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Abstract

The paper investigates the momentum balance of a multi-species plasma in a cylinder
with helical magnetic field. The main magnetic field is oriented in the z-direction. Starting
from the macrocopic equations, a steady-state solution is obtained which includes the effect
of centrifugal forces and Coriolis forces. The poloidal rotation and axial flow of each particle
species is governed by the balance between spin-up, viscous damping, turbulent forces and
the v × B driving term. In cylindrical geometry, classical viscous effects are very small
and can easily be dominated by the turbulent viscosity. The effect of turbulent Reynolds
stresses and the turbulent viscosity is investigated. Under quite general assumptions about
the dependence of the anomalous transport coefficients on the velocity shear, criteria on the
existence of the bifurcation points and multiple solution can be formulated. The shaping of
the velocity shear and the transport barrier depend strongly on the eddy viscosity. Numerical
solutions of the differential equations for a two-component plasma support the analytical
results. The viscosity is considered as a variable parameter simulating the effect of turbulent
eddy viscosity. These computations will be compared with the experimental results found in
the HDH-mode experiments in Wendelstein 7-AS.

1 Introduction

Plasma rotation during L-H-transition is one of the most interesting issues in toroidally confined
plasma, since it has been experimentally found that improvement of plasma confinement is
accompanied by onset of rotation. Many theories have been developed in order to explain this
phenomenon; many of them invoke the bifurcation of electric fields as one of the key elements
in LH-transition. Hinton and Staebler [1] proposed a cylindrical model where the anomalous
transport coefficients non-linearily depend on the velocity shear allowing for bifurcating solutions
of the transport equations. This model has been succesfully applied to DIII-D where the H-
mode density barrier can be understood on the basis of this theory [2]. In a quiescent and
stable plasma, neoclassical transport exhibits a non-linear dependence on the radial electric
field which gives rise to multiple solutions and bifurcations. The wide spectrum of theories
concerning LH-transition has been described in the review paper by Connor and Wilson [3].

A major problem in investigating this phenomenon theoretically is the toroidal geometry
which makes a mathematical treatment difficult and forces one to make truncations and ap-
proximations of the non-linear momentum balance equations and the equations of continuity. In
particular, when impurity ions and the inward diffusion of these contribute to the momentum
balance a system of coupled differential equations must be handled. Magnetic pumping is the
result of viscous dissipation and in this respect tokamaks and stellarators strongly differ. In
tokamaks only the poloidal asymmetry leads to magnetic pumping while in stellarators the joint
effect of poloidal and toroidal asymmetries cause resonance effects and a strong dependence on
the rotational transform [4],[5]. In a torus, the inertial forces, which are the key element in the
Stringer spin-up [6], provide a coupling between the poloidal and toroidal rotation which has its
source in the Coriolis force. In the physics of the atmosphere, Coriolis forces play a large role
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in the formation of cyclones and hurricanes [7]. Also, Rossby waves, which often are invoked as
a paradigm of drift waves are governed by Coriolis forces.

In general toroidal geometry, and in particlar in view of stellarator geometry, this role of
inertial forces has been investigated in [8] including the effect of anomalous transport. Thus,
in toroidal geometry there are at least three candidates for driving poloidal and toroidal rota-
tion: Stringer spin-up, lost orbits and their recoil effect on the plasma and turbulent Reynolds
stresses. Reynolds stresses drive zonal flow which provide a feedback on the turbulence and
reduce anomalous transport [9] [10].

In this respect a cylindrical geometry offers some advantages since due to the inherent sym-
metry several effects can be excluded. In such a cylindrical model, there are no poloidal asymme-
tries, no geodesic curvature, no Stringer spin-up, no Pfirsch-Schlüter currents, no banana orbits
and no neoclassical effects. However, in cylinder geometry the plasma can grow unstable by
gradient driven drift waves leading to zonal flow and anomalous transport. The frequently used
models of drift-wave turbulence, the Hasegawa-Mima equation [11] and the Hasegawa-Wakatani
equations are written in slab geometry. Several models of LH-transition are treated in slab
or cylinder geometry. To a large extent cylindrical geometry can be handled without dubious
orderings and approximations, which does not mean that no approximations are needed.

In our cylindrical model we should like to distinguish between tokamaks and stellarators. A
tokamak has a toroidal current which produces a poloidal field and helical magnetic field lines
while in stellarators without toroidal current we may neglect the poloidal field and restrict the
magnetic field to an axial field.

This paper is motivated by the discovery of the HDH-mode in Wendelstein 7-AS [12][13][14]
[15] where the density profile changes from a peaked profile to a flat profile in the center and
strong gradients at the boundary while the temperature profile stays nearly unchanged. In the
HDH-mode, the confinement time has increased significantly. Apparently the energy balance
does not play a significant role during this transition and for this reason the energy balance has
been dropped in the following analysis. The temperature is considered as a given function in
the analysis; the numerical computation is restricted to the density profile and the radial elecric
field. The equations underlying these computations may be considered as a modified Hinton-
Staebler model. However, in this paper an attempt will be made to present a more rigorous
derivation starting from the momentum balance and the equations of continuity of a multi-
species plasma. The cylindrical model cannot explain why the transition into the HDH-regime
only occurs in specific regimes of the rotational transform. This effect can be attributed to the
strong dependenc of viscous damping on rotational transform and magnetic islands, which is a
clear toroidal effect [5].

The paper is organized as follows. In section 2 we formulate the momentum balance equations
for a multi-species plasma and discuss the dissipative processes and in section 2.1 the linear
theory of resistive drift waves is formulated. The spin-up equations of poloidal and toroidal flow
on magnetic surfaces will be formulated in general toroidal geometry employing the Hamada
coordinate system (section 2.2). The Reynolds averaged equations (section 2.4) include the effect
of turbulence and in section 4 a closure of the equations is proposed. Applying these equations
to a cylindrical plasma in a helical magnetic field leads to a coupled system of differential
equations for the poloidal velicities and axial velocities. Conditions of bifurcation are treated in
section 4.1. The radial force balance allows one to compute the density profile and the radial
electric field. In section 6 the numerical results of a two-component plasma will be presented.
These computations in section 6 simulate the high density regime (HDH-regime) found in the
Wendelstein 7-AS stellarator.
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2 The momentum balance

The starting point of our analysis is a turbulent plasma which has become unstable due to
electrostatic modes - resistive drift modes, resistive interchange modes or ITG-modes etc. We
neglect magnetic fluctuations which may be justifield in a low-beta plasma. The turbulence has
grown to a finite level of fluctuation and the resulting anomalous plasma losses are balanced
by finite source terms maintaining the plasma gradients and the stationary turbulence. We
assume zero momentum source to the plasma thus avoiding a situation where plasma rotation
is excited externally. Such a model applies to ECR-heated plasmas or plasmas with balanced
NB-injection. The momentum balance equations of the multi-fluid model are

∂

∂t
mknkvk +∇ · Sk = qknk(E + vk ×B) + F k ; k = 1, . . . K (1)

Here k is the index of the particle species with charge qk and K is the number of charged states.
The index k = K denotes the electron equation. In a hydrogen plasma K is 2, in a fusion
plasma K is 4. In a plasma with impurity ions this number may be rather large since k runs
over various impurity species and over the ionization stages of the impurities. The stress tensor
is Sk = pkI + πk + mknkvk : vk. pk is the scalar pressure, πk the anisotropic component of the
pressure tensor and mknkvk : vk is the inertial component of the stress tensor. Scalar pressure
and density are linked by the ideal gas law pk = nkTk. F k is the friction force caused by Coulomb
interaction between charged particles [16]. They are linear functions of the velocities

F k =
∑

i

lki
11vi ; lki

11 = aki −
∑
j

aijδik ; aik = nimikνik = aki ; lki
11 = lik11 (2)

and because of the momentum conservation of Coulomb forces the sum over all friction forces is
zero (

∑
k F k = 0). The positive coefficients aik are proportional to the collision frequencies and

symmetric. mik is the reduced mass. The collision frequencies νik are continuous and bounded
if the density and the temperature are continuous and bounded. A more exact expression of
the friction force contains the heat fluxes q, however the linear dependence on the heat flux
vector will not be included here since this would imply including the energy balance and the
heat flux equations. The terms ∇ · πk are the viscous forces which in the collisional regime
are described by the Braginskii viscosity [17] and in the long-mean free path regime by the
neoclassical viscosity. The Braginskii viscous operator is a differential operator on the velocity
vk, however, later theories have added another term depending on the heat flux [19][48][21].
Together with the equation of continuity

∂nk

∂t
+∇nkvk = Sk (3)

the force balance can also be written

∂vk

∂t
+

1
2
∇v2

k − vk ×
(
~ωk + ~Ωk

)
+ Skvk = − 1

mk

(∇pk

nk
+ qk∇Φ

)
+

1
mknk

(F k −∇ · πk) (4)

~ωk = ∇× vk ; ~Ωk =
qkB

mk
; E = −∇Φ (5)

The operator ∇× ...yields the reduced vorticity equation

∂~ωk

∂t
−∇×

(
vk ×

(
~ωk + ~Ωk

))
= − 1

n2
k

∇pk ×∇nk (6)

where we have neglected the source terms and the dissipative terms. These equations de-
scribe also the Rossby waves if one identifies ~Ωk with the vorticity of the planet and makes
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the barotropic approximation pk = pk(nk) and ∇ · vk = 0 (k = 1). In a plasma, however, the
equation of continuity and compressibility are important and together with the approximation
(6) the following conservation law of ”potential vorticity” [11] holds

nk
d

dt

(
~ωk + ~Ωk

nk

)
= ((~ωk + ~Ωk) · ∇)vk −

1
n2

k

∇pk ×∇nk ;
d

dt
=

∂

∂t
+ vk · ∇ (7)

which generalises the well-known vorticity equation of incompressible hydrodynamics. The right
hand side is the origin of vorticity stretching [23], which in 2D geometry does not occur. This
equation is the basis of the generalised Hasegawa-Mima equation [11] describing the turbulence
of resistive drift waves. The issue being addressed in the following is the spectrum of drift waves
in a multi-species plasma.

