels was the design result for the estimation of high confinement regimes without
the extra beam (see figure 5.12, (a) and (b)).

As a result, it turns out that only one beam line of the new chords slightly changes in
comparison to the start configuration. The new arrangement is shown in figure 5.17.

The sum of the EU s for the two sub-problems, which was to be optimised, turns
out to be 18.01 bit: 7.37 bit for the measurement of CERC, and 10.64 bit for the high
confinement problem. The EU of the sub-problems is larger than in the four-channel
case, especially the information gain for the high confinement regime increases. This
effect is explained by the fact, that now eight channels contribute to the estimation of
the respective parameters of interest. It has to be mentioned that the differences in the
summarised EU for different designs are small, the available beam line configurations
do not provide significant differences in the expected information gain for the physical
problems analysed here.

The method to design the eight-channel interferometer presented here turns out to be
practicable, however, the two physical problems applied should be seen as an example. For
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(a) (b)

Figure 5.17: Design results for an eight-channel interferometer, optimised according to the
measurement of CERC and high confinement regimes: With respect to the port system (a)
end the density distribution (b). The yellow beam lines were taken as given (four-channel
interferometer) and not changed for the design.

the final design of the eight-channel interferometer, first experimental results from W7-X
may be available, so that the design problem can be adapted to the respective physical
questions in the future.

5.3 Discussion

In this section three different designs considering three different physical problems for a
four-channel interferometer at Wendelstein 7-X were presented. The results have been
compared, and the solution for the measurement of CERC is proposed as the best beam
line configuration for the analysed problems. It shows the highest sum of the EU s of the
considered physical problems. In average, quite high EU values for every problem are
achieved, the design is widely insensitive against the discussed changes of the considered
magnetic configuration.

The highest loss of information gain for this design is found for the problem of high
confinement regimes, which is mainly an effect of the plasma edge, whereas the CERC
configuration proposed here consists of beam lines through the plasma centre. One may
argue here that interferometry is not a good diagnostic for density effects at the plasma
edge anyway - the nature of a line integrated measurement gives limitations for a spatial
resolved analysis. Other diagnostics (lithium beam, reflectometry) may be more sufficient
here, their results, however, can be combined with interferometric measurements using the
approach of integrated data analysis [26]. For the future it also may be also possible to
fan out single interferometer beams to achieve a better spacial resolution.

For all four-beam configurations it was beneficial to implement an extra beam, which
was localised in a plane symmetric to the Thomson scattering diagnostic. The beam
was crossing the plasma on a very long path. For all analysed physical problems, the
designs including this beam showed the highest EU values. A possible explanation is its
large signal-to-noise ratio: E.g., given the density distribution from equation (5.9) with
θ1 = 1.0, θ2 = 0.95 and θ3 = 0.2, one obtains a SNR of 77 for the extra beam (for a
measurement error σ = 0.1 rad). For the seven channels in figure 5.17, the best SNR is
only 52. According to this, the extra beam may be also favourable for the purpose of
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density control.
The proposal for a four-channel interferometer (the optimal configuration to measure

the CERC effect) was chosen according to the analysed physical problems and conditions:
the physical problems, magnetic configurations and the influence of the plasma edge out-
side the LCMS. It has to be kept in mind that the proposal results from these boundary
conditions and is therefore only valid in this context.

The different physical problems were treated equally, but it would also possible to
introduce a weighting: If the optimal design is estimated by summarising the single EU s,
a weighting factor on every summand can be introduced. The same principle can be
applied for the eight-channel interferometer: If the design is optimised according to a sum
of different EU s, here, also a weighting can be applied.

One analysed boundary condition is the influence of the magnetic configuration and
the plasma outside the LCMS. It was found out that, for the analysed configurations, the
optimal beam line designs were very similar. As a proposal resulting from this finding,
it may be practicable to adjust the beam line configuration for every experiment by an
appropriate optical arrangement, according to the respective magnetic configuration of
the experiment.

In addition, some general findings about the method of Bayesian experimental design
can be formulated: First, one can state that the signal-to-noise ratio is of strong importance
for the design. A good SNR is always part of the optimum design, in one-beam case (section
4.2.3) as well as for the multi-channel interferometer, where the unconstrained design with
long pathways through the plasma always yields a higher EU. A further argument for this
finding is the fact that in the design process identical beam lines are sometimes preferred
(but technically not realisable)- measuring the same effect on the same position would
also reduce the SNR. The final argument is that a constant SNR leads to a constant EU
distribution (see section 4.2.4)

The second finding is the fact that the optimal beam lines are always located in the
regions were the density effect one wants to estimate is maximal. This was shown by
comparing the unconstrained design results with the restricted configurations: The highest
EU was given for beam lines for which changes of the parameters of interest led to a
maximum change of the measured phase shift. In result, in every design the beam lines
are arranged to cover the area of the plasma where the effects to be measured are localised.

As a remarkable fact, both findings - the dependency of the EU on the SNR and the
measurement of the parameters of interest where they show a maximum effect on the data
- are the outcome of BED, not a design criterion. This is different compared to former
design methods, e.g., as used in [45].
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Chapter 6

Experimental Planning using
Bayesian Design

This chapter presents an additional application for the principle of Bayesian experimental
design: the planning of experiments. In particular, it is discussed how already measured
data sets from previous experiments can be implemented in the planning process. After
introducing the methodology in the first part, the approach is applied to the problem of
scaling laws for fusion devices in the second.

6.1 Motivation

Besides the optimisation of diagnostic devices, Bayesian experimental design can also be
used for the planning of experiments: The approach of data adaptive planning (DAP)
additionally offers the possibility to implement already measured data sets in the design
process. With this, on the one hand side, one can quantify the importance of already
measured data with respect to the whole data set. On the other hand, the best experi-
mental conditions for a maximum information gain from the next measurement, given the
existing experiments can be identified. Some examples may illustrate the usefulness:

• A typical application for this method is given for experiments with limited access to
the measuring instrument, e.g. telescopes in astronomical research. Loredo [34] used
the DAP approach for the estimation of the optimal observation time to measure
the orbital parameters of an extra solar planet.

• One may think of experiments where the change of the experimental settings is
technically impossible or would result in high costs, for instance the change of the
geometrical parameters of fusion experiments (e.g. the major radius R). Here, also
an estimation of the best configuration can be done by DAP taking into account
the findings from previous experiments.

• The importance of already measured data points with respect to the complete data
set can be expressed by their utility. So, by comparing the utility of different data
points, the influence of physical parameters and diagnostic variables, like the mea-
surement error, on the significance of the data points can be analysed.

Requirements for the application of DAP are a physical model connecting the model
parameters α with the data point D: D = f(α), as well as the corresponding error
statistics. Both are combined in the likelihood. Also, a database with already measured
data d is needed.
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6.2 The principle of data adaptive planning

6.2.1 General approach for a linear problem

The planning of experiments is based on the same design approach as described in chap-
ter 2: Maximisation of the expected information gain. This information gain is again
expressed by the Kullback–Leibler distance (equation 2.39).

Suppose a database containing existing data d, where di was measured at experimental
configurations Xi, with Xi,1 . . . Xi,p as the p configuration variables for the data point i.
The measurement error of di is given with si, q different data points may exist. The
parameters of interest are named α : α1 . . . αp.

For this work, a linear model function shall be analysed:

d = X ·α (6.1)

and
D = ξT ·α, (6.2)

respectively. Now, the Kullback-Leibler distance for the new datum D is given with

UKL(D,d, ξ) =
∫

dα p(α| D,d, ξ) ln
[
p(α| D,d, ξ)
p(α| d)

]
. (6.3)

Marginalisation over the expected data space for D leads to the Expected Utility:

EU(d, ξ) =
∫

dD p(D| d, ξ) · U(D,d, ξ), (6.4)

with the evidence PDF given by

p(D| d, ξ) =
∫

dα̃ p(D, α̃| d, ξ)

=
∫

dα̃ p(α̃|d) p(D| α̃, ξ).

Here, the term p(D| α̃, ξ) does not explicitly depend on d because of (6.1). The parameters
of interest are written as α̃ to distinguish between both integrations over the parameter
space when (6.3) and (6.4) are combined:

EU(d, ξ) =
∫

dα̃ p(α̃| d) ·
∫

dD p(D| α̃, ξ) (6.5)

·
∫

dα p(α| D,d, ξ) ln
[
p(α| D,d, ξ)
p(α| d)

]
.

The dependencies on s, σ and X are not displayed for purposes of clarity. The individual
terms are described in detail next.

