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Abstract: One of the main problems in fusion research is to understand the dynamics
of heat transport in a tokamak plasma. In certain scenarios the heat flux suddenly is
much larger than predicted by classical theory, ‘anomalously’ large. In this paper we
investigate a mathematical model for the onset of ‘anomalous transport’ as suggested by
measurements in tokamaks.

We consider a quasilinear heat equation with a heat conduction coefficient that depends
piecewise linearly on the gradient of the temperature. The local non-differentiability of
the coefficient gives rise to a moving front. Assuming a solution given, we investigate its
smoothness and the properties of the front. Also, an ODE for the velocity of the front is
derived, which leads to a front tracking technique. Then we prove existence of a unique
solution, under assumptions suggested by the investigation of the front. We also give two
families of parameter dependent exact solutions of the equation.
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1 Introduction

One of the main problems in fusion research is to understand the dynamics governing the
heat transport in tokamak plasmas. A tokamak is a torus-shaped device for confining
plasmas by magnetic fields [16]. In cylinder coordinates (r, ¢, z), the dominant magnetic
field is the axisymmetric toroidal one, i.e. the one in ¢-direction. It is produced by external
coils. This field alone, however, cannot confine a plasma. An additional magnetic field in
(r, z) is necessary for equilibrium. This additional magnetic field is mostly produced by a
large toroidal current in the plasma, i.e. by a flow of electrons and ions in ¢-direction. The
combination of these fields results in helical magnetic field lines around the torus. Most
of them are everywhere dense on torus-shaped nested surfaces, the so called magnetic
surfaces.

Charged particles in magnetic fields cannot move freely, they have to gyrate along field
lines. Since the field lines in tokamaks have complicated helical structures themselves,
particle trajectories can be quite complicated. In addition, particles collide with each
other, and the collisions cause displacements and change the particle trajectories. These
displacements are random. Thus particles also diffuse across magnetic surfaces. Since
the particles take their energy with them, this causes a diffusive transfer of heat across
magnetic surfaces. This is essentially a one-dimensional process.

In certain scenarios, heat fluxes measured in tokamak experiments lead to transport
coefficients which are much larger than the ones expected from classical theory, especially
for electrons. Certain parameter scenarios lead to ‘stiff’ temperature profiles [11]: If
the electron temperature gradient exceeds a critical threshold value, the heat transport
increases in such a dramatic way that the then onsetting transport is called ‘anomalous’
by plasma physicists. A simple mathematical model for the onset of this anomalous
transport suggested by the measurements [11] is the following:

Mathematical model: Problem (P)

ou 0 ou\ Ou
% - oz ( X <£> %) + S(z), (1)
for (t,r) € Qr = (0,T) x (0,1) C IR?*, with

X(uz) = Do+ DiH(|ug| —n) (Juz| —n) (2)
u(0,2) = wuo(z), =z€][0,1], (3)
ug(t,0) = 0, ut,1)=0, telo,T], (4)

where

u represents typically the temperature,

x replaced the radius r: we slightly simplified the elliptic operator to eliminate
unimportant complications;



The Heaviside function H is defined as usually,

H(ul ) o= {

L |ug| > .

n > 0 is a parameter, the threshold value for u,, i.e. for the gradient of u. 7
is assumed to be constant. By 1 # 0 we exclude the degenerate case that the
threshold value is reached at the left boundary for all times.

Dy > 0, D; > 0 are constants,

S(z) > 0 is a source function. Especially meaningful for the anomalous heat trans-
port problem is

(z—2q)?

S(z)=See” & , z9€0,1], §>0, Sy=Const>0; (5)

Unless otherwise stated, the functions ug and S are assumed to be such that the
solutions of Problem (P) are as smooth as possible (for instance they will have to
satisfy the compatibility conditions (19) and (20)).

The heat flux is defined as

q(t, ) = x(us) uz = (Do + D1 H (] — 1) (|ua| = n))ta, (6)

and thus satisfies

DOU’IJ |uz| < 77
t,x) = -
alt, o) {%%+DM%%W%, g > .

It is easy to see that y and ¢ are piecewise linear and lipschitz-continuous as functions
of u,, and that d¢/0x depends continuously on z. As will be shown below, u,, typically
does jump at those (¢,x) where |u;(¢,z)| = . Thus Problem (P) should not be expected
to have classical solutions. In this paper we will focus on the non-smoothness introduced
by the corner in x, assuming all other quantities to have ‘adequate’ smoothness, i.e. to
be as smooth as possible. As will be shown below, it is adequate to treat Problem (P) as
a moving-free-boundary problem.