2.1 Drift waves

In the following we focus the analysis on electrostatic drift waves in a time-independent magnetic
field. Furthermore we neglect all dissipative mechanisms and the particle source terms. These
will be included later on. The first step is to eliminate the electric potential employing the
condition of quasi-neutrality. We return to the force balance (4) and write the pressure gradient
as

∇pk

nk
= ∇(Tk ln

nk

n0
) + (1− ln

nk

n0
)∇Tk (8)

Defining the generalized potential Pk

Pk = Tk ln
nk

n0
+ qkΦ =⇒ nk = n0 exp

(
Pk − qkΦ

Tk

)
(9)

makes the density a function of Pk, Tk,Φ. n0 is a k-independent reference density. The quasi-
neutrality requires

H(Pk, Tk,Φ) =
∑
k

qk exp
(

Pk − qkΦ
Tk

)
= 0 (10)

and because of

∂H/∂Φ = −
∑
k

q2
knk

Tk
< 0 ∀Pk and Tk > 0 (11)

this non-linear equation has always a unique solution Φ = Φ(Pi, Ti), i = 1, 2....K. In a two-fluid
model this inversion can easily be done analytically. Eliminating the electric potential this way
makes the density a function of Pi, Ti and the time derivative of the density is

∂nk

∂t
=

nk

Tk

(
∂Pk

∂t
− qk

∑
i

∂Φ
∂Pi

∂Pi

∂t

)
(12)

From Eq. (9) and (11) we get

∂Φ
∂Pi

=
1
M

qini

Ti
; M =

∑
k

q2
knk

Tk
Aik :=

nk

Tk

(
δik −

qkqini

TiM

)
(13)

and define the symmetric matrix Aik. This matrix is singular; the vector z = {qi} solves the
homogeneous equation Az = 0. However, the matrix is positive semi-definite which follows from

∑
ik

AikδPiδPk =
∑
k

Tk

nk
(δnk)2 ≥ 0 (14)
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In terms of the generalized potential the equations of continuity are

∑
i

Aik
∂Pi

∂t
+∇ · nk(P1, ...PK)vk = 0 (15)

This equation advances the generalised potentials in time if the orthogonality condition is sat-
isfied. This is nothing else but ∇ ·

∑
k qknkvk = 0. After eliminating the electric potential the

reduced force balance equation is

∂vk

∂t
+

1
2
∇v2

k − vk ×
(
~ωk + ~Ωk

)
= − 1

mk

(
∇Pk + (1− ln

nk

n0
)∇Tk

)
(16)

The temperature Ti(x) is a time-independent given function. A basic question is now: Is
this system a well-posed initial value problem? Do the equations of continuity advance the
generalized potential in time? Because of ∇ ·

∑
k qknkvk = 0 the orthogonality condition is

satisfied and the system Eq. (15) inverted with respect to the time derivatives of Pk. Given the
generalised potentials, the force balance advances the velocity in time.

In order to demonstrate the drift wave character we consider in isothermal plasma ∇Tk = 0
and linearise the equations around v0

k = 0 (no zeroth order flow). Exponential ansatz in t yields

iωδvk − δvk × ~Ωk = − 1
mk

∇δPk and iω
∑

i

AikδPi + δvk · ∇Nk + Nk∇ · δvk = 0 (17)

Nk is the unperturbed density. Eliminating δvk from the first equation and inserting the result
into the second equation yields the dispersion relation for parallel sound waves and perpendicular
drift waves.

δvk,‖ = − 1
iω

~Ωk

mkΩ2
k

~Ωk · ∇δPk ; δvk,⊥ ≈
~Ωk ×∇δPk

mkΩ2
k

− iω
∇⊥δPk

mkΩ2
k

(18)

iω
∑

i

AikδPi− iωNk∇·
∇⊥δPk

mkΩ2
k

+

(
~Ωk ×∇δPk

mkΩ2
k

)
·∇Nk−Nk∇·

(
1
iω

~Ωk

mkΩ2
k

~Ωk · ∇δPk

)
= 0 (19)

In slab geometry and homogeneous magnetic field, this eigenvalue problem can be converted
into an algebraic equation. The last term describes the parallel sound waves. Setting k‖ = 0
yields the dispersion relation of drift waves

iω

(∑
i

AikδPi −Nk∇ · ∇⊥δPk

mkΩ2
k

)
+

(
~Ωk ×∇δPk

mkΩ2
k

)
· ∇Nk = 0 (20)

In general this eigenvalue problem has as many solutions ωi, i = 1, ...K as particle species. The
matrix Aik couples the drift waves of the various particles species; without the coupling term
Aik −→ nk/Tkδik the dispersion relation decouples into a system of independent drift waves for
every particle species. However, setting k‖ = 0 is not correct since the motion parallel to the
magnetic field is not treated properly. The parallel force balance is

iω ~Ωk · δvk = − 1
mk

~Ωk · ∇δPk (21)

Setting the determinant of the homogeneous system equal to zero yields the desired dispersion
relation. This determinant is a polynomial of order 2K. In a two-component plasma this is a
fourth-order polynomial which describes two slow ion waves (drift wave and sound wave) and
two fast electron waves. Often the approximation me −→ 0 is made which brings the electron
sound velocity to infinity and δPe −→ 0. Only ion sound and drift waves are left in this case.
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This dispersion relation does not describe the growth rate of the drift waves; for this purpose
the friction forces must be retained in the parallel motion. Strictly speaking the analysis is
only valid for density-gradient-driven drift waves, however including the temperature gradient
and the energy equation would extend the investigation also to ITG-modes in a multi-species
plasma.

In summary, we have shown that in plasmas with several ion species also more than one drift
wave can exist. The coupling between the various ion drift waves is provided by the non-diagonal
terms in the matrix Aik. In particular, this can be of interest in a D − T -mixture or H − D-
mixture. Also heavy ion impurities may play a role since the the coupling to the main plasma
goes with density and charge of the impurities. The dominating role of the electric potential in
a two-component plasma is replaced by the generalised potential of each particle species. The
non-linear behaviour of these drift waves and the generalisation of the Hasegawa-Mima equation
and Hasegawa-Wakatani equations will be investigated in a separate paper.

2.2 Spin-up equations

To proceed further we return to the momentum balance Eq. (1) and convert this into a di-
mensionless form. We introduce a reference magnetic field B0, a reference density n0 and a
temperature T0. The length scale is a. The plasma pressure is replaced by the plasma beta
βk = µ0pk/B2

0 . Furthermore, we make use of the plasma frequency ωp and the classical skin
depth δe

ωp =
e2n0

me
and δe =

c

ωp
(22)

We introduce the non-dimensional velocity u and the non-dimensional electric field E by

u :=
av

δ2
eΩe

; E :=
aE

δ2
eB0Ωe

; b =
B

B0
; Ωe =

eB0

me
; dτ = Ωe dt (23)

me is the electron mass and e the charge of electrons. τ is the normallzed time scale. In the
following E is the non-dimensional electric field. The collision interaction between charged
particles is characterized by the non-dimensional collision frequency

fik =
lik11

men0νee
(24)

νee(T0, n0) is the electron collision frequency at the reference point n0, T0. Using these definitions
the momentum balance and the equation of continuity in non-dimensional formulation become

mk

me

∂nkuk

∂τ
+∇ ·

(
µ0πk

aB2
0

+
mk

me

δ2
e

a2
nk uk : uk

)
= −∇βk + σknk{E + uk × b}+

∑
i

νee

Ωe
fikui (25)

and
∂nk

∂τ
+

δ2
e

a2
∇ · nkuk =

Sk

n0Ωe
:= sk (26)

nk is the normalized density and σk is the charge of the particles diveded by the electron charge
e. This equation is a convenient tool in order to estimate the importance of the various terms.
Since the skin depth δe is a small value the inertial forces are rather small compared with the
other terms. However, this is only true in a direction normal to magnetic surfaces, where pressure
gradient, electric field and the u× b - term are the dominating ones. In the tangential direction
these forces are zero or very small and inertial forces, viscous forces and friction forces must be
taken into account. The source terms describe the ionisation and recombination processes. In a
multi-component fusion plasma the source terms also describe the nuclear processes. All source
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terms are continuous functions of plasma densities, neutral density and temperature. Since all
these processes conserve the electric charge, i.e.

∑
k qkSk = 0, the particle fluxes are ambipolar

in steady-state conditions.
After introducing a coordinate system V, θ, ϕ on the magnetic surface and the associated

contravariant base vectors eV , ep, et we decompose the force balance with the aid of these base
vectors. Here, p and t denote the poloidal and the toroidal base vector. V is the surface label
and eV is the normal base vector. A special choice is when we set V equal to the volume of
the magnetic surface. All contravariant base vectors are incompressible by definition. For the
moment there is no need to specify the coordinate system in detail. The normal ( or radial)
force balance can be approximated by

0 = −eV · ∇βk + σknkeV · (E + uk × b) (27)

which assumes that radial inertial forces, viscous forces and friction forces are small compared
with the pressure gradient, radial electric field and Lorentz forces. Summing up these equations
over the particle species yields

0 = −eV · ∇β + eV · (j × b) ; j =
∑
k

σknkuk ; β =
∑
k

βk (28)

which is the well-known force balance of the ideal plasma equilibrium. Let t be a tangential base
vector on the magnetic surface - either ep or et or a linear combination of both. The tangential
force balance is

mk

me

∂ t · nkuk

∂τ
+ t · ∇ · {µ0πk

B2
0

+
mk

me

δ2
e

a2
nk uk : uk} = −t · ∇βk + σknkt ·E

+ σknkuk · (b× t) +
∑

i

νee

Ωe
fik t · uk (29)

which is also the evolution equation of the tangential momenta. The tangential force balance
shows that one of the driving terms of the tangential flow is the σknku · (b× t)-term. In terms
of the base vectors the magnetic field is b = btet + bpep. The vector product ep × et = J∇V is
proportional to the normal vector of the magnetic surface; J is the Jacobian of the coordinate
system, The vector (b × t) ∝ ∇V points in the normal direction which shows that the vector
nku·(b×t) ∝ nku·∇V is proportional to the local particle flux across the magnetic surface. The
proportionality factor depends on the choice of the coordinate system. In magnetic cordinates
(or straight field line coordinates) the components bp(V ), bt(V ) are surface functions and the
proportionality factor is the Jacobian of the coordinate system. The Hamada coordinate system
has a Jacobian J = 1 and and in this case the term nku·(b×t) is equal to the local radial particle
flux times bt or bp depending on the choice of the tangential base vector. How to compute the
Hamada coordinate system in tokamak geometry has been demonstrated in [24],[27]. Further
driving terms are the tangential inertial forces and the tangential electric field. Viscosity and
friction slow down the tangential flow. The force t · ∇βk is zero when we average the force over
the magnetic surface. The averaging procedure is defined by

< g > =
∫

g df

|∇V |
; < 1 >= 1 (30)

and it can be easily shown that < ep ·∇βk >=< et ·∇βk >= 0. This is valid for any single-valued
scalar g instead of βk; df is the surface element of the magnetic surface. Applying this averaging
procedure to the tangential force balance yields

mk

me

∂ < t · nkuk >

∂τ
+ < t · ∇ · {µ0πk

B2
0

+
mk

me

δ2
e

a2
nk uk : uk} >= σk < nkt ·E >

+ σk < nkuk · (b× t) > +
∑

i

νee

Ωe
fik < t · uk > (31)
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The friction coefficients fik are treated as surface functions. Using a straight field lines system
we find

< nkuk · (b× et) >= bp(V )
∫

Jnkuk · df

< nkuk · (b× ep) >= −bt(V )
∫

Jnkuk · df (32)

In the Hamada system the Jacobian is unity and the right hand side is proportional to the
integrated particle flux across the magnetic surface. The integrated particle flux thus contributes
to the driving terms of the tangential particle fluxes, however the sum over all particle species is
zero because of the ambipolarity of the radial particle fluxes. Quasi-neutrality of the plasma (also
in the turbulent state) makes the sum of all tangential electric forces zero

∑
k σk < nkt ·E >= 0.