Using a Gaussian error distribution for the existing data d and assuming a flat prior
in α, one obtains for the old posterior

p(α|d) ∝ p(d|α) · p(α) (Bayes’ theorem)

∝ exp
[
−1

2
(d−Xα)TC(d−Xα)

]
, (6.6)

where the matrix C contains the measurement errors: Cii = 1/s2
i . The non-diagonal

elements are zero, the data sets are assumed as not correlated.
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Taking into account the new datum D with the same error statistic as for (6.6), an
extended likelihood can be formed:

p(D,d| α, ξ) = p(d|α) · p(D|α, ξ)

=
1

(2π)q/2
∏q
i=1 si

· 1√
2πσ2

(6.7)

· exp
[
−1

2
(d−Xα)TC(d−Xα)− 1

2σ2
(D − ξTα)2

]
This is directly proportional to the posterior of α:

p(α| D,d, ξ) ∝ p(D,d| α, ξ) · p(α). (6.8)

Finally, the new datum shall be described by the model:

p(D|α̃, ξ) = δ(D − ξT α̃). (6.9)

The EU in equation (6.5) can now be computed analytically, the calculation is some-
what extensive and is given in appendix C. The final Expected Utility is obtained with

EU(d, ξ) =
1
2

[
log (1 +G)− G

(1 +G)2

]
; G =

ξT
(
XT CX

)−1
ξ

σ2
. (6.10)

The result does not explicitly depend on the data values of the existing data d, since the
model function (6.1) is linear inα, it is only related to the error of the former measurements
given by C, the experimental configurations of these measurements X, the error σ of
the future datum and its experimental configuration ξ. This is reasonable because the
EU does not give any prediction for α (For this, p(α| d, D, ξ) would be needed to be
calculated, which explicitly depends on d, see eq. (6.7)). The EU only gives the expected
information gain with respect to the experimental configuration for the next measurement,
ξ. Therefore, only two information are needed: How dense the configuration space has
been scanned in the former experiments (this is given by X), and how exact these scans
have been made (expressed by C).

Furthermore, the term G is proportional to 1/σ2, which means that the EU decreases
for an increasing measurement error of the new datum. In other words, the utility of a
new datum is lower if its error is large, which can be intuitively understood.

6.2.2 A one-dimensional example

To illustrate the working principle, a simple example describing the estimation of the slope
α of a straight line passing the origin shall be analysed. For a one-dimensional problem
with

d = x · α and D = ξ · α (6.11)

one obtains from equation (6.10)

EU(d, ξ) =
1
2

log
(

1 +
ξ2s2

x2σ2

)
−

ξ2s2

x2σ2(
1 + ξ2s2

x2σ2

)2

 . (6.12)

The EU is large for high values of ξ, which means that the best way to estimate the slope
is to measure as far away as possible from the origin.
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(a) (b) (c)

Figure 6.1: Estimation of the slope of a straight line: Given three data points (a), the
distribution of the EU is calculated for the next measurement with respect to ξ for σ = 0.5
(b) and with respect to the measurement error σ at ξ = 5.0 (c).

As an example, one may consider a function y = f(x) = α · x and three given (already
measured) data points at x = {1.5, 2.0, 3.0}, their errors are s1 = s2 = s3 = 0.5 (figure
6.1 (a)). Now, the EU is calculated for a new datum, where σ = 0.5 is assumed, too. For
different ξ one obtains, e.g.,

EU(ξ = 0.5) = 4.34 bit,
EU(ξ = 1.0) = 6.35 bit,
EU(ξ = 5.0) = 10.99 bit.

The complete EU distribution is given in figure 6.1 (b). The expected information gain
shows a strong rise for increasing values of ξ near the origin. However, the increase of the
EU becomes smaller at larger values of ξ. A shift from ξ = 0.5 to ξ = 1.0 has therefore a
stronger impact on the information gain than a shift from, e.g., 90 to 90.5, in other words,
the EU is sensitive to the relative change ∆ξ/ξ.

Furthermore, equation (6.12) also allows to study the influence of the error statistics.
As already mentioned, the EU decreases for an increasing measurement error σ, and vice
versa. In figure 6.1 (c) σ is varied for a new measurement at ξ = 5.0. The EU is very
sensitive for small values of σ, a small increase of the error leads to a large descent of the
expected information gain. For large σ this effect is less distinct, but the EU is always
decreasing if the error is increased.

6.3 Scaling Laws for Fusion Devices

Scaling laws for fusion devices are a predestined field of application for DAP : First,
databases containing several hundred data sets exist [77], which have to be assessed with
respect to the importance of the respective data points. Secondly, it is possible to plan
experimental campaigns at running experiments by identifying the most useful operational
conditions. And finally, the scalings are also used to plan future experiments, so DAP
can be applied, e.g., to find the optimal geometrical configuration.

In the special case of a logarithmised scaling law the DAP approach for a multi-
dimensional linear problem can be used.

6.3.1 Background

Scaling laws connect plasma and machine parameters with quantities relevant for plasma
and energy confinement. They are widely used for
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• inter-machine comparison of different discharges and

• prediction of the confinement performance of future experiments.

The first point is motivated by the limitations in the parameter range for a single experi-
ment (e.g. restrictions in geometrical variations), this can be overcome by a comparison of
different machines. The second application arises from the fact that the interdependencies
between the experimental parameters (like density n, temperature T , the magnetic field B,
effective minor radius a, major radius R and total heating power Ptot) and the quantities
describing the plasma confinement (the energy confinement time τE or the confinement
energy W ) are not fully understood, which makes theoretical predictions for future ex-
periments difficult. Scaling laws give a semi-empirical approach to connect the different
quantities, involving data sets from different experiments.

A typical scaling is given as a power law of the form

τE =
∏
j

x
αj
j , (6.13)

where the xj are the plasma and machine parameters (configuration variables), and the
αj are the scaling exponents describing the dependencies of the quantity of interest (here:
τE). In most cases these scaling parameters have been found by regression procedures of
available data sets.

In addition to pure empirical studies, it is always the goal of scaling laws to connect
the experimental findings with justification based on physical principles. A remarkable
attempt was made by Connor and Taylor [78], who connected the plasma regime with
the scaling law resulting in different numbers of scaling terms (i.e. different numbers of
scaling parameters). Therefore, they differentiated between collisional and collisionless
cases, high- and low-β plasmas and ideal and resistive MHD models. The theoretical
background of the approach was simply the consideration of charge neutrality, the Vlasov
equation with and without collision term, respectively, and the Maxwell equations. The
findings of Connor and Taylor were employed in high-β studies at W7-AS [79].

6.3.2 Energy confinement time

Tokamaks

The first approaches on scaling laws have been made for Tokamaks and were mostly of
empirical or semi-empirical nature. An overview above the early findings is given, e.g.,
by Goldston [80]. In this work, previous scaling attempts, mainly consisting of parame-
ter scans on different machines, are reviewed and connected. In result, two scaling laws
were found for ohmic and auxiliary heated plasmas by combining the data from seve-
ral experiments. A comparison with the constraints of Connor and Taylor showed good
agreement within the error bars. Furthermore, Goldston pointed out the necessity for
multi-dimensional parameter scans.

It was found to be valuable to collect the data sets of different experiments in a
confinement database to put the scaling laws on a much broader basis [81]. In addition,
parameter scans on minor and major radius are not applicable on single machines. One
approach was done by Yushmanov et al. combining data sets from eight major tokamak
experiments [82]. Here, the plasma current Ip, the elongation of the plasma cross section k
and the isotopic mass M were also taken into account as plasma parameters. To overcome
geometrical differences of the several machine configurations, the shape index fs = f(R, a)
was introduced.
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(a) (b)

Figure 6.2: Comparison of the experimental confinement time τEXPE with the result from
ISS95 scaling τ ISS95

E (from [86]): Only for stellarator experiments (a) and including toka-
maks (b).

Stellarators

Similar to the confinement databases for tokamaks (see, e.g., [83, 84]) the need for such
a database and confinement relations turned out to be important for stellarators, too.
Whereas earlier scaling approaches used Tokamak scalings like, e.g. the semi-empirical
expression from Lackner and Gottardi [85], Stroth et al. introduced an international
database for stellarators and a energy confinement time scaling law [86]. Five stellarators
contribute to the database: ATF, CHS, Heliotron-E, W7-A and W7-AS. The τE scaling
was related to the minor radius a, major radius R, total heating power Ptot, line averaged
density n, the magnetic filed strength B and the rotational transform  ι, typically given by
the rotational transform at reff = 2

3a,  ι2/3.
The scaling law was then in the form of

τE = 10αx 10sαs aαr RαR PαPtot n
αn BαB  ι

α ι
2/3. (6.14)

Here, s is an additional parameter introduced to differentiate between heliotrons and
torsatrons like ATF, CHS and Heliotron-E (s = 1), and the shearless stellarators W7-A
and W7-AS (s = 0).