As far as we could see, problems of type Problem (P) are not treated in the mathemat-
ical literature - though there is a rich literature on free and moving boundary problems,
see [2, 3, 8, 10] and others.

In the classical book by Ladyzhenskaia et al [6], for instance, the following nonlinear
version of the Stefan problem is considered:
determine the temperature u:Qp — RT, Qp =(0,7) x D, D C IR", such that

a(u) uy = V(k(u)Vu)

in those (t,z) € Qr where u(t,z) #ug, k=1,---,m, (up:=0<wu; <--- < uy). Here
a,k : IR" — IR™ are smooth on each interval [uy_1, ux] and may have a jump discontinuity
at ug, k=1,---,m. On the interfaces S® := {(t,z) € Qr : u(t,z) = u;} the following
two conditions hold



i |u = lim w — lim wuw=0,
[ ”S(k) (t,z)eSH®) + (t,z)eSH) —

ii. by -n+[k(u)Vu] - nlguw = 0, where by, € IR" is a positive vector and n is the normal
to S*) along Vu;

and u satisfies some initial and boundary conditions
u(0,7) = ¥y(z), =z €D, u (t,2)|,cop =0, t€[0,T]. (7)

Typical for the multi-phase Stefan problem as well as for some other free boundary prob-
lems [3, 8, 10] are two conditions on the free boundary (on the interface) which are
sufficient to determine the motion of the boundary. The first condition usually imposes
constraints on the function values of the solution (like condition i.) while the second
one (condition ii., ‘Stefan condition’, ‘energy balance’) usually defines the motion of the
free boundary. In the anomalous heat transport problem, however, we only know the
threshold value of the temperature gradient. There is no a priori condition on an inner
boundary or on its motion.

In the dissertation [1], Problem (P) was treated under several different viewpoints:
mathematical properties of the equations were investigated; exact solutions were calcu-
lated; a front tracking algorithm for Problem (P) was developed, numerically analysed,
thoroughly tested on examples and compared to other numerical methods; and the re-
sulting numerical code was used to perform numerical simulations.

The developed basic numerical method AIM employs a method of lines [12, 15]: discretiza-
tion by finite elements transforms quasilinear parabolic equations/systems to a system of
ODEs; this system then is solved with a special adaptive time stepping. This method
proved to work well for classical quasi-linear parabolic equations. The newly developed
error estimates and the new strategy for the adaptive time stepping proved to be very
adequate: on the chosen test cases it is as good or even better than the time-stepping
based on the Kraaijevanger estimate [4], see [1, sections 4.1, 4.2].

When a free boundary (a non-degenerate front point xp with |u,(t, zr)| = 1, see below)
is detected, a newly developed explicit front tracking technique (FTT) is empoyed: the
FEM-discretization is refined in a small neighborhood of zg(¢) and Problem (P) is split
at xp(t) into two subproblems (P1) and (P2). On each side of the interface the AIM
approach is applied. In addition, an ODE is solved to track and update the position of
the front. This whole numerical method as developed and described in [1] proved to be
especially efficient on typical anomalous transport problems [1, section 4.3].

In this paper we give an enlarged version of the mathematical analysis of Problem (P)
and of the theoretical foundations of the front tracking technique developed for anomalous
transport. In section 2 we give the basic definitions: required smoothness of a weak
solution of Problem (P) , non-degenerate and degenerate front points. In Theorem 3.1
we assume that a solution is given, with a non-degenerate front point zgg in the initial
function. We derive an ODE for zp(t), zr(0) = xro and show the existence of a C-
function zp(t) in some non-empty time interval. In Theorem 4.1 we prove existence of a
unique solution under assumptions suggested by Theorem 3.1. Finally, in section 5, we



give two parameter-dependent families of exact solutions of eq. (33). Note that these exact
solutions satisfy only some, not all theoretical results of the foregoing sections because
they satisfy egs. (1), (2), but not the initial and boundary conditions (4).

