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Abstract 

The status of ion beam data analysis codes dedicated to Rutherford backscattering, elastic 

recoil detection analysis, and non-resonant nuclear reaction analysis, is reviewed. The most 

important methods and approaches employed are discussed. The stopping power and 

scattering cross section databases used, the ion-target interaction physics, the experimental 

and detection system characteristics, and the structure of samples all have a strong impact on 

the analytical results. The models and algorithms used by different codes are reviewed and 

discussed in detail. Limitations in existing codes and perspectives for further developments 

are presented. The importance of ascertaining the correctness and accuracy of different 

methods and codes used in ion beam data analysis is stressed. 
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I. Introduction 

 

Computer methods in the data analysis of ion beam techniques date back to the 1960’s 

and 1970’s. These techniques were developed in parallel with the beginning of the new 

semiconductor and other high-tech technologies. New needs for ion beams in the production, 

modification and characterization of novel materials arose in semiconductor and thin film 

technologies. Ion implantation was established as the most versatile and controllable 

technique for introducing small amounts of impurities in materials. The superb structural 

characterization capabilities of ion beams were recognized in the micrometer and sub-

micrometer range. As analysis problems and samples became increasingly complex and 

detailed, the resulting spectra became too complicated to be treated analytically or with 

simple computational methods. Concurrently, computers were rapidly developing into 

standard tools in nuclear physics laboratories, addressing a multitude of computational tasks, 

including both data analysis and accelerator control.  The large mainframe computers of the 

60’s evolved into the PC in the 80’s, and to the nearly ubiquitous present in laboratory 

equipment towards the 2000’s. 

In this paper, we concentrate on numerical codes dedicated to the Rutherford 

Backscattering Spectrometry (RBS), Elastic Recoil Detection Analysis (ERDA) and non-

resonant Nuclear Reaction Analysis (NRA). These three techniques share characteristics of: 

(i) incident ions with similar velocities, (ii) a single beam energy, and (iii), detection of a 

massive particle (e.g. ion or atom). While non-resonant NRA analysis codes are included, we 

intentionally exclude resonant NRA methods, which scan the incident beam energy.  
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Numerous software packages are presently being used by the community for ion beam 

analysis, including both general purpose tools suitable for one or more techniques and codes 

dedicated to specific problems or techniques.  However, to date no systematic effort has been 

made to validate these codes, or even to compare results obtained from various codes applied 

to the same problems. Consequently, ion beam analysis practitioners are forced to use codes 

whose validity, correctness and accuracy have never been validated beyond the authors’ 

efforts. 

The International Atomic Energy Agency (IAEA) previously sponsored  

intercomparisons of gamma ray analysis software packages 1, alpha particle spectrometry 

software packages 2, and particle induced x-ray emission (PIXE) analysis packages 3. The 

present study is based on, and significantly extends, the report 4 of a technical meeting on the 

“Status of Software for Ion Beam Analysis in Materials Development”, organized by the 

IAEA in 2002. The IAEA is currently organising a round robin exercise aimed primarily at 

the intercomparison of RBS, ERDA and non-resonant NRA software packages. Within this 

endeavor, both theoretical calculations and results of the analysis of experimental data 

obtained by using various codes will be compared.  

We review here the history and current status of ion beam data analysis and simulation 

software, with particular emphasis on RBS, ERDA and non-resonant NRA techniques. A 

historical perspective serves to outline the major methods and approaches employed, while 

also introducing more recent trends and directions. The influence of the fundamental 

databases required for most packages, particularly stopping powers and cross sections, is 

discussed.  Fundamental physical processes relating to ion-target interaction are discussed 

within the context of the various computational algorithms and approximations used to model 

spectra, pointing out known limits of existing approaches. This is followed by a discussion of 
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the influence of the measurement system on spectra, and again the approximations and 

algorithms required to model these effects. Finally, approaches to address sample 

characteristics, such as roughness, porosity, and crystalline structure, are mentioned.  While 

distinct from issues of simulation validity, methods and algorithms used by codes to 

automatically or semi-automatically extract elemental concentration depth profiles are also 

reviewed. Characteristics of 12 ion beam data analysis software packages are presented in 

Tables 1 through 8. 

 

II. History of computer data analysis in ion beam techniques 

 

This section surveys the historical development of computer based data analysis applied 

to ion beam techniques. We restricted this discussion charged particle spectra analysis for 

RBS, ERDA and non-resonant NRA techniques. Codes are divided into five classes roughly 

following the historical development of the field.  Class A) includes programs developed  

from the early 70’s designed to solve specific problems without the explicit potential to 

analyze the full general case spectrum.  Classes B) and C) developed in the 80’s and 90’s to 

tackle the complete general case.  Class B) encompasses codes that employ direct analysis 

methods to unfold the spectrum without detailed assumptions of the sample structure.  Class 

C) codes employ indirect methods generally starting from an assumed sample structure and 

simulating theoretical spectra to be compared with an experimental spectrum.  Programs in 

these two classes are often capable of simulating both RBS and ERDA spectra, and for some 

NRA spectra. The fourth class D) includes more recent packages with algorithms capable of 

treating the more complex beam, sample, and experimental interactions and including 

advanced levels of automation. Many of the currently used software packages fall into this 

category almost all adopting the theoretical spectra simulation approach. A fifth class E) is 
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included for software packages that apply first-principle type simulations of the spectrum 

development, such as Monte-Carlo approaches.   