In result, the International Stellarator Scaling ISS95 was proposed:

τ ISS95
E = 0.079 a2.21R0.65 P−0.59

tot n0.51B0.83  ι0.42/3 (6.15)

Additionally, this scaling was compared with the tokamak L-mode scaling by Lackner
and Gottardi [85]. Here, the plasma current Ip, which does not occur in stellarators, was
replaced by an expression containing the rotational transform  ι and an elliptical elongation
κ as a geometrical factor. It turned out that the Tokamak data were also well described
by the ISS95 scaling (see figure 6.2).

In 2004 the stellarator database was extended by new experiments, which led to a new
scaling expression ISS04 ([77], see figure 6.3). The experiments Heliotron-J, HSX, LHD
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Figure 6.3: Results from ISS04 stellarator scaling (from [87]): Experimental result τEXPE vs.
scaling expression τ ISS04

E . Data sets from tokamak experiments are shown for comparison.

and TJ-II were additionally implemented in the database, new data sets were also added
from the other machines.

Instead of the shear parameter s the ISS04 scaling uses a single renormalisation factor
fren for each configuration. It does not make a distinction between experiments, but
between experimental configurations. For instance, for W7-AS three different factors
were applied ( ι2/3 < 0.48,  ι2/3 ≥ 0.48 and high-β case). The final scaling turned out to be

τ ISS04
E = 0.134 a2.28 R0.64 P−0.61

tot n0.54 B0.84  ι0.41
2/3 . (6.16)

Here, the dependency of the confinement time on the density and the total heating power
as found in the ISS95 scaling was confirmed.

6.3.3 Confinement energy

Since the energy confinement time τE cannot be measured directly, the plasma energy
content W should be used in data analysis instead. For given electron and ion density and
temperature profiles W is obtained by [53]

W =
3
2

∫
(neTe + niTi) dV. (6.17)

However, this method is mostly used as a cross check because T and n profiles are often
not available or uncertain. In practice the energy content of the plasma is measured, e.g.,
by diamagnetic measurements [38].

The relation between the energy content and the energy confinement time are given
for stationary conditions via the net heating power Pnet with

τe =
W

Pnet
, (6.18)
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in case of negligible loss terms Pnet is replaced by the total absorbed heating power Ptot
[53]. Therefore, the scaling laws for τE have only be reduced by a factor Ptot to achieve
the energy content scaling of the form

W = eαc nαn BαB PαPtot a
αr . (6.19)

An early attempt for the use of W instead of τE can be found by Rebut et al. [88].
However, major work was done by Preuss et al. [24, 25, 79, 89] evaluating data from
W7-AS with respect to the aforementioned constraints of Connor and Taylor [78]. It was
shown that the data sets from W7-AS are best explained by their respective physical
model, expressed in the parameter constraints of Connor and Taylor. This finally led
to the conclusion that different physical situations, such as variations in the rotational
transform  ι, have to be described with different scaling laws.

6.4 Data adaptive planning for scaling laws

The principle of Data adaptive planning shall now be implemented for a data set of the
W7-AS stellarator. For this, 153 data sets with a rotational transform of  ι = 1/3 from
the ISS95 database were extracted and analysed. The impact of additional data is also
pointed out.

6.4.1 DAP for W7-AS measurements

As mentioned before, the parameters of interest are now the scaling parameters α of
equation (6.19). The design parameters, however, are the quantities the energy content
depends on: minor radius a, magnetic field B and the heating power Ptot (simply P in the
following). Note, that - in contrast to the previous chapters - the line averaged density n
is also a design parameter and therefore treated differently.

Goal of DAP is to find the design parameter set {a,B, n, P} for which a new mea-
surement will provide a maximum of information about the scaling parameters α (with
α = {αc, αr, αB, αn, αP }). A set of existing data d is thereby considered.

The power law approach enables one to linearise the problem by taking the logarithm
of (6.19):

lnW = αc + αr ln a+ αP lnP + αn lnn+ αB lnB. (6.20)

The design parameters are now given by ξ = {1, ln a, lnP, lnn, lnB}. The existing data d
is a set of logarithmised values of the energy content {lnWi}. For further variables, the
following notation is used in this section:

q number of existing data points
p number of scaling parameters
d existing data
s errors of the existing data
X experimental configuration of the existing data set:

Xi = {ln ai, lnBi, lnni, lnPi}
D new datum (to be measured)
σ error of the new datum
ξ experimental configuration of the new datum → design parameters
α scaling parameters → parameters of interest

The error si is calculated from simple error propagation law according to equation (6.20)
with

s2
i = s2

i,lnW + α2
r s

2
i,ln r + α2

P s
2
i,lnP + α2

n s
2
i,lnn + α2

B s
2
i,lnB. (6.21)
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The single errors si,lnW , si,ln r, si,lnP , si,lnn and si,lnB are the errors of the logarithmised
coordinates in the parameter space and can be extracted from the database. The coeffi-
cients αi are the scaling exponents. For the ISS95 database, the results from Lackner and
Gottardi [85] were used as a prior guess.

Given these definitions, the expression for the Expected Utility (6.10) can now be
applied.

6.4.2 The W7-AS data set

The ISS04 database provides values and errors for every parameter a, P , n, B and W .
In the following, a distinction is made between the measured value of W , Wexp, and the
theoretical value Wtheo, calculated by the power scaling law. The error of Wexp is given by
the measurement error of the diamagnetic energy Wdiag and can be found in the database.
For Wtheo the error is computed by error propagation according to equation (6.21).

The scaling law for the 153 data sets from W7-AS is calculated by regression with

lnWtheo = −0.831 + 2.264 ln a+ 0.452 lnP + 0.440 lnn+ 0.618 lnB (6.22)

with the following uncertainties:

αc = −0.831± 0.082
αr = 2.264± 0.093
αP = 0.452± 0.035
αn = 0.440± 0.022
αB = 0.618± 0.049.

These values are different from the findings of ISS04 (equation (6.16)), because only a sub-
set of the data (with  ι = 1/3) was taken into account, mainly consisting of measurements
at low densities. Using these parameters, Wtheo can be calculated and compared with the
experimental value Wexp.

DAP allows one to determine the utility of individual measurements from a given
data set. For this purpose, the respective measurement is extracted from the data set,
and its utility is calculated with respect to the remaining (q − 1) data points by equation
(6.10): Here, {ξ, σ} is the experimental configuration of the extracted datum, the other
data sets are described by {X, s}. Note, that the EU calculated for different individual
measurements is not comparable quantitatively, because the reference data set {X, s} is
different in every case.

Figure 6.4 shows theWtheo plot for all 153 data points. The utility of every single datum
is expressed in the colour code. While most data points show a small utility, mainly for the
data at higher confinement energies higher EU values are calculated. However, exceptions
for lower Wtheo can be found, too.

Since equation (6.10) incorporates all reference data, the Expected Utility is a context
sensitive quantity, it depends on what has been measured beforehand. Therefore, it may
therefore be instructive to analyse the reason for the different EU values of the data points
in figure 6.4.

W7-AS was operated at two values for the magnetic field, at B ≈ 2.54 T and at
B ≈ 1.24 T . In figure 6.5 (a) the EU is plotted over the magnetic field. Whereas the
maximum EU value is given for the smaller field, in general high values of the EU are
found for both fields, so that no general conclusion can be made.

A similar picture is given for the minor radius a: Most data sets are given for radii
around a ≈ 0.175 m and a ≈ 0.12 m (figure 6.5 (b)). Again, no clear assumption according
to the relation between a and the Expected Utility can be made.
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Figure 6.4: Comparison of Wexp and Wtheo for 153 data sets from W7-AS. The colour
code expresses the utility of the respective data point. For comparison, the function
Wtheo = Wexp is also displayed (black line).

(a) (b)

Figure 6.5: Dependence of the EU on the magnetic field (a) and the minor radius a (b)
for the 153 W7-AS data sets.
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Figure 6.6: Power - density dependence of the utility, the EU is decoded in the colour
scheme.

Most variation in the parameter space can be seen for the line-averaged density n and
the heating power P . To show possible interdependencies, the EU is displayed in relation
to both parameters in figure 6.6. High utilities are found in regions of high heating power
and high densities. In these regions of the P - n plane only a few data points are available.
The most separated point shows the highest utility.

At this point one can conclude that data sets in regions of the configuration parameters
space with a low sample rate are most valuable. A new measurement should therefore lie
in a parameter range not yet covered by previous experiments. This assumption can be
proven by calculating the EU of a possible new data point.