2 Definitions

According to Ladyzhenskaia et al [6, Th.6.7, Ch.V], eqs (1), (2) with initial-boundary

0,1
conditions (7) have at least one weak solution u(t, z) EV3 5 ([0, 7] x D), the Banach space
obtained by completing the linear space of smooth functions

u:[0,T] x D — IR, u(t,z)|sp =0 for t € [0,T], [|u]| 001 < 00,
1%

3,2

under the norm [6, p. 465, p. 2ff]

1/2 T 3/3 1/3
2 3
[l 00; = fhax /\u(t, z)|*dx + / /|Ux(t, z)[2dx dt
D 0 \D

Because of the nonlinear heat conductivity coefficient and the discontinuity of its first
derivative w.r.t. u, at |uy| = 1. This result may be generalized to the mixed boundary
conditions of Problem (P) .

Having in mind that the heat conductivity coefficient for Problem (P) is a well defined
smooth function away from |u,| = 7, we will require more smoothness for the solutions
of Problem (P) in the following.

Definition 2.1. We say that a function v : B — IR, Qp C B C IR?, is a solution of
Problem (P) if: u € CY/2%2(Qr) for some o € (0, 1), u satisfies Problem (P) a.e.,
and ug, is defined and piece-wise continuous in Q.

Remark 2.1. If u is a solution of Problem (P) then u, € C'T%/%%(Qg), but in addition
Ugy 15 piece-wise continuous in Qr. Therefore ug is even Lipschitz continuous in Qp with
respect 1o x.

Definition 2.2. Let u=u(t,z) be a solution of Problem (P),n > 0 given.
zp € (0,1) is called (non-degenerate) front point at ¢ if |u,(t,zr)| = n and if both
lim g, (t,z) # 0 and lim Uz (t,x) # 0 . A point xp is called degenerate front

ZE—).’.EF z—)wF

point if |u,(t,zr)| =1 and lim ug(t,z) =0 and/or lim Uz (t,x) =0 .

JJ—).’EF Z‘—)I?F

Remark 2.2. There are two possible cases for front points zp € (0,1):
ug(t,xp) =n or ug(t,xp) = —n.



Remark 2.3 (Non-degenerate front points). At non-degenerate front points xp, |u|

crosses the line n monotonically and lim wug,(t,x) # lm wu.,(¢t,z). The size of the

jump of ug, will be given in egs. (18). Do we allow sign-changing jumps, as occurring for
instance for v(z,t) == n(x —zp) + (x — zp) |x — zp| for |n| < 29 As turns out in the
proof of Theorem 8.1, sign-changing jumps of uz, cannot occur at non-degenerate front
points of exact or accurately computed solutions, see eqs. (13). Thus there is no need to
take care of sign-changing jumps in Definition 2.2.

Remark 2.4 (Degenerate front points). At a degenerate front point in anomalous
transport problems |uy| might cross the line n at a saddle point or it might touch the line
n wn a local minimum or maximum.

e The case that |ug| crosses the line n at a saddle point was never observed in our
anomalous transport studies. It thus has not been investigated and is not considered
here.

o The case of touching of the line n at T at a local marimum or minimum, with-
out crossing, is possible and does occur in anomalous transport problems [1, item
‘Multiple front points’, p. 99ff]. It is important only if anomalous transport sets
in or ceases to happen at . In the first case it gives rise to two additional front
points for larger t, in the other case a pair of front points disappears. Both cases
are shown to happen in the example leading to [1, Fig.4.12, p. 100]. The two points
of type T themselves do not require any special action since there is no anomalous
transport at such points. In the numerical simulations, points and short intervals
where |uy| = n but |u,| does not cross the line n (i.e. points in a small neighbor-
hood of an extremum) are treated as non-front points. Numerical treatment of two

non-degenerate front points which are about 4 grid points apart is discussed in [1,
p. 101].

e What about |u,| = n in a closed subinterval [z, z] C (0, 1) with or without crossing
of the line 1 before and afterwards? In this case uz(t, ) = 0 in [z7, 2] and Problem
(P) reduces locally to the ordinary initial value problem

oS in 2 u(0.2) = wlo), ®
depending on a parameter x. It can be integrated analytically as long as an x-interval
with Uy, (t, ) = 0 exists. Special sources S(z) and initial conditions vy(z) will allow
such solutions. The sources relevant to the anomalous transport problem, however,
will not allow such x-intervals to persist. Though the case of Turing bifurcations [7/
1s mathematically interesting, we will not enter this field here since it is irrelevant
to anomalous transport.