The same result holds for the sum of the friction forces (even if we retain the heat fluxes in
F k. Employing the Hamada coordinate system (J = 1) and summing up all surface-averaged
momentum equations we find

∂

∂τ

∑
k

mk

me
< t · nkuk > +

∑
k

< t · ∇ · {µ0πk

B2
0

+
mk

me

δ2
e

a2
nk uk : uk} >= 0 (33)

The time evolution of the total surface averaged momentum is not affected by the friction forces,
the averaged Lorentz forces and the electric field, while these have a significant effect on the
spin-up of the separate particle species.

Spin-up of poloidal and toroidal rotation in tokamaks has attracted the attention of many
authors since T. Stringer [6] published the first paper on this issue.

2.3 Viscosity

The viscous tensor depends on the regime of collisionality; in a collisional plasma we may utilize
the Braginskii viscosity [17] while in the long-mean-free-path regime the neoclassical viscosity
results from a kinetic equation. The Braginskii approximation holds in collisional plasmas and
is written as

πik = −
4∑
0

ηl Wl,ik ; Wl,ik =
∑
µν

Aµν
l,ik Wµν (34)

The tensors Al depend on the magnetic field and their coefficients are of the order unity. ηl are
the viscosity coefficients and Wµν is the rate of strain tensor

Wµν =

(
∂vµ

∂xν
+

∂vν

∂xµ
− 2

3
∇ · v δµν

)
or W [v] = ∇ : v + (∇ : v)T − 2

3
∇ · v (35)

η0,k = a0pkτk, a0 ≈ 1 is the largest of the viscous coefficients; pk is the pressure of the particle
species and τk is the like-particle collision time. In the limit of strong magnetic fields the
coefficients of shear viscosity η1,k and η2,k are smaller by a factor ≈ x−2, with x = Ωkτk � 1.
The coefficients of gyro-viscosity η3,k and η4,k are approximately equal to η0 x−1. Ωk is the
gyrofrequency. In the limit of weak magnetic fields we get η0,k = η1,k. The non-dimensional
viscous coefficients are

η0,k =
mk

me

v2
th,kτk

Ωea2
nk , η1,k = η0,k(Ωkτk)−2 ; η2,k = η0,k(Ωkτk)−1 (36)

Here nk is the non-dimensional density. In order to derive this form we have used pk = nkTk

and the thermal velocity defined by v2
th,k = Tk/mk. η0,k describes the magnetic pumping effect,
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which depends on the inhomogeneity of the magnetic field. The shear viscosity η1,k is the
relevant transport coefficient for radial momentum transport written in non-dimensional form

η1,k =
mk

me

ρ2
kνk

Ωea2
nk (37)

νk is the like-particle collision frequency. The gyro radius is the characteristic radial length of
momentum transport and νk the characteristic frequency. Although the gyro viscosity is larger
than the shear viscosity it is not dissipative and has not the same effect as the shear viscosity.
The bulk viscosity η0,kW0,ik (also called parallel viscosity since it depends on p‖ − p⊥) is the
origin of the magnetic pumping effect which dominates in toroidal geometry. In tokamaks,
magnetic pumping does not affect the toroidal direction, only the the poloidal flow is damped.
The full Braginskii viscosity has been analysed by Stacey and Sigmar for tokamak geometry [18]
identifying the role of the gyro viscosity in axisymmetric geometry.

Magnetic pumping in stellarators slows down plasma flow in all directions, the details depend
on the structure of mod B on the magnetic surface [27]. As already mentioned, the viscosity
should be supplemented by an additional term containing the heat flux [21][19]. We do not
claim that this term may be neglected, however, in view of the experimental result in W 7-AS,
ignoring this term atr the moment may be justified a posteriori. If we consider the heat flux
vector q as given it adds just another inhomogeneous term to the momentum balance as the
heat-flux terms in the friction forces do. These terms provide a link to the energy balance and
certainly play a role in determining a power threshold for the onset of the H-mode. However,
the HDH-mode in W 7-AS is triggered by a gas puff at fixed NBI-heating suggesting that the
phenomenon may be understood on the basis of particle and momentum balance alone.

The power dissipated by viscous forces slows down any plasma motion. In order to demon-
strate this we compute the integral over the plasma domain Ω.

P =
∫
Ω

v · ∇ · π d3x =
∑

l

∫
Ω

v · ∇ · ηlAlW d3x (38)

By partial integration we get

P = −1
2

∑
l

∫
Ω

ηlWAlW d3x +
∫
Ω̇

v · π · df (39)

Since the viscous tensor is symmetric and has zero trace the tensor ∇ : v can be replaced by W
in the volume integral on the right hand side. The surface integral vanishes with homogeneous
boundary conditions (v = 0 on the boundary). The details of the volume integral have been
investigated in [22]. It turns out that the tensors A3,A4 representing the gyro viscosity are
antisymmetric leading to WAlW = 0, l = 3, 4. The gyro viscosity does not provide any con-
tribution to the power dissipated by the Braginskii viscosity; this is done by the bulk viscosity
and the shear viscosity. When discussing the entropy production rate, Braginskii has mentioned
this result without detailed proof. Furthermore, it can be shown that P is always negative.
Braginskii gives a simple form of the matrices AlW for the case of a homogeneous magnetic
field; here the properties mentioned above can be easily verified.

Standard neoclassical theory provides us with the equivalent of the bulk viscosity and basi-
cally describes the magnetic pumping. However, neoclassical viscosity - as a result of the kinetic
equation - depends on the radial electric field. We shall not go into this further, since the main
interest of this paper is focussed on a simple geometry where neoclassical effects are unimportant
and shear viscosity and gyro viscosity are the dominating ones.

Viscous damping in non-axisymmetric equilibria - in particular in view of stellarator con-
figurations - has been investigated by Wobig and Kisslinger [27]. The magnetic pumping effect

9



is the dominating one, which slows down poloidal and toroidal rotation. The matrix of viscous
coefficients in general toroidal configurations is

η0,k

 <

(
ep ·

∇B

B

)2

> <

(
ep ·

∇B

B

)(
et ·

∇B

B

)
>

<

(
et ·

∇B

B

)(
ep ·

∇B

B

)
> <

(
et ·

∇B

B

)2

>

 (40)

which includes the tokamak case et · ∇B = 0. In stellarators, magnetic pumping provides
a coupling beween poloidal and toroidal flow. Optimising stellarator configurations [25][26]
implies a minimisation of δ|B| on magnetic surfaces so that at least in one of the coordinate
lines the variation of |B| is zero or negligibly small. The implications of ep · ∇B −→ 0 are
far-reaching: zero geodesic curvature of field lines, zero Pfirsch-Schlüter currents, no radial drift
of particles and no neoclassical transport [27][28].

2.4 Reynolds averaged equations

In order to deal with turbulent effects we start from the Reynolds averaged momentum bal-
ance equations (RANS-equation). Reynolds averaging means to average over the longest time
scale inherent in the turbulent plasma, thus averaging over the fast time scale of drift waves
and the slower time scale which is characteristic for the evolution of zonal flow. Let D :=
[τ − T ≤ t ≤ τ + T ] be a domain in t and F (t − τ) a differentiable filter function which is zero
outside of this domain and positive inside. The properties are

F > 0 if t ∈ D ; F = 0 if t 3 D ;
∫ ∞

∞
F dt = 1 (41)

Averaging a function g(t) over D leads to

g =
∫ ∞

∞
F (t− τ)g(t) dt ;

∫ ∞

∞
F (t− τ)

g(t)
dt

dt =
dg

dτ
(42)

By proper choice of the width T one can average over a short or a long time scale. The velocities
are replaced by u + δu and the densities by n + δn. The electric field is E + δE. The first
term in these quantities is the time-averaged value and the δ-term describes the fluctuating part.
Averaging the momentum balance over the turbulent time scale provides us with the equivalent
to the Reynolds equations of hydrodynamincs [23]. Turbulence gives rise to additional forces in
the momentum balance. The Reynolds averaged equations are

∇ · {µ0πk

B2
0

+
mk

me

δ2
e

a2
nk uk : uk} = −∇βk + σknkE + σkδnkδE + σknkuk × b + F k (43)

k = 1, . . . N . The term mkδuk : δuk is known as Reynolds stress in hydrodynamics. However,
this is not the only contribution of the inertial forces; these are

nk uk : uk = uk : nkuk + δuk : δ(nkuk) (44)
= nkuk : uk + δ(nkuk) : δuk (45)
= nkuk : uk + nkδuk : δuk + δnkδ(uk : uk) (46)

The friction coefficients in the momentum balance are assumed to be time independent. The
viscous tensor is a linear functional of the time-averaged distribution function. Large efforts have
been made in hydrodynamics to close the system by relating the turbulent forces to the mean
flow. This has led to the concept of eddy viscosity which describes the enhanced momentum
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transport by the small eddies [29]. The turbulent force by electric field fluctuations has no
counterpart in hydrodynamics and many efforts have been made in plasma physics to start
from gradient driven instabilities and to model the turbulent terms by an anomalous transport
coefficient multiplying the gradients. The equation of continuity becomes

∇ · nkuk = sk ;
∑
k

qksk = 0 =⇒
∑
k

qk

∫
S

nkuk · df = 0 (47)

The source terms on the right hand side describe the ionisation and recombination processes and
since these processes conserve the electric charge the particle fluxes are intrinsically ambipolar.
In summary, the radial force balance is approximated by

0 = −n · ∇βk + σknkeV ·E + σknkuk · (b× eV ) (48)

and the tangential force balance by

< t · ∇ ·
(

µ0πk

B2
0

+
mk

me

δ2
e

a2
nkuk : uk

)
>

= σk < nkt ·E > +σk < nku · (b× t) > +
νe

Ωe

∑
i

fik < t · uk > (49)

The relationship to cyclonic motion in the earth’s atmosphere can be seen by dropping the
friction forces and the electric fields and retaining one fluid only. The magnetic field is replaced
by the ~Ω- component - or Coriolis parameter - in the tangential plane (β-plane). ~Ω is the
vorticity of the planet. There, the radial balance (48) is called geostrophic equilibrium while
the circulation is governed by inertial forces, viscous forces and the spin-up force due to the
radial flux times the Coriolis parameter [7]. It is the radial influx together with the Coriolis
parameter which spins up hurricanes and cyclones. In the review article of Terry [30] the relation
to atmospheric phenomena has been discussed in more detail. In the following we will focus the
attention on a cylindrical plasma.