6.4.3 Experimental planning: The EU for a new data point

For the planning of a future experiment the expected utility of the new data point has to
be calculated. In case of the W7-AS data sets it makes sense to calculate the EU of all
possible data points in the P - n plane. The principle is illustrated in figure 6.7: Here, the
datum with the highest utility from the database was scanned over the complete plane, the
EU is illustrated as background colour. For comparison, the other data are also displayed.

The EU for this ”new” data point shows the lowest value in regions which are already
covered by the other measurements, whereas the uncovered regions show a high utility.

Next, a completely new data point shall be assumed: Given all 153 data points, what
would be the best parameter combination for a 154th measurement? Again, the P - n
plane was sampled, the result is shown in figure 6.8. For the fictional new data point, the
parameter settings for the error, minor radius and magnetic field have been taken from
the data point with the highest EU from the given data set.

The result confirms the conclusions from the previous example: The regions with a
high EU are restricted to areas where no previous measurement exists. By comparison
with figure 6.7 one also finds, that the area of smaller EU increases slightly around the
data point with the highest EU. This shows the impact of this measurement on the EU
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Figure 6.7: EU distribution, sampled over the P - n plane, the point with the highest
utility (encircled) of the W7-AS data set was used for this sampling. Therefore, its colour
coincidences with the background. All other data sets are shown for comparison, too.

Figure 6.8: The same plot as figure 6.7, but now for a fictive 154th data point, given the
153 data sets from W7-AS. These sets are also shown for comparison.
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Figure 6.9: Comparison of Wexp and Wtheo for 153 data sets from W7-AS, the EU is colour
coded. The symbol size is given by the error of logWtheo, scaled by a factor of 200. The
datum with the largest EU (red) shows a very small error.

distribution: Because this data point is now taken into account, measurements with similar
P - n settings become less informative.

6.4.4 Influence of the measurement error

As already shown in section 4.2.4, the design of an experiment may strongly depend on the
measurement error (figure 6.9), its influence on experimental planning shall therefore be
discussed, too. Two cases will be analysed: First, the change of the EU if the same error
is considered for all data points, and secondly, the influence of an increasing or decreasing
error for a possible new measurement.

For the first case, the diagonal elements of the error matrix C are calculated from
the error seumax = 0.057 of the most informative point (the encirled one in figure 6.7):
Cii = 1/s2

eumax ∀ i. The same value is applied for the error of the new datum, σ. The
new EU distribution can be seen in figure 6.10, the former result, considering the true
measurement error, is given for comparison. In the plots, all 153 data points are displayed,
also the EU distribution in the P - n plane for a possible additional measurement.

First it has to be noticed, that the utility for the given data points changes if the
measurement error is set as equal. For some data the utility decreases, especially in the
case of the data point with maximum EU in figure 6.10 (a). The effect can be explained as
follows: The measurement error of this datum is relatively small (see figure 6.9), therefore
it is more informative compared with the other data points. This advantage is cancelled
if the error is equal for all measurements.

The largest EU values are now found for four data points with relative low values of
P and n (see the encircled region in figure 6.10 (b)). It turns out that these points are
the only measurements from the database at a = 0.12m and B = 2.54T . Compared with
the equalised error seumax assumed for this analysis, the true errors of these points are
about two times larger: 0.110, 0.138, 0.0.081 and 0.105, respectively. This leads to the
assumption, that the value of the EU is influenced by the measurement error as well as
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(a)

(b)

Figure 6.10: The influence of the measurement error on the EU for scaling laws: EU
distribution for a fictive 154th measurement, the error was taken (a) as measured, (b)
equal for every data point. The highest EU values in the case of equal errors are given for
relatively low values of P and n (encircled area).
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by the configuration variables: If all errors are set as equal, the data points with rare
experimental configurations become the most informative.

The distribution of the EU for the new measurement (background colour in figure 6.10
(b)) also depends on the error: For equal errors, the less informative part in the P - n plane
becomes larger. Again, the reason is given by the equal error: In figure 6.10 (a) for the new
measurement the error from the most informative point was taken: σ = seumax. Therefore,
in comparison to the other data, the new measurement becomes very informative, which
can be seen in the large areas with a high EU. Now, in figure 6.10 (b), this advantage is
removed, because all data points have the same measurement error seumax. So, only the
experimental configuration of the new datum is important, leading to high EU values only
at unusual experimental conditions (e.g. large values for P and n).

If only the error for the new measurement, σ, is varied, the EU distribution in the P - n
plane changes dramatically: In figure 6.11 σ was halved (a) and doubled (b). Here, σ was
taken as the average error of all measurements from the database. When σ is halved, the
EU becomes large for nearly every combination of P and n. A new data set with an error
just two times smaller than the average error becomes very informative. On the other
hand, if σ is just doubled, for only small regions at the edge of the P - n plane the EU
remains high (figure 6.11 (b)), because these experimental configurations would be very
unusual compared with the other data.

As a numerical example, the EU for P = 1MW and n = 1 · 1019m−3 is given with
5.67 · 10−3 bit for a normal error (figure 6.10 (a)). If the measurement error is doubled,
the expected information gain becomes 3.91 · 10−4 bit, whereas it is 6.428 · 10−2 bit if the
error is halved.

One can conclude that the influence of the measurement error is significant, data points
with large errors are not beneficial. Therefore, the measurement error has to be taken into
account for experimental planning, and its value has to be estimated carefully. This result
confirms the outcome from section 4.2.4, where a strong influence of the measurement
error on the design result was found, too.

6.5 Discussion

In this chapter it was shown that the BED approach can be used for the planning of a
future measurement, taking into account a database with measured data. Given a multi-
dimensional linear physical problem, the Expected Utility of a new datum depends on
the experimental configuration of the existing data sets and of the new datum. Also, the
EU is significantly influenced by the measurement errors. The data values of the existing
measurements, however, do not play a role (equation (6.10)), if the model function of the
data is linearly depending on the parameters of interest.

It can easily be seen from equation (6.10) that the EU decreases with an increasing
measurement error σ. Consequently, for a future experiment the measurement error should
be kept as small as possible.

Concerning the dependency on the experimental configuration one can conclude that
measurements in regions of the configuration space with a sparse number of given data
points show the highest Expected Utility, in other words, one should choose experimental
configurations which have not been applied before to gain maximum information. For the
analysed data set from W7-AS the regions with the highest EU were given for high n and
low P , and vice versa.

For the planning of the next measurement, the experimental configuration with the
highest EU should be applied. Not every configuration may be realisable, technical and/or
physical constraints may limit the configuration space.
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(a)

(b)

Figure 6.11: Influence of the modified error for an additional measurement on the EU dis-
tribution, given 153 data sets: The error was given with (a) 0.5·σ for the new measurement
and (b) 2 · σ for the new measurement in comparison to figure 6.8.
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Furthermore, one can also implement a cost function which expresses the necessary
effort for the realisation of a certain parameter combination. The optimal experimental
configuration is then given by the best relation of cost and expected information gain.

For the problem presented here, the EU is independent of the data values from the
database. This allows one to design experimental campaigns with more than one new
measurement: If the experimental conditions of the next measurement were estimated by
DAP, this configuration can be added to the existing data set. Then, the next but one
experiment can be planned using the DAP approach, and so on. The only assumption
to be made is about the measurement error of future experiments, which may be derived
from previous measurements. With this method, more than one future experiment can be
planned. Therefore, the approach of DAP can also be used for campaign design.
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Chapter 7

Summary

In this work the approach of Bayesian experimental design was applied to optimisation
problems related to plasma physics: the design of a multi-channel interferometer and the
planning of experiments for the determination and validation of energy confinement time
scalings. The probabilistic ansatz of BED allows to use the tools of Bayesian probability
theory. The work is related to the assembly of the W7-X stellarator, a nuclear fusion
experiment.

Design principle

The basic idea of Bayesian experimental design is the maximisation of the expected in-
formation gain (Expected Utility) from future measurements with respect to the design
parameters. To express the information gain of an experiment, an information measure
(Kullback-Leibler distance) is applied as utility function. It quantifies the information
gain by comparison of the state of knowledge before and after the measurement. The
expected information gain is given by integration of the utility function over the expected
data space. This data space is calculated according to the mathematical model of the
experiment (forward function) and the error statistics.

In result, the Expected Utility (EU ) is an absolute measure of the expected information
gain and therefore provides a quantification of the design: The EU is commonly expressed
in bit. This quantification can be used to compare different designs.

The BED formalism is independent of the experiment to be designed. It allows one
to implement the parameters of interest, which describe the physical problem and have to
be estimated by the measurement, directly as a design criterion: As a part of the forward
function, the parameters of interest have a direct impact to the expected information
gain. By applying an appropriate distribution for these parameters it is also possible to
implement a weighting to the range of interest.