In the proof of Theorem 2.1 we will apply the Generalized Implicit Function The-
orem of Clarke. We thus introduce it here, together with related definitions.



Let f : IR™ — IR™ be locally Lipschitz continuous in a neighborhood of some = € IR™.
Then f is almost everywhere differentiable near = (Theorem of Rademacher). Let D; C
IR™ be the set where f is differentiable. Then its generalized Jacobian in the sense
of Clarke at the point z € IR™ is given by

k>

df(x) := conv {A € R™™: A= lim Df(z"), 2¥ € Df} 9)

where Df(z*) is a classical Jacobian at z* € Dy and conv(B) denotes the convex hull of
the set B. Note that the generalized Jacobian is a set.

Now let H : R™ x R" — IR", (y,z) — H(y,x), be locally Lipschitz and let 7,0H (y, x)
be ‘the projection of 0H (y,x) onto the z-space’, i.e.

T 0H (y,z) := {M € R™™ : matrix [N, M] € 0H(y,z) C JRPX(mn)
for some N € R™™ }. (10)
Let m,0H (y, z) be such that [7,0H (y, x), 7,0H (y,z)] = 0H (y, ).
Then the implicit function theorem due to Clarke is:

Theorem 2.1. [14, Th.1.1]:

Suppose that H : IR™ x IR™ — IR™ s a locally Lipschitz function in a neighbourhood of
(7,%), and that (§,z) solves H(g,z) = 0. If m,0H(y,Z) is of mazimal rank, then there
exist an open neighbourhood Y of § and a function G(.) : Y — IR™ such that G is locally
Lipschitz in Y , G(y) =T and for everyy €Y , H(y,G(y)) = 0.

3 Properties of the front for a given solution

1
Theorem 3.1. Let u be a solution of Problem (P) on [0,T]x(0,1] and let 8/t [ w(t,&)d§
0

be bounded. If there exists a non-degenerate front point trg atty = 0 with |uz (0, zro)| =7,
then there are an interval [0,T*) C [0,T] and a C'-function xr(t) on [0,T*) such that
xr(t) is a non-degenerate front point for every t € [0,T*), satisfying

ug(t, xr(t) =n sgn(uy(t, zry)) and zr(0) = zFp. (11)

Moreover, define s;(t,z) := 0/0t (fmS(f) — u(t, §)d§> . Then
0

: St(ta ‘TF) . St(t, $F)
| wlt,x) = ———=, | a(t,r) = ———7— 12
”C—’ICI”I;_ tat(t, @) D, w—:cIvI;Jru (t,7) Dy + Dy (12)
and
t -5
hm U';u;u(t, .T) _ _ut( axF) (xF)’
T—Tp DO
) u(t,zp) — S(zr)
Iim vz (t,x) = — : 13
g tee(h0) Do+ Din (13)



The wvelocity of the front point is given by

—St(t, .TF) _ _uz‘t(t: xF)

Ut(t, $F) — S(l‘F) o um;(t’ l"F) ) (14)

dn(t) =

Proof: Assume that there exists a non-degenerate front point zpy at ¢, = 0 with
|uz(0,2F0)| = n. Without loss of generality we consider the case

u5(0,250) = 7. (15)

From our assumptions follows lim, Saz Ugze(t, ) # 0 and lim, St Uge(t, ) # 0 and u, €

C'*e/22(Qr). Tt also follows that u, is Lipschitz continuous w.r.t. = (Remark 2.1) and
thus that u, is differentiable a.e. w.r.t. = (Theorem of Rademacher [14]). We cannot
apply the classical implicit function theorem [13, p. 658] which would require u, to be
continuously differentiable w.r.t. all variables, but we can apply its generalization to a.e.
differentiable functions: Clarke’s Theorem [14], Theorem 2.1. The generalized Jacobian
(9), for our particular case, has the form

Of := conv{(ug(t, 15), Ugz(t, 15))", (uge(t, TF), uze(t, 2H))' T

Then 7,0f consists of all 8 € IR such that for some v € IR the vector (v,3)" € 9f.