3 Plasma cylinder

Cylindrical geometry is often used as a model for toroidal plasmas, being aware that such
effects as poloidal asymmetries, geodesic curvature, etc., do not occur in cylinder geometry.
However, turbulence, anomalous transport and bifurcations arising from non-linearities also
exist in cylinder geometry. In cylinder geometry (r, θ, z) the magnetic field has a z-component
Bz and a poloidal component Bθ(r). Both are functions of the radial coordinate r. The plasma
is confined by diamagnetic currents flowing in a domain Ω which is limited by the radii r = r0

and r = 1. r is the non-dimensional radius of the plasma cylinder. In a cylindrical coordinate
system r, θ, z the Jacobian is proportional to 1/r. Instead of r we introduce V = r2/2 (volume
per length) and define the base vectors

ep = ∇V ×∇z; et = ∇θ ×∇V ; eV = ∇z ×∇θ (50)

which is a rectangular system with a Jacobian equal to unity. Furthermore we find ep · ∇θ =
1; et · ∇z = 1; ep · ∇V = 1, dV = r dr, |∇V |2 = 2V . The magnetic field in this system
is b = bz(V )et + bp(V )ep. The poloidal field bp(V ) is proportional to the axial current. All
mean plasma parameters are functions of the radial coordinate alone nk(V ), T k(V ), βk(V ),Φ(V ).
Φ(V ) is the surface averaged electric potential. The contravariant representation of mean plasma
velocity is u = ut(V )et + up(V )ep + uV (V )eV . The first two components describe the plasma
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flow on the magnetic surface, the last component carries the radial plasma loss. The velocity
shear of the tangential flow is the derivative with respect to V

g =
dut(V )

dV
et +

dup(V )
dV

ep (51)

If up = const. the poloidal flow is a rigid rotation; up is the angular velocity of poloidal rotation.
The covariant components of the velocity are

up = up|∇V |2 = up2V ; uV =
uV

2V
; ut = ut (52)

The mean electric field has no poloidal component, however in tokamaks there is an axial com-
ponent due to the loop voltage while this is absent in stellarators. Next, we analyse the right
hand side of eq. (49) in the cylinder.

σk < δnkep · δE > +σkbz(V )Fk+ < ep · ep >
νe

Ωe

∑
i

fiku
p
k

σk < δnket · δE > −σkbp(V )Fk+ < et · et >
νe

Ωe

∑
i

fiku
t
k + σk < nket ·E > (53)

The last term is the effect of the mean axial electric field (toroidal loop voltage). Fk is the radial
integrated particle flux. The particle flux Fk is equal to the integrated source terms (integrated
between 0 ≤ x ≤ V . The source of hydrogen ions is the neutral gas and thus hydrogen ion flux
is restricted by the penetration length of neutral hydrogen. In a fusion plasma, α-particles are
produced mainly in the plasma center; therefore the alpha particle flux is non-zero in the central
region. Since a source of α-particles is a sink for deuterium and tritium, in the central region
there is an influx of deuterium and tritium while in outer regions, depending on the penetration
length of pellet refueling, there is a diffusive outflux of D,T . Ionisation and recombination of
impurities occurs everywhere in the plasma and therefore finite impurity fluxes will be expected
everywhere in the plasma. The source terms of electrons include all ionisation and recombination
processes in the plasma; only in a pure hydrogen plasma are ion sources and electron sources
equal. Because of the charge conservation of the atomic processes the sum of all source terms
times the charge is zero which implies the inherent ambipolarity of the fluxes Fk. As shown
in Eq. (53) the net radial flux produces a spin-up force both in poloidal and axial direction.
In a hydrogen plasma with a small amount of impurities this spin-up force is restricted to a
boundary layer determined by the penetration length of the neutrals. Experimental results in
DIII-D [2] support the idea that an H-mode density barrier is correlated to the penetration
depth of neutrals. In the Hinton-Staebler model [1] of an edge transport barrier, the ion source
plays an important role in steepening the density gradient and the gradient of the E ×B shear
flow which reduces the turbulent transport.

If we neglect the viscous and inertial forces and set the terms in Eqs. (53) equal to zero,
these relations provide us with an algebraic relation between the radial fluxes and the poloidal
and axial mean velocities, the so-called flux-friction relationships introduced by Hirshman and
Sigmar [16]. The δE-terms represent the anomalous particle fluxes and the term with the axial
electric field drives the axial (or toroidal) current. Obviously there are two alternative ways
to express the radial flux. However, if the viscous and inertial forces are retained, the flux-
friction relationships are differential equation for the poloidal and axial (toroidal) velocities up

k

and ut
k and the radial fluxes are given by the source terms. The inertial forces include first order

derivatives of the velocity and the viscous forces introduce second order derivatives.
In the following we compute the viscous forces on a tangential flow up(V )ep+ut(V )et. Using

Gauss’ theorem we can write the poloidal viscous and axial viscous force as follows

< ep ·∇ ·πk >=
d

dV

∫
ep ·πk ·df− < ∇ : ep ·πk > ; < et ·∇ ·πk >=

d

dV

∫
et ·πk ·df (54)
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As shown in eq. (34), the viscous tensor is a linear differential operator of first order on the
velocity. The rate of strain tensor is the only place where the velocity occurs. Applying the
operator W [v] on the mean flow up(V )ep yields

W [up(V )ep] = up(V )W [ep] + (up(V ))′(∇V : ep + ep : ∇V ) (55)

We define the matrix W? [ep] := ∇V : ep +ep : ∇V and the tensor π? [ep] = π [W −→ W? [ep]].
π? has the same structure as the viscous tensor π except that the rate of strain tensor is replaced
by W?. This allows us to write the viscous tensor in the form

πk

[
up

k(V )ep
]
= up

k(V )πk [ep] +
up

k(V )
dV

π?
k [ep] (56)

πk

[
ut

k(V )et

]
= ut

k(V )πk [et] +
ut

k(V )
dV

π?
k [et] (57)

πk [ep] and π?
k [ep] only depend on the geometry of the configuration and the viscous coefficients.

Inserting this decomposition into Eq. (54) makes the poloidal viscous force a second order
differential operator on up

k and ut
k. The poloidal viscous force is

< ep · ∇ · πk [up(V )ep] > =
d

dV

(
up

k(V )
dV

< ep · π?
k [ep] · ∇V > +up

k(V ) < ep · πk [ep] · ∇V >

)

−
(

up
k(V )
dV

< π?
k [ep] · ∇ : ep > +up

k(V ) < πk [ep] · ∇ : ep >

)
(58)

The right hand side defines an operator Lpp by < ep · ∇ · πk [up(V )ep] >:= Lppu
p
k. In the

same way we define < ep · ∇ · πk

[
ut(V )et

]
>:= Lptu

p
k, < et · ∇ · πk [up(V )ep] >:= Ltpu

p
k and

< et · ∇ · πk

[
ut(V )et

]
>:= Lttu

t
k, which allows us to write the viscous forces in the matrix form(

< ep · ∇ · πk >
< et · ∇ · πk >

)
=

(
Lk,pp Lk,pt

Lk,tp Lk,tt

) (
up(V )
ut(V )

)
(59)

In this form the viscous forces are valid in any cylindrical geometry or toroidal geometry. In
cylinder geometry all magnetic pumping effects are zero and the tensors ∇ : et and πk [et] are
zero. This cancels several coefficients in Lpt, Ltp, Ltt. Often a slab geometry is used to study the
evolution of drift waves and zonal flow; in this geometry all coordinates are Cartesian and the
viscous operators are reduced to

Lik =
d

dz

(
< ei · π?

k [ek] · ∇z >
d

dz

)
; i, k = x, y (60)

z is the direction of the plasma gradients.
The special properties of the base vectors in cylinder geometry lead to a significant reduction

of the coeffient in the viscous operators. The axial base vector et is a constant vector and
therefore πk [et] = 0. The poloidal base vector ep; |ep| = r can be interpreted as a rigid rotation
with zero rate of strain tensor and consequently we get πk [ep] = 0. This implies that the shear
of the poloidal rotation is the derivative of up

k(V ); every particle species has its own velocity
shear. This is the result of ep = {−y, x, 0} −→ ∇ : ep + (∇ : ep)> = 0. Since ∇ : ep is an
antisymmetric tensor and π? is symmetric the term π? ·∇ : ep is zero, too. Finally, we can write
the viscous operator in cylinder geometry

Lik =
d

dV

(
< ei · π?

k [ek] · ∇V >
d

dV

)
; i, k = p, t (61)
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The coefficients of the diagonal operators Lpp, Ltt depend only on the shear viscosity because of

ei · π?
k [ei] · ∇V = ei : ∇V · π?

k [ei] = −
∑

l

ηlW?AlW? (62)

The surface-averaged shear viscosity grows strongly with the radius because of W?AlW? ≈ V 2

we find
< ep · π?

k [ep] · ∇V >≈ η1,kV
2 ; < et · π?

k [et] · ∇V >≈ η1,kV (63)

η1,k is the coefficient of shear viscosity. As already mentioned previously, this sum has no
contributions from the gyroviscosity. However, this is not true for the non-diagonal terms; these
coupling terms are dominated by the gyro viscosity. The gyro viscosity does not contribute
to the slowing down of the poloidal and axial flow, its main effect is to exchange momentum
between poloidal and axial directions.