In this work, the BED approach was adapted to the field of nuclear fusion research, in
particular to physical challenges of the Wendelstein 7-X experiment. Using data sets from
a previous experiment, the meaning of the EU was validated by comparing the EU values
with the respective measurement results. The flexibility of BED was then demonstrated
by applying the ansatz to two different fields of experimental design: the optimisation of
a diagnostic and the planning and validation of experiments.

Diagnostic optimisation: multi-channel interferometer

The diagnostic to be optimised was the multi-channel interferometer at the Wendelstein
7-X experiment. The interferometer provides line-integrated measurements of the plasma
density, and is intended to be a start-up diagnostic at W7-X.
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For this work, case studies for a one-beam interferometer have been made to evaluate
the working principle of BED first. An interferometer provides line-integrated measure-
ments of the plasma density, therefore the effects of different parameters of a density
distribution on the beam configuration were studied. The influence of different error
statistics was analysed, too. As a result, one can state that the optimal beam line crosses
the plasma on a long path to achieve a good signal-to-noise ratio. In addition, the design
is strongly affected by the error statistics.

The BED approach was then compared to a former design result for the W7-X inter-
ferometer. It was found out, that the parametrisation of the density distribution, which
was used for this design, led to a significant and misleading impact on the design outcome:
The assumption of a stepwise constant density distribution resulted in a beam line design
which was strongly influenced by the mapping of the density distribution. This could be
demonstrated by using the BED approach for the same parametrisation.

To validate the EU, data sets from the interferometer at the W7-AS stellarator have
been examined according to the relationship between Expected Utility and the outcome
of the data analyses. The data analysis was done independently from the calculation of
the EU. It was shown that the EU criterion can be monotonically mapped on a global
deviation (χ2). This proves that the EU is an expression for the quality of the design: A
design with a higher EU would on average lead to a better measurement outcome.

As a next step for the design of a multi-channel interferometer at W7-X, three actual
problems from stellarator physics were used to formulate the optimisation criteria: the
measurement of Core Electron Root Confinement, as predicted from neoclassical theory,
measurement of the density effects of high plasma confinement regimes and the variation
of the density by the injection of hydrogen pellets. The parameters of interest were given
by the functional description of the respective problem.

According to these problems, three four-channel interferometers were designed. The re-
sults were compared by calculating the EU for every design with respect to every physical
question. For the three analysed cases, the design for the measurement of CERC turned
out to be the best solution in average. In addition, the implementation of an extra beam,
which is congruent to the beam line of the Thomson scattering diagnostic and crosses the
plasma on a very long path through the plasma centre, was found to be beneficial in all
three cases. The installation of this beam can therefore be recommended.

All designs have been calculated with and without technical boundary conditions,
namely the restriction of the possible beam lines by the port system at W7-X and the
possible positions of the retro-reflectors. It turned out, that the influence of these restric-
tions is remarkable for the physical problems analysed here.

The four-beam design was also tested for different magnetic configurations of W7-X
and for the influence of the plasma outside the last closed magnetic flux surface. These
variations result only in minor changes of the beam line configuration. The EU of the
original proposed design was similar to the respective EU s from the different magnetic
configurations. According to this, the original four-channel design can also be applied for
the other configurations analysed here without a significant loss of expected information.
Alternatively, it may be possible to realise all beam line designs by a variable optical
system, because the designs differ only marginally.

Finally, a possible proposal for an eight-channel interferometer was calculated. Here,
two of the previous problems were used as design criteria: the measurement of CERC
and the high confinement problem. The proposal for the four-channel interferometer was
taken as ”given”. These four beam lines were not changed in the design process.

The result for eight lines of sight was, in principle, a combination of two four-beam
interferometer, only slightly varied. It has to be mentioned that this proposal may change
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due to the fact, that the eight-beam interferometer will be applied subsequently: Different
physical questions of interest may arise from the first experimental results of W7-X, which
may lead to a new design. Therefore, it is proposed here to revise the design and the op-
timisation goals according to the physical issues resulting in the first operation campaigns
of W7-X.

Already indicated in the case studies with the one-beam interferometer, the importance
of a good signal-to-noise ratio is reflected in the optimisation results: Beams crossing the
plasma on a long distance show a high EU and are therefore preferred by the design
process. This result was confirmed by the optimisation results for the four-channel inter-
ferometer. Here, the technical boundary conditions of the port system had to be taken into
account, the restriction-free design was used for comparison. Again, beams with long path
lengths inside the plasma show high EU values, in all cases the optimal design without
restrictions differs significantly from the lines of sight allowed by the port system.

An important finding was, that the maximum of the expected information gain cor-
responds to lines of sight crossing the regions of the plasma, where the change in the
parameters of interest shows the largest effect on the expected data.

Experimental planning

As a second example for experimental design, BED was applied to the planning of a
future experiment. In particular, it was asked for the best operational condition of a
stellarator experiment to gain maximum information about the exponents of a scaling law
for the energy confinement time. Data sets from previous experiments were available and
have been implemented into the design, therefore this application is called data adaptive
planning (DAP).

The DAP approach was applied to a data set from the International Stellarator Scaling
database ISS04. In particular, 153 data points from W7-AS with a rotational transform
 ι = 1/3 were selected.

DAP was also applied to describe the value of a single data set: The datum was
excluded from the database and its utility was calculated using the other data sets as
”given”. With this method, the most informative data points in a database could be
identified.

Next, the utility for a possible future measurement, depending on the operational
conditions, was calculated and the most informative regions in the space of the operational
variables were identified. As a result it was found out, that the utility of a data point
significantly depends on the error of the measurement as well as on the error of the
measurements from the database. Also, the constellation of operational variables was
important, too.

In general, two findings can be stated: First, a datum becomes informative, if it is
measured in a region of the space of the operational variables not covered by other data
points. Secondly, data points with a small measurement error show a high EU, which
corresponds to the SNR criterion for the interferometer design.

Beside these results, the DAP approach is found to be a very effective method to
validate given data and to find optimal operational conditions for future experiments.
This may be of interest, especially for experiments with high operating costs or with low
availability.

General remarks

Bayesian experimental design was successfully applied to different tasks of plasma physics:
the design of a multi-channel interferometer, and the planning of future experiments with
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Figure 7.1: Estimation of the Expected Utility: Interaction between error statistics, signal-
to-noise ratio and the parameters of interest.

respect to a given database. In general,the following statements can be made:

• For the diagnostic optimisation, high values of the expected information gain are
given for a configuration where a change of the parameters of interest has maximum
impact on the expected data.

• In experimental planning, experimental configurations which are not provided by
the given database are preferred by the design for future measurements.

• The design strongly depends on the measurement error of the future data. In par-
ticular, the error statistics has a significant impact on the design result. This points
out the necessity of a detailed error analysis of an experiment even in the design
phase.

• The Expected Utility is affected by the signal-to-noise ratio of the measurement, in
the cases analysed here a higher SNR leads to a higher EU.

However, it turns out that the dependency of the EU on these criteria is complex,
the EU value is determined by an interaction of error statistics, SNR and parameters of
interest (figure 7.1). The effect of the different aspects is thereby specific for the concrete
design problem.

The influence of a particular criterion can be analysed in detail as it has been done in
this work, e.g., for the error statistics. For the final design, however, the role of a single
aspect is difficult to interpret in the most cases.

It is notable that these findings illustrate one of the main differences between Bayesian
experimental design and other design approaches like, e.g., in [45]: Whereas in the latter
case a good SNR is the design criterion, for BED it is the outcome of the design procedure.
The design criteria, on the other hand, are the parameters of interest itself.

As a drawback it has to be mentioned that the computational costs of BED are
high. This is a consequence resulting from the multi-dimensional integrals, which have
to be solved for the calculation of the EU. Their computation strongly depends on the
design problem itself and may take weeks, even if calculated on many computers using
parallelisation routines (as in case of the interferometer), or just a few seconds on a single
machine (as in case of experimental planning for scaling laws). For experiments like
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Wendelstein 7-X, which is destined to be a long-run enterprise, it may be at least effective
to spend the necessary effort in the optimisation of the diagnostics. Depending on the
specific problem, for other experiments the cost-benefit ratio of the application of BED
needs to be analysed.

Outlook

As a result of this work one can state that Bayesian experimental design can be used
for the optimisation of fusion diagnostics. It therefore seems to be the logical choice to
apply the method to other diagnostics like Thomson scattering, X-ray tomography and so
on. Given the forward calculations, it should also be possible to design sets of different
diagnostics together, according to the approach of integrated data analysis [26]. However,
the computation of the EU for such sets may become extensive due to the number of
parameters involved.