Since we assumed lim wug.(t,z) # 0 and lim ug.(¢,2) # 0 the condition ‘m,0f has
T=Tpn :v—)aclt

maximal rank’ is satisfied and we can apply Theorem 2.1. Thus there exists a one-sided
open neighbourhood [0,7%*) of 0 and a function zp : [0,7*) — IR such that zy is locally
Lipschitz in [0, T%), zp(0) = zpo and u,(t, zp(t)) = 1.

In order to avoid working with the implicit equation (11) for z(t) we derive an equation
for the velocity of the front point. To this end we compute the flux, defined by (6), at
the front point

q(t,zp) = Douy(t,xp) = Do 0 - sgn(uz(t,xr))

and take the derivative with respect to the time. We get

0= ) )

Integrating Problem (P) with respect to z in the interval [0, 2] we obtain

Doug + D1 H (|ug] — n)(Jug| — n)us +s = 0,

where s(t,x) := | S(€) — u(t, §)d€. Differentiating with respect to the time ¢ we get

Ct—=a

(Do + D1 H ([ug| =) (2[ue| = n))tar + 51 = 0. (17)

The values of u,; at the front point are given by

: st(t; xF) . St(t, :cF)
1 tz) = —2bTr) 1 by = —Sbar)
z—:i‘r;* uwt( ’ -,L') DO ’ w—:irpl+ umt( ’ x) DO + Dln



Taking into account the values of u,, at zp,

) ui(t,zp) — S(zp) . u(t, vr) — S(zr)
1 vz () = - ) 1 2z (s = - )
Jm_ v (t, ) Dy Jm v (t, ) Do + D1

we finally get that
_St(t; '/L‘F)
u(t,zr) — S(zr)’

ITp =
which implies that 2z is continuous.

T*, the duration of existence of the solution of (16), depends on the maximum of g
(Peano’s existence theorem [5, pp. 10]: T* = min(¢ O

1
’ max|a':F|))'

4 Existence of a solution for given data

In Theorem 3.1 we investigated the properties of the front zx(t) for a given solution. Now
we will investigate existence of a solution of Problem (P) for given data. We make the
following assumptions:

Assumptions 4.1. :
e the initial function uy belongs piecewise to C***, ie. for 0 < z < xpqy and for

zro < x < 1; ug has exactly one non-degenerate front point xro € (0,1), i.e. it
satisfies |ugx(xro)| =n and the jump condition (13),

Dy lim  uu(0,2) = (Do + Dy 1) lim  wug,(0,2) # 0; (18)

T—TF,0~ z_)wF,0+

e the source S belongs to C***([0,1]);

e atx=0andx =1 ug and S satisfy the compatibility conditions of zeroth order

ug(0) = 0, up(1) =0, (19)
and of first order
%((D0+D1H(|u6| —n)(Jugl —n)uo) _1+S(1) =0 (20)
55 (@04 Dt =)y =) )| +50) =0

e the source function S satisfies

| < P+ ),

P00

where P(p) > 0 is continuous, P(p) "= 0, and e > 0 is sufficiently small,
€= S(Ma v, W, Mlamf«gip(P))
p>



If these assumptions are not satisfied for £ = 0 but for t = ¢, we simply transform
t =1 —t,.

We split Problem (P) into two subproblems (P1) and (P2) defined as

(% = % 4 S(z) = a(|ug|)uze + S(x), 0<z<zp(t), t>0,
u(0,z) =up(z), 0<z< xR,
ug(t,0) =0, t>0,

L uz(t, 2p(t) = vog(®ro), |voz(Tro)=n, t>0,

(P1) : 4

and
(0 — %9 4 G(3) = a|uy|)uge + S(x), Tp(t) <z <1, >0
u(0,2) = ug(x), zpo <z <1,

Us(t, zp(t)) = wou(zrp), [Uos(zre)l=n, >0,

\ u(t,1) =0, t>0,

with flux defined by

(P2) : 4

t =Dt z Uz = ’ ’
q( 7~T) ( L, U )’LL { (DO —{—D1(|U:;g| — n))uxa ‘U’ﬂ?| > UE

or for the non-divergence representation

. D07 |u$‘ S 777
alfual) = { Do+ DyQlus| — 1), |ugl > 1. (22)

Theorem 4.1. Let Problem (P) be given with data satisfying Assumptions 4.1.

1. Let zp(t) € C'([0,T]) be any function satisfying zr(0) = Ty and 0 < zp(t) < 1.
Then (P1) and (P2) possess in [0,T] unique classical solutions u™(t,z) and u*(t,x),
respectively.