Surface-averaged inertial forces in general geometry have been investigated in [27]; in this
paper also the correlation to the paper of Hassam and Drake [31] has been pointed out. This
concerns mainly the normal and the anomalous Stringer spin-up. Cylindrical geometry allevi-
ates the analysis owing to the absence of poloidal asymmetries and Pfirsch-Schlüter currents.
Averaging the inertial force over the magnetic surface yields

< ep · ∇ · nv : v >=
d

dV

∫
ep · vnv · df− < nv : v · ∇ : ep > (64)

Because of the antisymmetry of ∇ : ep the last term is zero. Since the base vectors in cylinder
geometry are mutually orthogonal we get ep · v = upep · ep. Note, that this distinguishes the
cylinder from a torus where the scalar product ep · et 6= 0 is non-zero and the inertial forces
provide a coupling between poloidal and toroidal mean flow [27]. In a next step we perform the
averaging in time which yields

< ep · ∇ · nv : v > =
d

dV
e2

pu
p(V )

∫
nv · df +

d

dV
e2

p

∫
δupδ(nv) · df

< et · ∇ · nv : v > =
d

dV
e2

t u
t(V )

∫
nv · df +

d

dV
e2

p

∫
δupδ(nv) · df (65)

The relation between contravariant and covariant components of the velocity is e2
pu

p = up, e
2
t u

p =
ut. In order to shorten the notation we introduce several abbreviations: ηik :=< ei ·π?

k [ek]·∇V >
and

Rp = e2
p

∫
δupδ(nv) · df ; Rt = e2

t

∫
δutδ(nv) · df (66)

The viscous operator is in matrix form

Lk = − d

dV

(
ηk,pp ηk,pt

ηk,tp ηk,tt

)
d

dV
(67)

and the Reynolds averaged equations in matrix form are

Lk

(
up

k

ut
k

)
+

mk

me

δ2
e

a2

d

dV

(
Fke

2
pu

p
k + e2

pR
p
k

Fke
2
t u

t
k + e2

t R
t
k

)

= σkFk

(
bt(V )

bp(V )

)
+

νe

Ωe

∑
i

fik

(
e2

pu
p
k

e2
t u

t
k

)

+ σk

(
< δnkep · δE >

< δnket · δE >

)
+ σk

(
0

< nket ·E >

)
(68)
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The overbar denotes an average over the longest time scale in the turbulent plasma; this anni-
hilates any time derivative in the equations. If one restricts the averaging to the fast time scale
of drift waves the equations describe the evolution of zonal flow. In the literature the zonal
flow is defined as the m = 0, n = 0 component of the E × B-velocity; the electric potential
depends only on the surface label and the time. This velocity is common for all particle species
and does not describe the full velocity of each particle species. The zonal flow defined this way
does not contribute to the diamagnetic current. A natural generalisation of the concept of zonal
flow in a multi-species plasma is to define zonal flow for every particle species separately and to
understand zonal flow as the surface-averaged tangential velocity. However, regardless of what
is called zonal flow the spin-up equations of the tangential particle fluxes are

mk

me

∂

∂τ

(
< nkep · uk >

< nket · uk >

)
+ Lk

(
up

k

ut
k

)
+

mk

me

δ2
e

a2

d

dV

(
Fke

2
pu

p
k + e2

pR
p
k

Fke
2
t u

t
k + e2

t R
t
k

)

= σkFk

(
bt(V )

bp(V )

)
+

νe

Ωe

∑
i

fik

(
e2

pu
p
k

e2
t u

t
k

)
+ σk

(
< δnkep · δE >

< δnket · δE >

)
(69)

+ σk

(
0

< nket ·E >

)
(70)

The components of the tangential flow are time-dependent up
k(V, τ), ut

k(V, τ) which we can write
as up

k(V, τ) = Up
k (V ) + δup

k(V, τ) and the same decomposition for ut
k(V, τ). Up

k (V ) is the mean
flow, averaged over the long time scale. In order to proceed, we invoke the so-called Boussinesq
approximations which replaces the density nk by the surface averaged density Nk(V, τ) which
implies < nkep · uk >= e2

pNku
p
k(V, τ). The surface-averaged particle flux is the product of the

surface-averaged density and the surface-averaged velocity. The surface-averaged equation of
continuity is

∂Nk

dτ
+

δ2
e

a2

d

dV

∫
nkvk · df =< sk > (71)

which leads to

∂Nku
p
k

∂τ
= Nk

∂up
k

dτ
+ < sk > up

k −
δ2
e

a2
up

k

dFk

dV
∂Nku

t
k

∂τ
= Nk

∂ut
k

dτ
+ < sk > ut

k −
δ2
e

a2
ut

k

dFk

dV
(72)

Inserting these terms into the Eqs. (70) yields

mk

me
Nk

∂

∂τ

(
e2

pu
p
k

e2
t u

t
k

)
+

mk

me
< sk >

(
e2

pu
p
k

e2
t u

t
k

)
+

mk

me

δ2
e

a2
Fk

d

dV

(
e2

pu
p
k

e2
t u

t
k

)

+ Lk

(
up

k

ut
k

)
+

mk

me

δ2
e

a2

d

dV

(
e2

pR
p
k

e2
t R

t
k

)
= σkFk

(
bt(V )

bp(V )

)
+

νe

Ωe

∑
i

fik

(
e2

pu
p
k

e2
t u

t
k

)
(73)

+ σk

(
< δnkep · δE >

< δnket · δE >

)
+ σk

(
0

< nket ·E >

)
(74)

As already mentioned, in a hydrogen plasma with cold gas refueling the source terms sk and
the net flux Fk are limited to the boundary region. Further inside, these terms are zero and
besides the friction and viscous forces only the turbulent terms are left. Viscosity and friction
slow down plasma motion, while the turbulent terms may lead to spin-up. The poloidal forces
σk < δnkep · δE > drive electrons and ions in opposite direction and due to the quasi-neutrality
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of drift waves the sum is zero. The same result holds for the axial electric force σk < nket ·E >.
In order to make the system of equations complete we average the radial force balance (48) over
the magnetic surface

d

dV
βk(V, τ) = σk < nkeV nkE > +σk (bt(V ) < nkup,k > −bp(V ) < nkut,k > (75)

Invoking the Boussinesq approximation again nk −→ Nk(V, τ) this is

d

dV
βk(V, τ) = −σkNk

dΦ
dV

+ σk Nk(−bt(V )up
k + bp(V )ut

k) (76)

Φ(V, τ) is the surface-averaged electric potential which in the literature is considered as the key
element of zonal flow. In the sum over all particle species the electric field drops out and the
pressure gradient is balanced by the poloidal and toroidal (axial) diamagnetic currents.

In this approximation, the radial force balance is valid also in any toroidal system. This
radial force can be considered as the instantaneous radial balance between pressure gradient,
Lorentz force and radial electric field. How to treat this equation? Often this equation is used
to write the poloidal velocity in terms of the diamagnetic drift and the electric drift, which
requires another equation to compute the parallel velocity or ut,k. Here the standpoint is to
compute the density profile and the radial electric field, if the temperature and the two velocity
components are given. The computation of the temperature profile needs consideration of the
energy balance. However, since the numerical application is focussed on the transition to the
HDH-mode in Wendelstein 7AS, where the temperature profiles stay nearly constant during the
transition, the energy balance can be postponed.

4 The problem of closure

Let us return to the Reynolds-averaged equations for the mean velocities (68). The turbulent
shear stress Rp

k, R
t
k originates from the non-diagonal terms of the Reynolds stress tensor which

describes the radial momentum transfer by turbulent eddies. These shear stresses must be
either computed separately by solving the time-dependent equations or by an empirical ansatz
which summarises the effect of turbulence on the mean flow. In fluid dynamics this has led to
the concept of eddy viscosity. In atmospheric physics this turbulent viscosity or eddy diffusion
coefficient plays the dominant role in forming the profile of the velocity shear. Such an eddy
diffusion coefficient has also been introduced in the theory of the super-rotation on Venus [32]. In
fluid theory the general ansatz is to assume a linear relation between shear stress and the rate of
strain tensor [23], [33]. In a highly anisotropic plasma this certainly would lead to a complicated
tensorial ansatz as the example of the Braginskii viscosity shows. In the cylindrical geometry the
ansatz is simpler since only two orthogonal directions need to be considered. The inertial terms
Rp

k can be interpreted as the turbulent transport of poloidal momentum by radial fluctuation,
the turbulent transport of a passive scalar. The result of turbulent momentum exchange is a
reduction of the velocity shear until the flow is a rigid rotation. As in hydrodynamics [23] this
turbulent momentum flux is set proportional to the shear of the mean poloidal and axial velocity.
Likewise, the ansatz will be made for the radial transport of axial momentum

Rp = e2
p

∫
δupδ(nv) · df = −e2

pη
p d up

dV
; Rt = e2

t

∫
δutδ(nv) · df = −e2

t η
t d ut

dV
(77)

ηp, ηt are the eddy viscosity coefficients of turbulent momentum transport in dimensionless form.
All details of turbulence are summarized in these coeffcients and with a growing level of tur-
bulence these coefficients will grow, too. As seen from the definition of the turbulent Reynolds
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stress, it is the radial component of the drift waves which leads to anomalous momentum trans-
port together with the poloidal fluctuations δup. This component consists of the zonal flow (the
surface averaged part of δup, slow time scale) and the δup of the drift waves (fast time scale).
Since δ(nu) ·df = 0 on the fast time scale, the zonal flow does not contribute to the momentum
transport. There is no immediate effect of the zonal flow on the Reynolds stress. If however,
the shear of zonal flow or mean flow leads to a decorrelation of the poloidal and radial drift
wave fluctuations, the Reynolds stresses will be diminuished which implies a reduction of the
eddy viscosity ηp. In a similar way any decorrelation in δutδ(nu) · df leads to a reduction of ηt.
This effect has been used to model anomalous transport coefficients as a decreasing function of
velocity shear, where velocity shear is meant as the shear of the electric drift [1]. In contrast to
collisional viscosity, the sign of the eddy viscosity coefficients are not fixed; depending on the
correlation of drift wave eddies the sign can be either positive or negative.

Eddy viscosity in MHD turbulence has been computed numerically by Kim et al. [34].
Sugama and Horton [35] used quasi-linear theory to compute anomalous momentum transport
due to electrostatic turbulence. The anomalous momentum flux is proportional to the shear
of the toroidal velocity: they called the coefficient anomalous viscosity. Shaing et al.[36] [37]
have computed an anomalous toroidal ion viscosity which depends on the power spectrum of
the electric field fluctuations. Staebler and Dominguez [38] started from slab geometry and
derived an anomalous viscosity as a response to electrostatic fluctuations. The dimension of the
eddy viscosity is ηp = λ2νt where λ is a length scale of the turbulence and νt a characteristic
frequency.

The coupling between density fluctuations and electric field fluctuations gives rise to a
poloidal force < δnkep · δE > which is equivalent to a radial anomalous particle flux. If we
consider this term and its axial partner as given, the system (68) can be solved as in the case of
a quiescent plasma. A more satisfying procedure would be to model these forces as has been done
with the viscous forces. Because of the quasi-neutrality, the sum of these anomalous poloidal
and axial σkδnkδE-forces is zero which means that the sum has no effect on the total momentum
of the poloidal or axial flow. The fluctuations, however, lead to momentum exchange among the
particle species. Thus, these fluctuations play the same role as the Coulomb collisions. Staebler
[39] has studied the effect of drift wave turbulence starting from the Fokker-Planck equation;
there it has been shown that the turbulent forces conserve momentum. Often the ansatz is made
that the anomalous fluxes are proportional to the gradients which drive the instability defining
this way an anomalous transport coefficient. Quasi-linear theory [40][35] has verified such linear
relations between gradients and anomalous fluxes where the coefficients depend on the square
of the electric field fluctuations. Since via the radial force balance the gradients and the com-
ponents of the tangential velocities are coupled, we may as well model the σkδnkδE-terms as a
linear combination of all tangential velocity components.