The proposal for the four-channel interferometer was calculated for three different
scenarios, other physical problems are also possible as a design criterion. In particular,
the questions given for the initial phase of the W7-X operation may be of special interest
due to the fact that the four-channel interferometer is a start-up diagnostic.

Some possible future developments have already been mentioned in this work: Due to
the similar design of the interferometer for different magnetic configurations, it may be an
option to realise all of these designs by a variable optical system. For the analysis of density
effects at the plasma edge, a beam which is fanned out may be a possible arrangement.

A new development on the field of interferometer techniques is the dispersion interfe-
rometer. Here, only the dispersive elements of the optical arrangement contribute to the
phase shift of the probing beam, vibrations are intrinsically cancelled out. The prototype
of a multi-channel dispersion interferometer is currently under construction at the TEX-
TOR experiment [90], an interferometer of this type may become an option for W7-X.
However, its unique properties would possibly lead to new error sources, which could
influence the design.

With respect to the results from Data Adaptive Planning it can be concluded, that
this method turns out to be very promising for the planning of future experiments and
experimental campaigns. If a physical problem different from the scaling law approach is
applied as design criterion, an analytical calculation of the EU may become impossible.
In this case, a numerical integration similar to the interferometer example has to be used.
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Appendix A

Basic Code Structure for EU
Calculation

A.1 Computing the Expected Utility

A.1.1 Code structure

The calculation of a multi-dimensional integral (equation (2.41)) is necessary for the com-
putation of the Expected Utility. Because of the structure of the involved PDF s, the
integral cannot be solved analytically in most cases, so a numerical integration routine
has to be applied.

For this work, the Monte-Carlo method of simple sampling was used: Given a multiple
integral of the form

F =

bx∫
ax

dx

by∫
ay

dy f(x, y), (A.1)

random samples of the parameters xr ∈ [ax, bx] and yr ∈ [ay, by] are drawn first. Then,
the function values fr(xr, yr) are calculated, summarised and divided by the number of
samples R:

F =
1
R

R∑
r=1

fr. (A.2)

As an advantage, this method can, in principle, be applied for every kind of function
f . As a drawback, a large number of samples is necessary to achieve a sufficient accuracy
of the result, the accuracy is thereby proportional to

√
R.

In addition to the integration over the parameter and the data space, for the com-
putation of the evidence (equation (2.12)) a further integration over the parameter space
is needed. For this, the vegas routine from Numerical Recipes [46] was used, slightly
modified for a reasonable first guess of the initial grid [30].

A commented outline of the source code can be found below. It covers the central part
of the EU computation and does therefore not depend on a certain diagnostic.

For the optimisation of the multi-channel interferometer an additional integration was
needed to calculate the different data values: The integration of the phase shift along the
line of sight, see equation (3.5). For this, the phase shift was computed for beam segments
along the line of sight with a length of 0.5mm, for which the plasma density was assumed
as constant. Finally, the particular phase shifts were summarised.

The computation of the EU finally consisted of four different integrations: Along the
beam line for the calculation of the phase shift, over the parameter space for the calculation
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of the evidence and finally over parameter and data space. To reduce the computation
time, the calculation was done by parallelisation: The different Monte-Carlo (MC) samples
were computed on different CPUs and finally combined.

The calculation was done on a blade cluster computer system, consisting of several
dual core CPUs with hyper-threading capability. One hundred sub-programs were started,
every sub-program itself calculated a certain number of MC samples.

In most cases, a number of 10000 samples in total (100 sub-programs with 100 samples,
respectively) was sufficient to achieve a accuracy of > 1% of the EU value. If a higher
accuracy was needed to differentiate between two designs, the number of samples in the
sub-program was increased.

The computation time depends mainly on the number of parameters of interest, but
also on the number of data points (e.g. number of beam lines for an interferometer).
Table A.1 shows the computation time for the calculation of the EU for a multi-channel
interferometer (2, 3, 4 and 8 beams) and different physical problems (3, 4 or 5 parameters
of interest). Here, the density parametrisation as used in chapter 4 was applied. For the

Configuration Computation time

Npar = 3, Ndat = 2 6 min
Npar = 3, Ndat = 3 10 min
Npar = 3, Ndat = 4 16 min
Npar = 4, Ndat = 4 130 min
Npar = 5, Ndat = 4 285 min
Npar = 5, Ndat = 8 660 min

Table A.1: Computation time for EU calculation for different number of parameter of
interest (Npar) and different number of data points (Ndat).

calculation shown here, 100 samples on 100 sub-programs were computed, respectively.
The sub-programs were run on 11 CPUs, 4 sub-programs were started at the same time
on one CPU (i.e. maximum 44 sub-programs were running at the same time). This was
the typical configuration used for the EU calculation.

For four and five parameters of interest the computation time is about several hours,
which is quite high if some 100 EU s have to be calculated for the optimisation of the
diagnostic. Therefore, a parametrisation of the physical problem, using three parameters
of interest, is preferred and was applied in this way in chapter 5.

A.1.2 Source code

In the following, the main parts of the source code used for the calculation of the Ex-
pected Utility will be shown. The programming language is Fortran90. The code will be
commented in parts.

subroutine EU_quadrature_KL_MC (N_loop, exp_util, exp_util_unc)

integer(ikind), intent(in) :: N_loop
real(rkind), intent(out) :: exp_util, exp_util_unc

real(rkind), dimension(:), allocatable :: par
real(rkind), dimension(:), allocatable :: ln_ppv
real(rkind), dimension(:), allocatable :: dat
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This subroutine computes the EU exp_util and its uncertainty exp_util_unc by evalu-
ating N_loop Monte-Carlo runs. The variables par and dat are allocated with the number
of parameters of interest and the number of data points, respectively. The logarithmised
evidence ln_ppv is allocated with the number of MC loops, N_loop.

do eu_loop = 1, N_loop
call make_prior(par)
call make_likelihood(par, dat, ln_likelihood=ln_likelihood)

Here, a parameter sample par is drawn from the prior distribution by the function
make_prior. This sample is then used to compute a data sample from the likelihood
PDF by the function make_likelihood. For the interferometer, the data sample was
calculated with

d = f + ε. (A.3)

Here, ε is the error of the measurement, randomly sampled from a Gaussian distribution
with mean zero and standard deviation σ. f is the forward function, given by an integration
of the electron density profile along the probing beam according to equation (3.5). For
the mapping from real space to magnetic coordinates the mconf routine from Yu. Turkin
was used [91].

The variable ln_likelihood gives the logarithmic value of the likelihood for parame-
ters par and data dat.

ppv = prior_predictive_value(dat)
if (ABS(the_ppv)>1.d-99) then
loop = loop + 1
ln_ppv(loop) = ln_likelihood - log(ppv)

endif
ln_ppv(loop) = ln_ppv(loop) / log(2.)

enddo

The evidence ppv is now computed by the function prior_predictive_value (see below).
The value is accepted if it is positive. Then, the quotient of likelihood and evidence is
calculated and logarithmised (see equation (2.41)). To achieve the result in bit, the term
is finally divided by the natural logarithm of 2.

exp_util = SUM(ln_ppv(1:loop)) / loop
exp_util2 = SUM(ln_ppv(1:loop)**2) / loop
exp_util_var = (exp_util2 - exp_util**2) / loop
exp_util_unc = SIGN(1.d0,exp_util_var) * SQRT(ABS(exp_util_var))

end subroutine EU_quadrature_KL_MC

Finally, the Expected Utility is calculated from the result of the single loops. The uncer-
tainty of the EU is given by the standard deviation of exp_util.

Calculation of the evidence

The evidence - or prior predictive value - is the integral over the parameter space of the
product from likelihood and prior (see equation (2.12)). It is computed by the vegas
routine [46]:
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function prior_predictive_value(dat)

do i = 1, SIZE(par)
xi_start(1,i) = par(i)/upli(i) - (upli(i)-loli(i))/1.d4
if (xi_start(1,i)<0.5d0*par(i)/upli(i))

xi_start(1,i) = 0.5d0*par(i)/upli(i)
xi_start(2,i) = par(i)/upli(i) + (upli(i)-loli(i))/1.d4
if (xi_start(2,i)>0.5d0*(1.d0+par(i)/upli(i)))

xi_start(2,i) = 0.5d0*(1.d0+par(i)/upli(i))
xi_start(3,i) = 1.0

enddo
where (xi_start(:,:) < 1.d-99) xi_start(:,:) = 1.d-99

For the integration over the parameter space the vegas routine was slightly modified by
choosing beneficial starting conditions xi_start [30]. The variables loli and upli are
the lower and upper limits for the parameters of interest and are given by p(θ) (see chapter
2).

init = 0
ncall = 300
call nr_vegas(joint_distr_dat_par_vegas, loli, upli,

init, integral, sd, xi_start=xi_start)

init = 1
ncall = 200
vegas: do i = 1, loops

call nr_vegas(joint_distr_dat_par, loli, upli,
init, integral, sd)

if (ABS(sd/integral) < acc_vegas) exit vegas
ncall = 2*ncall

enddo vegas

prior_predictive_value = integral

end function prior_predictive_value

The vegas routine nr_vegas is called up for the first time using the initial guess xi_start
and then repeated several times, until the necessary accuracy acc_vegas is achieved. The
result is accepted, if the ratio of the standard deviation sd of the integral and the result
integral is below 0.05.