2. Let xp(t) >0, u (t,z) and u™ (¢, z) solve the nonlinear system (P1), (P2) and

brlt) =~ 2r(0) = o 23

fort € [0,T]. Then
 fu(tx), z€[0,zF]
ult, ) := { ut(t,x), z € [zp,1],

is the unique solution of Problem (P) in [0,T].

(24)

A related theorem was proved in [1] under the additional assumption that the front
zr(t) € C1[0,T] is known a priori.

In the numerical code accompanying [1], first (P1) and (P2) are advanced in time, then
eq. (23), and then the grid is adjusted (grid refinement in a neighborhood of zr(t;11)).
Numerical details are given in [1, p. 61ff]. Note that eq. (23) is equivalent to eq. (14), but
more convenient in computations. This approach is supported by Theorem 4.1.

10



Proof: 1. Assume that zp(t) is any function with the mentioned properties. Then
problems (P1) and (P2) possess classical solutions. This is shown in [1] by applying
classical results from chapters IV and VI in [6]. The details of the proof are not repeated
here because it is standard. A full text may be found in [1, Chapter 3.

2. Now assume that zp solves (23), u~ solves (P1), and u™ solves (P2). We have to
show that u™ (¢t,zr(t)) = u*(¢t,2r(t)) and that zz(t) and thus u(t,z) are unique. Let
€ > 0 and consider

up(t, ) = allual, e)ug,(t,x) + S(x), (25)

where

Ty(20 — ).

Then a(v,e) — a(v) for e — 0: We can represent a as a(v,e) = a(v) + f(v, ), where

1 1
a(v,e) = Doy + D1(§ + - arctan -

Di(2v —n)(% + tarctan =),  w<np
f v,€) = { 2 T 5 7’ ’
(v,€) Di(2v — n)(—3 + ~arctan 1), v >,

and D1 (2v=n) ’
2 V= —
fi(v,e) = D1+ Zarctan =) + 25 Honfom v <n
w\Vs Dy(—1+ 2 arctan 221) 4 21Cvn) T U

Both f and f] go to zero for ¢ — 0 and v # n. Note that the function f is uniformly
continuous in ¢ since it is defined and continuous for any ¢, including large ¢; and

€ oo D1(2v —
flo.e) < £ D)
the sign depending on v. We solve
ui = al|lug|,e)us, +S(), 0<z<zp, t>0 (26)
u?(0,z) = wug(x), 0<z<zp,
u(t,0) = 0, t>0,
|u§:(t’xF)| = t >0,
and
up = a(|ugl,e)us, +S(x), zrp <z <1, t>0 (27)
u?(0,z) = wug(x), zp <z <1,
w(t,1) = 0, t>0,
uz(t,zp)] = m,  t>0.

Each of these problems can be transformed such that z € [0,1] (we have done this in
more details, later on in the proof, for equations (28) and (30)). In this way, the function
xp enters in the main equation. The coefficient @(v,¢) is Hélder continuous in v with
a constant «, and according to [6, Ch.IV, Th.5.3] problem (26) has a unique solution
in the class C'**/22+2([0,T] x [0,2r]). Problem (27) has mixed boundary conditions

11



and Theorem 5.3 in [6, Ch.IV] is not directly applicable. However, Theorem 5.1 [6,
p-170] combined with Theorem 12.1 [6, p.223] assure that the mixed boundary problem
(27) has a unique solution in C'**/22+2([0, T] x [z, 1]), for 0 < a < 1, provided that
C~L, S e Ca/Z’a(QT).

Now, let us consider the difference between the solutions of (26) and (P1), w™ :=
u® —u , and the corresponding differential equation satisfied by it,

wy = af|uz)wgy + f(Jual, €)uze, 0 <z <zp(l),
(28)
w(0,z) = 0, w, (t,0) = |w, (t,zr)| = 0.

We map the interval [0, z7] to [0, 1] through z +— ¢ = ;= In terms of this new variable
the problem reads

_ 1 - uel .
e = W(Dowss + f(g’s)“&)a 0<&<L, t>0 (29)

w(0,6) = 0,  wg(t,0) = [wg (£,1)] = 0.