< t · σkδnkδE >=
νe

Ωe

∑
i

< t · γkiui > ; t = ep, et (78)

Such a form of the anomalous particle fluxes has been found by Shaing [41] for electrostatic
turbulence. This paper also applies to stellarators and, as in the case of neoclassical plateau
diffusion, strong resonance effects at rational values of the rotational transform were found.
Quasi-linear theory computes the response of the plasma on electrostatic fluctuations starting
from a linearized kinetic equation. The lowest order distribution function is expanded in terms
of the vectorial moments which are the mean velocity and the mean heat flux. Hence the natural
result of quasi-linear theory is a linear relation between anomalous fluxes and the components
of mean flow velocity [41]. After defining thermodynamic forces, these relations can be used to
define anomalous transport coefficients.

Instead of anomalous transport coefficients, we have defined anomalous friction coefficients;
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the factor νe/Ωe has been introduced in order to make γki comparable to fik. These coefficients
γki must satisfy the condition

∑
k γki = 0 ∀i. The enhanced momentum exchange between

the plasma components can be described by an enhanced collision frequency. However, this
simple ansatz does not account for the asymmetry of drift wave turbulence with a small wave
vector parallel to the magnetic field and a large wave vector in perpendicular direction which
implies that the toroidal δE-force is smaller than the poloidal force. Therefore we consider
γlm

ki , l, m = p, t as a 2x2 matrix γlm which describes this asymmetry.

< ep · σkδnkδE > =
νe

Ωe

∑
i

(
γpp

ik up,i + γpt
ikut,i

)
(79)

< et · σkδnkδE > =
νe

Ωe

∑
i

(
γtp

ikup,i + γtt
ikut,i

)
(80)

In general, the matrices γ are not symmetric, in contrast to the matrix of Coulomb friction
fik. Any decorrelation of drift waves eddies by shear flow [30] would reduce these anomalous
friction coefficients. However, it should be noted that this is not the most general ansatz since
temperature gradients and the associated tangential heat fluxes are also driving instabilities
(ITG-modes etc). As in the case of Coulomb friction forces described above, the most general
ansatz has linear terms in the heat fluxes, too. Such linear dependence of the anomalous particle
fluxes on the poloidal and toroidal heat fluxes has been found by Shaing [42].

The Coulomb friction forces are symmetric and lead to a positive entropy production rate.
Due to the symmetry, the friction forces are proportional to the difference of the particle veloc-
ities ui − uk, and, taking into account the radial force balance, proportional to the difference
of radial gradients. This is the key to the accumulation of impurities which are diffusing into
the plasma by interaction with the hydrogen background. In a torus, the Pfirsch-Schlüter factor
enhances the effect.

Collecting all models and assumptions, the Reynolds averaged equations are
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+ σk

(
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< nket ·E >

)
(81)

Since e2
pu

p
k = uk,p are the covariant components, we can also formulate the system in terms of

these covariant components.
In summary, we have modeled the fluctuating δE-forces with the help of anomalous friction

coefficients and the Reynolds stresses in terms of the eddy viscosity. The matrix of eddy vis-
cosities has only diagonal terms; the eddy viscosity competes with the Braginskii shear viscosity
and if the radial mixing length of turbulence is larger than the gyro radius and the characteristic
frequencies larger than the collision frequencies the eddy viscosity is the dominating term.

Before going into some details of the anomalous coefficients, we will have a closer look at
the mathematical structure and the boundary conditions. The system is a linear second order
and inhomogeneous system. The inhomogeneous terms are the fluxes Fk and the toroidal loop
voltage. It was argued that in the friction forces, in the viscous force and in the anomalous terms,
the contributions by the heat flux will be ignored. These would add just another inhomogeneous
term and the solution with respect to the velocities would follow the same procedure as without
these terms. In the plasma center V = 0 the poloidal velocity up should be zero since otherwise
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the angular velocity would go to infinity. The angular velocity up can be finite in the center;
here the natural boundary condition is dup/dV = 0 at V = 0. The axial velocity has an
extremum in the center, the derivative is zero dut/dV = 0. On the plasma boundary V = Va

we impose either Dirichlet conditions up = ut = 0 (sticking conditions) or zero derivatives.
This last condition fits to free flow on a last magnetic surface without contact to material walls
(Neumann conditions). It should be pointed out that including the viscous terms allows one
to satisfy boundary condition on the tangential velocities. In reality, the boundary conditions
may not be as simple as the Dirichlet or Neumann conditions; it requires a careful analysis
of the physics outside the last closed flux surface in order to specify the boundary conditions.
Let us assume that all coefficients are known functions of the radial coordinate V . The linear
inhomogeneous system has a unique solution if the homogeneous has no sulution but u = 0.
Given the fluxes Fk as integral over the sources and the loop voltage, the solutions up

k, u
t
k will be

inserted into the radial force balance, which computes the density profiles and the radial electric
field. The new density profile leads to new source terms and new fluxes. The procedure will be
repeated until the iteration converges. A numerical example will be presented at the end of the
paper.

4.1 Bifurcation

The system contains two possible places of non-linearity; one is the anomalous friction rep-
resented by the matrix γ and the second one is the eddy (or anomalous) viscosity. These
nonlinearities can be the origin of bifurcation. Following the generally accepted idea that ve-
locity shear quenches turbulence, these coefficients can be modeled as a decreasing function of
velocity shear. Velocity shear is represented by the derivatives of up

k(V ) and ut
k(V ) and the

most general ansatz would be to make the anomalous coefficients a decreasing function of all
these components. In a hydrogen plasma with a small amount of impurities the turbulence is
governed by the main constituents and the anomalous coefficients only depend on the velocity
shear of the hydrogen ions and electrons. If we approximate the velocity by the electric drift, we
arrive at the concept widely used in the literature. In a fusion plasma there are at least three
ion species with different masses and fractions. Does the suppression of electrostatic turbulence
depend on the velocity shear of all ion species or only on the shear of the E ×B-drift common
to all ? As discussed by Terry in his review article on turbulence suppression by flow shear [30],
the loss of correlation arises from the turbulent advection by the (v∇)v-term. It is the shear
of the mean velocity which tilts and quenches the turbulent eddies and thus reduces turbulent
transport. A possible ansatz for the anomalous viscosity coefficients is

ηp = ηp(V, gp
k, g

t
k), ηt = ηt(V, gp

k, g
t
k), γ = γ(V, gp

i , g
t
i), (i = 1, ...,K) (82)

where we introduced the notation gp
k, g

t
k for the radial derivatives of the velocities up

k, u
t
k. In this

general ansatz the turbulent viscosity of particle species k is a function of the velocity shear
gk and the special case of uk −→ E ×B is included. In view of the following argument, it is
unimportant whether the anomalous friction coefficients depend on all derivatives of up

i , u
t
i or

not. The only restriction is that the anomalous coefficients are independent of the sign of the
derivatives and monotonously decreasing. This decrease may even exhibit a step-like character.
Adopting these kind of specifications, the system (81) is non-linear and second order. In order
to avoid the inconveniences with the indices, we summarise the poloidal and axial velocities in a
vector fk = {up

k, u
t
k} and the derivatives in gk = {gp

k, g
t
k}. Next, these 2-vectors are summarised

in f = {fk} and g = {gk}. f is a vector in a K-dimensional vector space (K-space) and its
components are 2-dimensional vectors. g is the vector of velocity shear. The Braginskii viscosity
is a 2x2-matrix

ηk =

(
ηk,pp ηk,pt

ηk,tp ηk,tt

)
(83)
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which will be summarised in the diagonal matrix ηb = {ηkδik}. In the same way we define the
diagonal matrix of anomalous viscosities

E =

(
e2

p 0
0 e2

t

)
; ηan,k =

mk

me
E

(
ηp

k 0
0 ηt

k

)
−→ ηan = {ηan,kδik} (84)

Furthermore, we define

C = {fikE} ; Can = {γikE} ; F =

{
σkFk

(
bt(V )

bp(V )

)}
(85)

and

G =

{
mk

me
Fk E δik

}
; Uloop =

{
σk

(
0

< nket ·E >

)}
(86)

These abbreviations transfer the system (81) of 2K equations into the form

− d

dV

(
ηb +

δ2
e

a2
ηan

)
df

dV
+

δ2
e

a2

d

dV
Gf = F +

νe

Ωe
(C + Can) f + Uloop (87)

The scalar product in K-space is a · b =
∑

k akbk, where akbk are the scalar products in a
2-dimensional vector space. Without the anomalous terms the system is linear and presents no
reason for bifurcations.

In order to demonstrate how the anomalous transport coefficient can give rise to bifurcation
give a simple example which has the same structure as the system above. Let [0 ≤ x ≤ 1] be a
domain in x and

− d

dx
η(ux)

du

dx
+ D(ux) u = λ h(x) ; ux =

du

dx
; u(0) = u(1) = 0 ; λ > 0 (88)

η and D are positive and continuous functions of ux. h(x) is a given continuous source function
and λ a control parameter characterising the level of the source term. It can easily be shown
that any solution is bounded and has bounded derivatives. The upper bounds are proportional
to λ/m, where m is the minimum of η0, D0. With λ −→ 0 the equation is homogeneous and
has no finite solution. The standard procedure of testing for bifurcation is linearisation around
a solution U(x, λ) and searching for solutions δu of the linearized problem [43].

− d

dx
(η + η′Ux)

dδu

dx
+ D(Ux) δu + D′U

dδu

dx
= 0 ; δu(0) = δu(1) = 0 (89)

The integral relation for δu is∫ 1

0

{[
η + η′ux

] (dδu

dx

)2

+
[
D − 1

2
d

dx

(
uD′)] (δu)2

}
dx = 0 (90)

The prime denotes the derivation with respect to ux. A sufficient condition for the absence of
bifurcation is

η + η′ux > 0 and D − 1
2

d

dx

(
uD′) > 0 (91)

The violation of one of these conditions is a necessary condition for the existence of bifurcation.
As an example for η and D we propose

η = η0 +
η1

1 + α1u2
x

; D = D0 +
D1

1 + α2u2
x

(92)

20



η0, η1, D0, D1, α1, α2 are positive constants. The conditions for absence of bifurcations are

η0 +
η1

1 + α1u2
x

− 2η1α1u
2
x

(1 + α1u2
x

)2 > 0 ; D0 +
D1

(1 + α2u2
x)

+
d

dx

D1uuxα2

(1 + α2u2
x)2

> 0 (93)

Setting these terms equal to zero defines a surface in the space of the control parameters λ, α1, α2;
a surface on which multiple solutions bifurcate. Some general conclusions can be made

• Both non-linear viscosity and non-linear diffusion coefficients can lead to bifurcation

• The point of bifurcation is the point where the linearised problem has an eigenvalue equal
to zero; the inequalities given in (91) are sufficient conditions for the absence of bifurcation.

• If α1 and α2 are small enough there is no bifurcation

• There is a threshold in λ. Below this threshold bifurcation does not occur

Since the source is the particle flux - or integrated particle source - this would restrict the phe-
nomenon of bifurcation to the boundary layer determined by the penetration length of neutrals.
However, here one should keep in mind that all effects related to the heat flux have been ignored
in the momentum balance. Retaining this terms would add extra source terms and couple the
momentum balance to the energy balance.