The function to be integrated by the vegas routine, joint_distr_dat_par, is simply
the product from likelihood and prior, according to equation (2.12):

function joint_distr_dat_par

call make_likelihood(par, likelihood=likelihood)
call make_prior(par, prior=prior)
joint_distr_dat_par = likelihood * prior

end function joint_distr_dat_par
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So far, the routines shown here are in principle not restricted to a certain kind of
diagnostics. The influence of the diagnostic is expressed by the forward function, which is
part of the make_likelihood routine.

A.2 Benchmarking

To benchmark the code, a simple-but-not-too-simple example was computed and compared
with a quasi-analytic result. A uniform distribution for the prior in the limits {θmin, θmax},

p(θ) =
1

θmax − θmin
, (A.4)

and a Gaussian likelihood

p(D| θ, η) =
1

σ
√

2π
exp

(
−(D − f)2

2σ2

)
(A.5)

is applied. Here, σ is the standard deviation of the data D, which is taken as constant,
and f is the forward function. For simplification, the dependence on the hypothesis H
and the background information I will not be explicitly written down as far as it is not
necessary. However, the dependence is always suggested implicitly.

To construct the forward function, a cylindrical plasma with a simple parabolic density
profile is assumed:

ne(r) = θ · (1− r2). (A.6)

For an interferometer, the data describing function is

f = C1λ

∫
n(r)dr. (A.7)

Here, λ is the wavelength of the probing laser beam and was chosen for an infrared CO2

laser (λ = 10.6 µm). C1 is an aggregation of several physical constants (see chapter 3).
Using the density profile in cartesian coordinates, one obtains

f = C1λ · θ
∫ √1−x2

0
dy
[
1−

(√
x2 + y2

)2
]
. (A.8)

The goal is to find the best position of a probing beam, which is moved on the x-axis to
estimate θ. So, the x-coordinate becomes the design parameter η = x:

f = C1λ · θ
∫ √1−η2

0
dy
[
1− η2 − y2

]
(A.9)

=
2
3
C1λθ(1− η2)3/2

This leads to a likelihood function

p(D| θ, η) =
1

σ
√

2π
exp

(
−

(D − 2
3C1λθ(1− η2)3/2)2

2σ2

)
(A.10)

using (A.5) and (A.9). Substituting C2 = C1λ · 2/3 · (1− η2)3/2 one obtains

p(D| θ, η) =
1

σ
√

2π
exp

(
−(D − C2θ)2

2σ2

)
. (A.11)
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To compute the evidence p(D| η), equation (2.12) is used:

p(D| η) = dθ p(θ) p(D| θ, η) (A.12)

=
1

θmax − θmin
· 1

2C2

[
Erf

(
D − C2θmin√

2σ

)
− Erf

(
D − C2θmax√

2σ

)]
Now the Expected Utility function can be constructed by combining the prior, the

likelihood and the evidence as shown in equation (2.41):

EU(η) =
∫ ∞
−∞

dD
∫ θmax

θmin

dθ
1

θmax − θmin
· 1
σ
√

2π
exp

(
−(D − C2θ)2

2σ2

)

·ld
1

σ
√

2π
exp

(
− (D−C2θ)2

2σ2

)
1

θmax−θmin ·
1

2C2
·
[
Erf

(
D−C2θmin√

2σ

)
− Erf

(
D−C2θmax√

2σ

)]
= ld

(
4C1λ(1− η2)3/2(θmax − θmin)

3σ
√

2πe

)

−
∫ ∞
−∞

dD
1

θmax − θmin
· 3

4C1λ(1− η2)3/2

·

[
Erf

(
D − 2/3 · C1λ(1− η2)3/2θmin√

2σ

)

−Erf

(
D − 2/3 · C1λ(1− η2)3/2θmax√

2σ

)]

·ld

[
Erf

(
D − 2/3 · C1λ(1− η2)3/2θmin√

2σ

)

−Erf

(
D − 2/3 · C1λ(1− η2)3/2θmax√

2σ

)]
(A.13)

Here, the last integration over D cannot be solved analytically, however, in this state of
calculation the EU can be computed using the Mathematica software package [92].

The EU was also calculated using the Monte Carlo algorithms as described above.
Figure A.1 shows the quasi-analytical solution (red), calculated with Mathematica, and
the results from the MC sampling code (black dots) for two different standard deviations.
The MC sampling code was tested successfully, both results show a good agreement.
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(a) σ = 0.8 (b) σ = 0.1

Figure A.1: Expected Utility solved quasi-analytically according to eq. (A.13) (red) and
with Monte Carlo sampling (black dots) for two different standard deviations.
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Appendix B

Magnetic Configurations for W7-X

The magnetic configurations used in chapter 5 shall be illustrated here shortly. For the
standard case and the high- ι case, detailed descriptions can be found in [72]. The mconf
program, with mcviewer for visualisation [91], was used for the calculation of the flux
surface plots.

The plots show the configuration of the magnetic flux surfaces at W7-X at a toroidal
angle of Φ = 195◦, which is the position of the interferometer diagnostic. The relative
distribution of the magnetic field strength |B| in toroidal and poloidal direction is shown,
too. The standard configuration is displayed in figure B.1, figure B.2 shows the high- ι
configuration and figure B.3 the high-β case. Also, in figure B.4 the differences of the
radial  ι profile for the standard and the high- ι configuration are illustrated.

(a) (b)

Figure B.1: Standard configuration at W7-X: Contour plot of the magnetic flux surfaces
at a toroidal angle of Φ = 195◦, where the interferometer is located (a). Figure (b) shows
the magnetic field strength |B|/B0 with respect to the toroidal and poloidal angle, Φ and
Θ. B0 is the minimum of |B| on the axis.
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(a) (b)

Figure B.2: High- ι configuration at W7-X: Contour plot of the magnetic flux surfaces at
a toroidal angle of Φ = 194◦, where the interferometer is located (a). Figure (b) shows
the magnetic field strength |B|/B0 with respect to the toroidal and poloidal angle, Φ and
Θ. B0 is the minimum of |B| on the axis.

(a) (b)

Figure B.3: High-β configuration at W7-X[73]: Contour plot of the magnetic flux surfaces
at a toroidal angle of Φ = 195◦, where the interferometer is located (a). Figure (b) shows
the magnetic field strength |B|/B0 with respect to the toroidal and poloidal angle, Φ and
Θ. B0 is the minimum of |B| on the axis.

(a) (b)

Figure B.4: Radial  ι profile for the standard case (a) and the high- ι case (b).
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Appendix C

Detailed Calculation for Data
Adaptive Design

In chapter 6 the Expected Utility for a future measurement was given with respect to
previous experiments. The calculations are somewhat extensive and shall be shown here
in detail [93, 94].

The following notations were used:
q number of existing data points
p number of scaling parameters
d existing data
s errors of the existing data
X experimental configuration of the existing data set:

Xi = {ai, Bi, ni, Pi}
D new datum (to be measured)
σ error of the new datum
ξ experimental configuration of the new datum → design parameters
α scaling parameters → parameters of interest

The EU is given with

EU(d, ξ) =
∫

dD p(D| d) · U(D) (C.1)

=
∫

dα̃ p(α̃| d) ·
∫

dD p(D| α̃, ξ) ·∫
dα p(α| D,d, ξ) ln

[
p(α| D,d, ξ)
p(α| d)

]
.