Again according to Ladyzhenskaia et al [6], problem (29) possesses a unique solution if
the coefficients making up the problem belong to the class C*%®. For the coefficient
in front of wg, this is true because of the continuity of zr(¢). In order to prove that
mf(%md,s)ugg belongs to the class C%%% we need that ugee and ug, exist and are

continuous. To argue for this we use the fact that the solution of (26) belongs to the class
CB+e)/23+a gince the coefficients making up the equation possess a greater smoothness.

Because problem (29) has a unique solution and f(v,¢) “2° 0 uniformly, it follows that
the solution of (29) goes to the zero solution for £ — 0, i.e. u(t,z) = u™ (¢, z).

Similarly, we proceed with the interval [z, 1]. We define a function w* (¢, z) in [0, T] X
[xp, 1], such that w™ = u®(t,z) — u™(¢,x) and it satisfies the problem

w;— = a’(lul‘Dw:z + f(|u$|7€)u;x7 Tp <T < 17
(30)
wt(0,z) =0, wi(t,zp) =wt(t,1) = 0.
We transform this problem into [0, 1], through & = %, and obtain a linear parabolic
problem
1 U U
+ 3 + (3 €
= —_— O0<éxl
wi = o (A g F e ) o<

(31)
wt(0,€) = 0, wg (t,0) = w*(t,1) = 0.

We use similar arguments as in the previous case. According to Ladyzhenskaia et al,

problem (31) possesses a unique solution if (1_;F)2a(| (1fip) |) and mf(hf—iFL €)uge
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belong to C®/%®, For the latter we use the same arguments as in the previous case. The

Holder continuity of the term in front of wé follows from the boundedness of ugg, ug, and

a,. In this way we get that problem (30) possesses a unique solution and w*(t, z) 20 0.

Now, let g : [0,7] — IR and
g(t) = u(t,zr(t)”) — v (t,zr(t)7) (32)
By taking the derivative of (32) with respect to ¢ we obtain

dg(t . .
WU (e, (07) + iy — it 2o (0)) — i

Because of 2 = 77 and the continuity of u on the interface we get

dg(t)
—= = 0.
dt
In addition, g(0) = 0 leads to g(t) =0, i.e, u*(¢t,2r(t)") = u®(t, zx(t)"). The same is true
for u(t,zp(t)”) = u(t,zr(t)"), for ¢t € [0, T].

We now show that the function u defined by (24) is a solution of Problem (P) according
to Definition 2.1. The functions u and u, are continuous since u~ € C'+/22+e ([0 T x
[0,2r)) and ut € C'Te/22+2([0,T] x (xp,1]) and for every fixed ¢ € [0,77] it holds that
u (t,zp(t) = ut(t,zr(t)) = u(t,zp(t)) and u, (¢, 2r(t) = ul (t, 25 (1) = us(t, zr(t)) =
ug (r(0)). Furthermore, u,, is continuous everywhere except at the front point zp(?).
Now all we need in addition is to show that u satisfies Problem (P) . Indeed, that is the
case, because for every fixed ¢t € [0,7], u(t,z) = v (t,z) for z € [0,zp(t)] and v (¢, )
is a solution of (P1), respectively (P) in that interval. Similarly, in [zp(t),1] it holds for
every fixed ¢ € [0,7] that u(t,z) = u*(¢t,z) and u™(¢,z) is a solution of Problem (P2),
respectively Problem (P) in the corresponding interval.

This shows existence and uniqueness of the solution xr(t), u(t,z) of Problem (P) for
given solutions of the system (P1), (P2) and (23). Assume that the system (P1), (P2) and
(23) has a second solution for the same initial and boundary data as zp(t), u(¢,z). Then
the above proof leads to a second solution yr(t), v(t, z) of Problem (P) . Note that u(t,z) =
v(t,z) iff xp(t) = yr(t). Let us assume that zp(t) # yr(t). Then there is a smallest
t € [0,T] such that r(t) # yr(t). Without restriction we may assume that this happens
for ¢ = 0. But this is impossible because % (0) and §r(0) are both completely determined
by the same initial and boundary conditions and the same differential equation. O

5 Parameter dependent families of exact solutions
In this section we describe two families of exact solutions of
ou 0 ou
5 = 92 (( + D1 H (ug — n)(uy 77))83:) , 0O<z<1l, t>0 (33)
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This is eq. (1) with S(z) =0 and Dy = 1. In addition we assume D; and 7 to be given.
Assuming that the initial function ug(x) in eq. (3) is such that

Oug

5, @r(0) =1, (34)

we use the front tracking idea and decompose eq. (33) into two sub-equations (P1) and

(P2):

"7l (1 +2Dyug — Din)ug,, Ugp > 7). (P2)

This allows us to derive exact solutions of (33). We found two families of parameter-
dependent exact solutions for given D; and 7. Note that additional families of solutions
may be found by varying Dy, Dy and 7 as well.