The conditions derived above can be extended to the system (87) of coupled equations. We
consider the hydrogen refueling rate as control parameter and write the particle flux term as λF
where λ is a diagonal matrix λkδik. We assume that a solution f0(V, λH) exists, which satisfies
the boundary conditions. λH is proportional to the hydrogen flux and the solution exists in a
domain λ0 < λH < λ1. The variational equation [43] is
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(94)

Here, g0η
′
an and C ′(g0)f0 are matrices which occur when the system is linearised: ηan(g0+δg) =

ηan(g0) + η′anδg + ... and Can(g0 + δg) ≈ Can(g0) + C ′δg. The boundary conditions are δf = 0
Since the velocity shear g0(V, λH) and f0(V, λH) are functions of λH , this homogeneous system
is an eigenvalue problem for λH . If such an eigenvalue ΛH exists, the non-linear problem has
more than one solution and these bifurcate at ΛH . In general, it is difficult to establish sufficient
criteria for the existence of a bifurcation point; it is easier to find necessary criteria. Let us,
for the moment, drop the anomalous terms and ask for bifurcation of the classical system.
Multiplying with δf and integration over V yields∫ (

dδf

dV
· ηb ·

dδf

dV
− δf · C · δf +

1
2
δf · dG

dV
· δf

)
dV = 0 (95)

Since G is a diagonal matrix, the derivative is also a diagonal matrix and reads explicitly
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me

dFk

dV
E δik

}
=
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mk

me
< sk > E δik

}
(96)

If all sources are positive, dG/dV is a positve diagonal matrix and the third term in Eq. (95)
is positive. The second term is the power dissipated by Coulomb collisions and is also positive.
The first term in Eq. (95) is the power dissipated by viscous forces and since this term is also
positive the integral relation leads to a contradiction which implies that a bifuraction cannot
occur. From this we infer that only the non-linearity in the anomalous coefficients can cause
bifurcations. Using the same method of contradiction we can handle the full system and formu-
late the following theorem: Let f0(V, λ) be a solution of the non-linear problem Eq. (87) in a
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domain D : λ0 < λ < λ1 and let ηb + ηan(g0) + g0η
′
an = As + Aa be the decomposition into a

symmetric and antisymmetric matrix. Furthermore, we make the decomposition

Bs + Ba = Can(g0 −
d

dV
C ′(g0)f0 (97)

The following statement holds: If As, Bs, dG/dV are positive definite matrices, there is no
bifurcation point in the domain D : λ0 < λ < λ1. If these criteria are violated, bifurcation can
occur.

This is the generalisation of the conditions (91) to a system. It should be mentioned that
the source terms are kept fixed in this bifurcation analysis. If, as a consequence of bifurcation,
the plasma exhibits multiple solutions for the poloidal and axial velocities, these will lead to
different plasma profiles and different source terms. However, the bifurcation point is a point in
parameter space were multiple solutions merge and the source terms are equal.

If a point of bifurcation exists, an expansion technique can be employed to compute the
various branches of the solution in the vicinity of the bifurcation point. This technique is useful
to find out whether the transition from one branch to another one has a hard onset or a soft onset.
However, in solving the problem numerically, a different approach is recommended. In order to
convert the second order sytem into a first order system one introduces the transformation

g 7→ z ; z = (ηb +
δ2
e

a2
ηan(g)) g (98)

Inverting this system with respect to g yields g = H(z) and the first order system is
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(C + Can(H(z))f + Uloop

df

dV
= H(z) (99)

If the map M : g 7→ z is not uniquely invertible, there are several branches Hj(z), j = 1, 2..
and there are several solutions of the problem. The uniqueness of the inversion depends on the
Jacobian of the transformation M . If the map M is one-to-one, the anomalous viscosity does
not lead to a bifurcation.

5 The stellarator model

In the simplest case, the tokamak model has 4 coupled equations, for electrons and ions poloidal
and axial rotation. As mentioned above, a stellarator can be modeled without poloidal field and
toroidal loop voltage. The magnetic field is a straight field and there is no axial net current.
In this case we may set all mean fluxes in the z-direction equal to zero, ut

k = 0, and only the
poloidal equations are left. If this model is not sufficient, one could make use of the tokamak
model with finite poloidal field, but ignore the axial net current and the loop voltage. The
equations for the poloidal rotation are
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(fik + γik) up,i (100)

There is a coupling term Lpt.ku
p
k which in general transfers momentum from the poloidal motion

to axial motion, however in a straight magnetic field this force is zero; in the tokamak model
this off-diagonal term cannot be neglected. The shear viscosity term is explicitly

Lpp,k up
k = − d

dV
< ep · π?

k [ep] · ∇V >
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With the help of e2
p = 2V and e2

pu
p = up we introduce the covariant component which leads to

Lpp,k up
k = −V

2
d

dV
η1

d up,k

dV
(102)

If there is no feedback of the velocities on the anomalous transport coefficient there is no room for
bifurcation and simulation of LH-transition. Let us consider a two-fluid plasma with hydrogen
and analyse the relation to the Staebler-Hinton model. For this reason we neglect all viscous
and inertial terms on the left hand side and start from the difference of the two equations (100)

Fbt(V ) =
νe

Ωe
(fei + γei) (up,i − up,e) ; ne = ni = n; Fe = Fi = F (103)

Here we assumed that the matrix γ is symmetric which, in general, is not the case. The radial
force balance is

β′e(V ) = nΦ′(V )− nbtup
e ; β′i(V ) = −n

dΦ
dV

+ nbtup
i (104)

Sum and difference of these two equations yield

β′(V ) = nbt(up,i − up,e) ;
1
2
(
β′e(V )− β′i(V )

)
= nΦ′(V )− nbt(up,e + up,i) (105)

Inserting this into Eq. 103 leads to

Fbt(V ) =
νe

Ωe
(fei + γei)

1
nbt

β′(V ) (106)

The particle flux is proportional to the pressure gradient. The ansatz of Hinton and Staebler is
n′ instead of β′(V ). They propose the anomalous diffusion coefficient

Dan = D0 +
D1

1 + α(Φ′′)2
(107)

which accounts for the stabilising effect of the velocity shear, and retain only the ion pressure
in the radial balance. The shear of the E ×B velocity is proportional to the density gradient
and pressure gradient

Φ′′ = −n′β′i
n2

(108)

Their particle flux is

F = −
(

D0 +
D1

1 + α(Φ′′)2

)
n′ (109)

Together with Eq. 108, this equation has multiple solutions for n′. There are two weak points
in this derivation. The first one is the ad hoc ansatz of the particle flux being proportional to
the density gradient and the second is the approximation of the radial force balance.

A better method would be to start from Eq. (103) as it is and insert Dan for γei. In the
special case Te = Ti we get βi = βe and the radial force balance leads to

Φ′′(V ) = bt d

dV
(up

e + up
i ) (110)

The shear of the electric drift is equal to the velocity shear of electrons plus the shear of ions.
The pressure gradient is proportional to the difference of the poloidal velocities of electrons
and ions (diamagnetic current) and the radial electric field is proportional to the sum of these
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velocities. Next, the viscous and inertial terms are included and the electron and ion equations
are
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We have assumed that the eddy viscosity is much larger than the collisional shear viscosity.
Since the radial mixing length of turbulent eddies is larger than the gyro radius, eddy viscosity
can easily provide the main momentum transport. If the anomalous coefficient Dan is larger
than the classical friction coefficient we may neglect fei. In the Staebler-Hinton ansatz of Dan,
we insert the velocity shear of electrons and ions as given in Eq. (110). One could adopt the
same ansatz for the eddy viscosity which would make these a decreasing function of the velocity
shear. Whatever ansatz or model is used, the sum of the right hand sides is always zero, which
means that the sum of the left hand sides is also zero. The sum can be integrated once leading
to
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The constant C is zero since the left hand side tends to zero at V −→ 0. At this point the large
mass difference of the particles comes into play. Since the two terms on the left are equal for any
solution this implies that the electron velocity is much larger than the ion velocity. However,
here the boundary conditions are important: At fixed boundary conditions the large ion eddy
viscosity will slow down the ions to a small value - independently of the sign of the eddy viscosity.
Under free boundary conditions there would be no viscous dissipation if the ion flow is a rigid
rotation. In the extreme case of nearly zero ion velocity we may neglect the coupling between
the two equations and restrict our attention to the electron equation. In this case the plasma
is confined by the diamagnetic flow of the electrons and the key for transport barriers lies in
the poloidal velocity of the electrons. The ion pressure is balanced by the radial electric field.
The particle flux F occurs twice in each equation and because of the smallness of δ2

e/a2 we may
neglect the first term with F and write the electron equation as
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This is just the type of equation which has been investigated with respect to bifurcation in the
previous section.

6 Numerical results

The computations presented in the following simulate the experimental results found in Wen-
delstein 7-AS [13]. The density in the HDH-regime reaches 4 ∗ 1020 m−3, while the temperature
stays in the range of 500 eV leaving the plasma in the Pfirsch-Schlüter regime or close to the
plateau regime. For this reason neoclassical effects are negligible and the fluid model provides
an adequate description. The cylindrical model discussed here neglects all toroidal effects, how-
ever, as the main purpose is to describe the transition from a peaked density profile to a flat
density profile with steep gradients at the edge. The cylindrical model does not explain why this
phenomenon occurs only at some specific values of the rotational transform. The temperature
in the experiment is nearly constant during this transition and therefore only the momentum
balance is solved in the following numerical computations. The HDH-mode is a quiescent phase

24



without any significant fluctuations in the plasma. Another important feature of the HDH-mode
is the strong reduction of impurity influx. In the following computations, we do not propose a
specific model of the anomalous transport coefficients. The only assumption is that the trans-
port coefficients are bounded from below and above. The Hinton-Staebler model falls into this
category since we get D0 ≤ D ≤ D0 + D1. The purpose of the computations is to study how
the plasma profiles change when the anomalous transport coefficients adopt the maximum or
minimum values. In this procedure the equations are linear and can be solved by difference
methods.