With a constant prior for α, p(α) = const, and the likelihood for the old data

p(d|α) =

√
detC

(2π)q/2
exp

[
−1

2
(d−Xα)TC(d−Xα)

]
, (C.2)

one obtains the posterior, using Bayes theorem (equation (2.9)), with

p(α|d) =
1
Z

exp
[
−1

2
(d−Xα)TC(d−Xα)

]
. (C.3)

Using the normalisation
∫
p(α|d) dα = 1 the normalisation factor Z is given by

Z =
∫

dα exp
[
−1

2
(d−Xα)TC(d−Xα)

]
. (C.4)

123



This can be calculated by completing the square:

dTCd− dTCXα−αTXTCd+αTXT CXα
!= (α− α̂0)T Â(α− α̂0) + B̂

= αT Âα−αT Âα̂0 − α̂T0 Âα+ α̂T0 Âα̂0 + B̂. (C.5)

By comparison of the terms one gets

Â = XTCX

α̂0 = Â
−1
XTCd

α̂T0 = dTCX Â
−1

B̂ = dTCd− dTCX (XTCX)−1XTCd,

and with

Z =
∫

dα exp
[
−1

2
(α− α̂0)T Â(α− α̂0)

]
exp

[
−1

2
B̂

]
= exp

[
−1

2
B̂

]
(2π)p/2√

det Â
(C.6)

finally

p(α|d) =

√
det Â

(2π)p/2
exp

[
1
2
B̂

]
exp

[
−1

2
(d−Xα)TC(d−Xα)

]
=

√
det Â

(2π)p/2
exp

[
−1

2
(α− α̂0)T Â(α− α̂0)

]
. (C.7)

For a new datum D one obtains an extended likelihood (see equation (6.7)):

p(D,d|α, ξ) =
1
Z

exp
[
−1

2
(d−Xα)TC(d−Xα)− 1

2σ2
(D − ξTα)2

]
= p(d|α) · p(D|α, ξ). (C.8)

The factoring in the last line is possible because D and d are independent of each other.
Normalisation and completing the square similar to the equations (C.5) and (C.6) lead to

A = XTCX +
1
σ2
ξξT

α0 = A−1

(
XT Cd+

1
σ2
ξD

)
αT0 =

(
dTCXd+

1
σ2
DξT

)
A−1

B = dTCd+
1
σ2
D2

−
(
dTCX +

1
σ2
DξT

)[
XTCX +

1
σ2
ξξT

]−1(
XTCd+

1
σ2
ξD

)
and to the new posterior

p(α|D,d, ξ) =

√
detA

(2π)p/2
exp

[
1
2
B

]
(C.9)

· exp
[
−1

2
(d−Xα)TC(d−Xα)− 1

2σ2
(D − ξTα)2

]
.
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To solve the integral in equation (C.1), one starts with the last integration: With

ln
[
p(α| D,d, ξ)
p(α| d)

]
= ln

√
detA

det Â
+

1
2

(B − B̂)− 1
2σ2

(D − ξTα)2 (C.10)

one obtains for the integration over α:

I1 =
∫

dα p(α| D,d, ξ) ln
[
p(α| D,d, ξ)
p(α| d)

]
= ln

√
detA

det Â
+

1
2

(B − B̂)

− 1
2σ2

√
detA

(2π)p/2

∫
dα exp

[
1
2
B

]
· (D − ξTα)2

· exp
[
−1

2
(d−Xα)TC(d−Xα)− 1

2σ2
(D − ξTα)2

]
= ln

√
detA

det Â
+

1
2

(B − B̂)

− 1
2σ2

√
detA

(2π)p/2

∫
dα exp

[
1
2
B

]
· (D − ξTα)2

· exp
[
−1

2
(
(α−α0)TA(α−α0) +B

)]
. (C.11)

Using the substitution u = α−α0, α = u+α0 it becomes

I1 = ln

√
detA

det Â
+

1
2

(B − B̂)

− 1
2σ2

√
detA

(2π)p/2

∫
du
(
D − ξTu− ξTα0

)2
· exp

[
−1

2
uTAu

]
= ln

√
detA

det Â
+

1
2

(B − B̂)

− 1
2σ2

√
detA

(2π)p/2

∫
du
(
(D − ξTα0)2 + uT ξξTu

)
· exp

[
−1

2
uTAu

]
. (C.12)

With ∫
dα αTHα · exp

[
−1

2
αTGα

]
=

(2π)p/2√
det G

· Tr(G−1H) (C.13)

one obtains

I1 = ln

√
detA

det Â
+

1
2

(B − B̂)− 1
2σ2

√
detA

(2π)p/2
(C.14)

·

[
(D − ξTα0)2 (2π)p/2√

detA
+

(2π)p/2√
detA

Tr(A−1ξξT )

]

= ln

√
detA

det Â
+

1
2

(B − B̂)− 1
2σ2

[
(D − ξTα0)2 + Tr(A−1ξξT )

]
.
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Now, the expected utility can be written as

EU = ln

√
detA

det Â
− 1

2σ2
Tr(A−1ξξT ) + (C.15)∫

dα̃ p(α̃| d) ·
∫

dD p(D| α̃, ξ) ·
[

1
2

(B − B̂)− 1
2σ2

(D − ξTα0)2

]
.

The integration over D is performed by using p(D|α̃, ξ) = δ(D − ξT α̃) (equation (6.9))
and the expressions for Â, A, B̂ and B as well as Z = ξξT

σ2 :

1
2

∫
dD p(D| α̃, ξ) ·

[
(B − B̂)− 1

σ2
(D − ξTα0)2

]
=

1
2

[
dTCX

(
Â
−1
−A−1 −A−1ZA−1

)
XT C d

−α̃TA−1ZA−1XTC d− dTCXA−1ZA−1Zα̃

+α̃TZA−1Zα̃− α̃TZA−1Z A−1Zα̃
]
. (C.16)

For the final integration over α̃ this expression falls into two parts: The first one is
independent of α̃ (see equation (C.7)):

1
2

∫
dα̃

√
det Â

(2π)p/2
exp

[
−1

2
(α̃− α̂0)T Â(α̃− α̂0)

]
·

dTCX
(
Â
−1
−A−1 −A−1ZA−1

)
XT C d =

1
2
dTCX

(
Â
−1
−A−1 −A−1ZA−1

)
XT C d . (C.17)

In the second part the substitution u = α̃− α̂0 is used:

1
2

√
det Â

(2π)p/2

∫
du exp

(
−1

2
uT Âu

)
·[

−(u− α̂0)TZA−1ZA−1XTC d− dTCXA−1ZA−1Z(u− α̂0)

+(u− α̂0)T
(
ZA−1Z −ZA−1ZA−1Z

)
(u− α̂0)

]
. (C.18)

This integral can be calculated using (C.13) and finally one obtains

EU(d, ξ) = ln

√
detA

det Â
− 1

2σ2
Tr(A−1ξξT ) (C.19)

+
1
2
dTCX

[
Â
−1
−A−1 −A−1ZA−1

−Â
−1
ZA−1ZA−1 −A−1ZA−1Z Â

−1

+Â
−1
ZA−1Z Â

−1
− Â

−1
ZA−1ZA−1Z Â

−1
]
XT C d

+
1
2

Tr
(
Â
−1
ZA−1Z

)
− 1

2
Tr
(
Â
−1
ZA−1ZA−1Z

)
.

Using the identities [46]

(
Â+ β ggT

)−1
= Â

−1
− β Â

−1
ggT Â

−1

1 + β gT Â
−1
g

(Sherman-Morrison formula) (C.20)
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and
det
(
Â+ β ggT

)
= det Â

(
1 + β gT Â

−1
g
)

(C.21)

as well as the expressions for Â, A and Z one gets the final result for the Expected Utility:

EU(d, ξ) =
1
2

[
log (1 +G)− G

(1 +G)2

]
; G =

ξT
(
XT CX

)−1
ξ

σ2
. (C.22)

127



128



Appendix D

Post-submit Changes

This chapter documents the modifications of the thesis after submission to the faculty.
Please note, that all changes are only corrections of typing or compiling errors, not of the
content. All calculations and their results as shown in the figures are correct, if no further
statements are made.

July 16th, 2007

• Reference [79] was changed from ”to be published” to ”submitted”.

• In equations (C.2) and (C.3), a minus sign was missing: exp
[
−1

2 . . .
]

July 18th, 2007

• The term (D − ξTα)2 was missing in equation (C.11) (LATEX- typo).

• In equation (C.13), G and H were interchanged (LATEX- typo).

• A typo in the final EU for DAP (eq. (6.10) and (C.22)) was corrected, in the

submitted version, the (. . . )−1 was missing: G =
ξT (XT CX)−1

ξ

σ2 .

July 19th, 2007

• In equation (6.9), α was changed to α̃ (according to equation (6.5)).

July 30th, 2007

• According to the correction of equation (6.10), equation (6.12) was also corrected.
Here, figure 6.1 (b) and (c) had to be changed, too. The changes made were only of
quantitative nature (scale of the EU ), the conclusion given in the text are correct.

August 28th, 2007

• In figure 4.21, the markings S1 and S2 were exchanged.

December 12th, 2007

• In equation (6.21), squares are added to the αi terms according to the error propa-
gation law (LATEX- typo).

I would like to thank all colleagues who pointed out these errors to me.
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