Lemma 5.1. Let Dy > 0 and n be given. Let A and C' > 0 be parameters satisfying
A+2C*Dit <n<C+ A+2C*Dit for 0<t<t (35)

for some t; > 0. Then

2D 4CD? 2C =

u(t 3;) - Dln—l(x+ %) + D17)+1(62D1(Cz+2D102t+A—n) _ 1) + n2—A2? ug <
T Ca? +203D1t* + 2C* Dzt + Az + C(1 — Din+ 2AD1)t,  uy > 1

defines a family of solutions of equation (33).

Proof: A simple calculation shows that u(t,z) solves eq. (33) and that the length ¢;
of the time interval depends on the relative size of the parameter C'. These solutions were
obtained by matching the solution of (P1) at the front point zp € [0,1] to a polynomial
in z and ¢ that solves (152). Finding these solutions was by far not as easy as verifying
them. Details are given in [1, p. 52f]. O

Example 5.1. Choose D; =1, n=3, A=2 and C = 1. Then eq. (35) is satisfied for
0<t<1, and eq. (86) simplifies to

exp? =2 g 4 3, Uy <1,

37
T 122 4 2w+ 20+ 2, uy > 7). (37)

u(t,z) = {
A front point xp exists in (0,1] for tp € [0,1/2) and satisfies 2zp + 4tp —2 = 0. A
numerical approzimation to this solution' and to its gradient are shown in Fig.1 for three
different times t; < 1/2. The magenta curves correspond to the solution of (P1) and the
blue curves to the solution of (P2), resp.

LAfter calculating the initial and boundary values of u from (37), u(t,z) was obtained numerically
with the code described and analysed in [1].
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Figure 1: Solution (37) (left) and its gradient (right) for times ¢; = 0.04,0.25,0.45; [1,
Fig.4.3, p.90].

Lemma 5.2. Let D, > 0 and n be given. Let K > 0 and o > 0 be parameters satisfying
1-6(K—1)
N< ——7—
6D, (K —t)
for some ty, t1 with ty > ty. Then

U(t,a:) ::{ (K—t) f(Kzt) Uy, <N

z83 z(D1n—1)
D K—t) T ap; o Us 2T

fOT t() S t S tl, (38)

(39)

defines a family of solutions of eq. (38). Here f(.) is a solution of the Confluent Hyper-
geometric Equation. It is defined by

= by 1\ Fy (=, 1/2,€) + byU(—a, 1/2 - _ _TF
FE)=bi1Fi(~a,1/2,) + boU (=0, 1/2,8), €=, &r =5,
where .
['(c) -1 —a—1
Fi(a, ¢, 8) = =———2—— [ 71 (1 — ) at (40)
F(c—a)F(a)O/
and -
((LCf FL/ —ftta11+tca1dt (41)
0

The coefficients by and by are defined by the conditions

1/2—a (2D1n — 1)/6(Din + 1)

S = (K= o ,

, _ Ui
f'(&r) = 2K — t)e-1/2 6(D1Tl+1).

Proof: A calculation shows that u(t, z) solves eq. (33). This second family of solutions
was obtained by matching the self-similar solution of the heat equation (P1) to a solution
of eq. (P2) using an ansatz u(t,z) = fo(t) + xfi(t) + ‘”2—2f2(t) + %sf;;(t). This leads to
differential equations for f and the f;, 1 =0,...,3. Details are given in [1, p. 54f]. O
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Example 5.2. Choose D; =10, n =0.1, K =1 and o = 1. Then eq. (38) is satisfied
11

for ty = % <t <1, 5 ~0.91666. The corresponding solution is plotted in Figure 2 at

times t; = 0.938, 0.97, 0.99.

0 0.2 0.4 0.6 0.8 1
X

Figure 2: The exact solution (39) for D; = 10, n = 0.1, K = 1 and o = 1 at times
t; = 0.938, 0.97, 0.99
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