The source function is given by Se = SH =< σv >ion n(x)n0(x); ne = nH = n(x) is the
electron density and n0 the density of neutrals. < σv >ion is the ionisation rate by electron
collisions. Here, we describe the profile of the neutrals by an exponential function

n0(x) = n0(1) exp
[
−K

∫ 1

x
n(x)dx

]
(114)

which provides us with an approximation of the source function

s(x) = K0Kn(x) exp
[
−K

∫ 1

x
n(x)dx

]
(115)

L = 1/K is the non-dimensional decay length of the neutrals and K0 is proportional to the
neutral gas flux. Electron and ion fluxes are equal (Fe = FH = F ). The poloidal electron
equation is
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1
x

νee

Ωe
f(x)(ue − uH) + 4

d

dx
ηe,eff

due

dx
− 2

δ2
e

a2

1
x

d Fue

dx
= 0 (116)

and the ion equation

b(x)
F

x
+

1
x

νee

Ωe
f(x)(uH − ue) + 4

d

dx
ηH,eff

duk

dx
− 2

mH

me

δ2
e

a2

1
x

d FuH

dx
= 0 (117)

with

f(x) =
n2(x)

T 1.5(x)
+ Can (118)

in non-dimensional units. Can is the anomalous friction coefficient. The reference values in the
numerical calculations are B0 = 2.5 T, n0 = 1020 m−3 and T0 = 1 keV. The minor radius of the
plasma in W 7-AS is about a = 0.15 m. The non-dimensional parameters are

νee

Ωe
= 3.37× 10−7 ;

δ2
e

a2
= 1.25× 10−5 (119)

The beta profile is computed by integrating the radial force balance

−dβ

dr
=

b(r)
r

n(r)(ue − uH) (120)

At low beta we may neglect the diamagnetic drop of the magnetic field and consider b(r) as
constant;at large beta this effect is taken into account. The numerical calculations proceed as
follows: given a lowest order guess of the density profile we compute the radial flux

F =
∫ x

0
s(x) dx (121)

with a given source function s (Eq. 115). Solving the coupled system Eqs. (116) and (117)
yields the velocities ue and uH . In a next step a beta profile and is computed in Eq. (120) and
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with the help of the temperature a new density profile. Iterating this procedure provides us with
the self-consistent profiles n(r), ue(r), ui, β(r). The temperature is fixed in all computations; the
figure Fig. (1) shows the profile.

The boundary conditions are ue = 0; ui = 0 at x = 0 and x = 1. The anomalous viscosity
is described in section (4). In the numerical calculation we model the viscosity as follows

ηe,eff =
νee

Ωe
ηe ; ηH,eff =

mH

me

νee

Ωe
ηi (122)

Here, ηe and ηi are constant This is the simplest approximation to the anomalous visccosity.
Setting ηe = 1 and ηi = 1 means that the electron viscosity has about the same effect as the
classical electron-ion Coulomb interaction. Because of the mass ratio the ion viscosity is large
and inhibits any ion rotation. This implies that the ion pressure is confined by the radial electric
field and the electron diamagnetic flow confines the sum of electron and ion pressure. Note, that
zero ion rotation does not mean zero electric field.

Reducing the electron viscosity has the strongest impact on the poloidal velocity of the
electrons. Since the ion viscosity is much larger than the electron viscosity (mH/me = 1836) the
poloidal ion velocity is almost zero; the diamagnetic current is totally carried by the electrons.
For this reason, any change of the electron poloidal velocity has a strong impact on the plasma
confinement.

6.1 HDH-mode

Detailed results of the HDH-mode in Wendelstein 7-AS have been published in [15]. The density
is in the range of 1.5 × 1020 m−3 and the temperature less than 360 eV. The HDH-mode in
Wendelstein 7-AS is characterized by a flat density profile and a steep density gradient in the
boundary region. While in ”normal” confinement the density peaks in the centre, cold gas
puffing leads to a transition to the HDH-mode. Suppression of turbulence is a further important
feature of the HDH-mode, indicating that the improvement of the confinement may be correlated
to a decrease of turbulent transport.

There are some features of the HDH-mode which the present model is not able to explain.
In particular, dependence on the external rotational transform can only be understood in a
toroidal model taking into account the neoclassical viscosity and it variation with rotational
transform. Another outstanding property of the HDH-mode is its resistance against impurity
influx. Although the model discussed above holds for a multi-species plasma with impurity ions,
the numerical analysis has been focussed on a two-component plasma only. The code will be
extended to impurities in future.

In order to simulate the transition of the density profiles, two parameters are changed: cold
gas flux will be increased and the anomalous electron viscosity will be reduced. Ion viscosity is
large and kept fixed. As long as ηi is of the order unity, the ion velocity is close to zero and any
changes of the ion viscosity has negligible effect on the confinement.

The first example assumes that the friction between electrons and ions is classical; anomalous
effects occur in electron and ion viscosity. Reducing the electron viscosity while the gas influx
is increased leads to a flat density profile. The input parameters are: Case 1: ηe = 1.0, ηi =
1.0, K0 = 0.7, case 2; ηe = 0.5, ηi = 1.0, K0 = 1.3. The two cases differ only by a factor two:
the electron viscosity is diminuished by a factor two and the cold gas input grows by less than
a factor two. The density at the plasma centre is about the same in both cases. The following
figure shows a fit to the temperature profile measured in the HDH-mode in Wendelstein 7-AS.
This profile will be kept fixed in the subsequent computations.
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Figure 1: Left: Temperature profile. Right: Density profile.
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Figure 2: Left: Plasma source function. Right: Diamagnetic current.
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Figure 3: Left: Poloidal electron velocity . Right: Radial electric field.

The basic features of the HDH-mode are reproduced in this example. The density exhibits
a steep gradient in the boundary region, the electric field increases in this region, the plasma
source function is shifted towards the boundary and the diamagnetic current density grows thus
compensating the steep pressure gradient.

In the next example the condition is to keep the cold gas input nearly fixed and to vary the
transport coefficients only . There is only a slight increase of the gas flux from K0 = 1.3 to
K0 = 1.4. The electron viscosity will be changed from ηe = 1.2 to ηe = 0.255. Furthermore, the

27



anomalous friction between electrons and ions will be reduced by factor of ten. The anomalous
friction is described by a coefficient Can which is added to the coefficient f(x) in Eq. (118).
This coefficient is a constant in the following example which, in general, may not be the case.
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Figure 5: Left: Plasma source function. Right: Diamagnetic current.

The last example shows that the reduction of two anomalous coefficients, the electron viscosity
and the anomalous electron-ion friction is sufficient to shape the peaked density profile into a
flat density profile with the same central density. Here, the anomalous friction coefficient is
constant, however this approximation is sufficient to model the basic features of the HDH-mode.

Reducing the anomalous coefficent leads to a better confinement. In the last example the
particle confinement time grows from τp = 13.7 ms to τp = 31.4 ms. These numbers depend
on the choice of the effective ionisation rate K0 and their absolute values may not be correct.
However, the growth by a factor 2.3 is correct and fits to the experimental results. Since we
kept the temperature constant in these simulations , the energy confinement time grows by the
same factor.

In the case of rigid boundaries the ion rotation is rather small since eddy viscosty provides a
strong momentum loss to the boundary. This is not the case when we impose the free boundary
conditions. There is no momentum loss to the boundary but eddy viscosity will lead to rigid
rotation without velocity shear. In this case we infer from Eq. (112) that the ion poloidal
velocity is smaller than the electron velocity by the factor me/Mi. The mass ratio determines
the relation.
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7 Conclusions

In this paper we have investigated the Reynolds averaged momentum balance in a plasma
cylinder. The general ansatz includes an arbitrary number of particle species, however the
numerical calculations have been restricted on a two-component plasma. In a cylindrical model
neoclassical effects are small and negligible. However, the turbulence driven by gradient driven
instabilities introduces some new effects which may also be relevant in toroidal plasmas. In
particular, turbulent shear viscosity or eddy viscosity shapes the poloidal velocity of the plasma
constituents and the diamagnetic current. Turbulent shear viscosity contributes to anomalous
plasma losses as does the enhanced friction induced by turbulence. Including shear viscosity
leads to second order differential equations for the poloidal velocity and as a consequence the
linear and algebraic relation between radial fluxes and gradients is no longer valid. In a turbulent
plasma where eddy viscosity and anomalous friction govern the poloidal velocity profile, Fick’s
law does not hold.

The radial electric field only occurs in the radial momentum balance; the poloidal momentum
balance is not affected by the electric field. As shown, the electric potential can be eliminated
and after the poloidal momentum balance has been solved the electric field is computed as the
last step. If the ion diamagnetic current has been slowed down to zero the ion pressure gradient
is balanced by the radial electric field. This example is shown in the numerical calculations.

The eddy viscosity is the effect of turbulent inertial forces and because of the larger mass, ion
viscosity is much larger than electron viscosity. In case of Dirichlet boundary conditions (zero
poloidal velocity at the boundary) large ion viscosity slows down the diamagnetic ion current to
nearly zero and the plasma is mainly confined by the electron diamagnetic current. In this case
plasma confinement depends on the anomalous effects shaping the radial profile of the poloidal
electron velocity.

In the classical model without shear viscosity boundary conditions on the poloidal velocity
are not required. However, solving a differential equation of second order needs boundary
conditions. These boundary conditions reflect the physics at the boundary, which can either be
a limiter, a material wall or a last magnetic surface without contact to material obstacles.

The dependence of the anomalous viscosity on the velocity shear can give rise to multiple
solutions and bifurcation. Linearisinig the non-linear eqquations allows one to determine the
bifurcation point and to formulate necesary conditions for bifurcation. The relation to the
Stabler-Hinton model has been discussed and it can be shown that a threshold in cold gas
refueling exists below which the bifurcation does not occur.

Since the aim of the numerical calculations was to simulate some features of the HDH-mode
in Wendelstein 7-AS, the energy balance has been neglected in this paper. The temperature
remains nearly unchanged in the transition to the HDH-mode. In general, however, transition
to H-mode depends on the heating power, and therefore the energy balance will be taken into
account in future investigations.

As the main result, we found the important role of the anomalous viscosity. Reducing the
turbulence, anomalous shear viscosity and anomalous friction coefficients lead to an increase of
the diamagnetic current and a steepening of the plasma pressure gradient. Furthermore, the
reduction of the viscosity shifts the peak of the diamagnetic current towards the plasma boundary
and thus to steeper pressure profiles in the edge region. For simplicity we have assumed that the
anomalous viscosity is a constant and independent of the radial position. Localizing anomaly
to the edge region would enhance the effect. Therefore, the formation of a transport barrier can
be understood as a reduction of the anomalous shear viscosity accompanied by a shift of the
diamagnetic current towards the plasma edge. Since the sum of the poloidal viscous forces is zero,
the poloidal ion velocity of a two-component plasma is small and negligible if the ion viscosity
is more than 10 times larger than the electron viscosity. The radial electric field is determined
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by the ion pressure gradient. Steepening the pressure gradient also leads to a steepening of the
electric field and its gradients.

What is the physics behind the formation of a transport barrier? Since the viscosity reduces
the poloidal velocity and thus the diamagnetic current, any reduction of the viscosity increases
the diamagnetic current and improves the confinement. At constant gas input, this effect leads
to a growth of the density. With growing density, the particle source and the radial particle flux
are shifted towards the plasma edge. Since the radial particle flux times the magnetic field is the
driving force of the poloidal rotation, this implies that the driving force is also shifted towards
the plasma edge and thus localizes the diamagnetic current more and more to the edge region.
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