In each of these classes, only data analysis applications will be considered. For 

example, simulations of physical processes such as channeling have not been included.  It is 

also realized that no review can be absolutely inclusive, and that many developments in the 

calculations and formalism of the ion beam data analysis techniques are omitted.  This is 

especially true within Class A where topics considered relevant to later developments and 

explicit computational and computer references were given preference. Several codes not 

explicitly included in this section are, however, included in later sections. A literature search 5 

using keywords such as RBS and Rutherford backscattering or ERDA and elastic recoil 

detection return well over 10 000 and 1000 entries, respectively. It is clearly not possible to 

include all relevant publications and any selection is bound to be subjective.  Other short 

reviews of RBS data analysis software can be found in the literature 6, , ,7 8 9, and a more 

extensive survey can be found in a recent article by Jeynes et al. 10. 

 

Class A) 

In 1971, Ziegler and Baglin 11 published a pioneering article considering, for the first 

time, computational modeling of many physical phenomena in RBS. The authors describe the 

principle of slab analysis for the calculation of spectra, divided the sample into thin layers. 

Scattering kinematics, stopping powers and cross sections were used to obtain ion energies 

related to the layers and scattering from the layers. A deconvolution calculation was included 

to correct for the resolution effects and the Optical model was considered in handling non-

Rutherford cross sections.  

Computational modeling of other essential physical effects in ion scattering where 

explored throughout the early 80’s. The origin of the low energy background in 

5 



 

backscattering spectra due to plural and multiple scattering was studied by Weber and 

coworkers 12, ,13 14 in a computer code DRBS.  An analytic formula was developed to predict 

the background below 1 MeV during proton backscattering, with 20% accuracy, based on the 

ion energy, sample thickness and atomic number. The effect of different surface topography 

15 and periodic structures in samples 16 were studied by Edge and Bill experimentally and by 

computer calculations based on a statistical model for a variety of surfaces and grating 

structures, yielding a unique relationship between the energy spectrum and surface parameters 

for random roughness. 

Issues specific to data analysis were also reported extensively starting in the 70’s.  The 

fundamental ambiguity of ion beam analysis, the non-unique correspondence between the 

spectrum and sample, and other issues peculiar to computer data analysis were studied by 

Rauhala 17, Alkemade et al. 18 and Butler 19. Liau 20 described a technique to deduce 

individual signals from overlapped signals in RBS computer simulations by using two slightly 

different incident ion energies. Problems in extracting accurate depth profiles due to finite 

detector resolutions in nuclear reaction or RBS spectra were studied by Lewis 21, using a 

method combining a Taylor’s expansion of the spectrum yield with calculations of 

convolution integrals. Rickards 22 pointed out how accurate edge positions and target 

thicknesses could be extracted from thin sample spectra, which are represented as convolution 

integrals. O’Connor and Tan 23, and Yang and coworkers 24,  25 studied especially heavy ion 

RBS (HIRBS) and developed realistic simulations for heavy ion resolution effects. Vickridge 

and Amsel 26,27 described a PC implementation of a stochastic theory for charged-particle 

energy loss to provide an accurate computational method SPACES for straggling in the 

simulation of excitation curves during narrow-resonance depth profiling.  Hnatowicz et al. 28 

described a non-linear least-squares fitting program RBSFIT where the spectrum is 

represented as a combination of a variable number of three basic shapes; strip, bulge and 
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Gaussian. Independent of the physical nature of the problem, the positions, amplitudes and 

areas of these basic spectrum components are obtained. 

 

Class B) 

The direct spectrum analysis was introduced by Børgesen et al. 29 with a computer code 

SQEAKIE to reconstruct the depth profile by closed form analytical calculation from 

separated signals of the spectrum. This program determined the sample composition as a 

function of depth by using matrix inversion to solve a set of linear equations for each element 

at each layer in the sample. This approach can be straightforward and effective in many cases.  

However, problems arise with, for example, the implementation of straggling and the stability 

of results due to uncertainties in the stopping database and measurement noise. This program 

has been used as a reference against later computer programs. For the case of two overlapping 

signals from a binary compound, iterative deconvolution procedures starting from the surface 

were suggested. Petrov et al. 30 examined computer analysis of spectra from binary compound 

films and showed how the lighter element signal could be omitted in the calculation. A 

SQEAKIE - like analysis routine was extended to an automatic iterative fitting code (BASF – 

backscattering spectrum fitter) for samples with up to five elements by Eridon and Was 31. 

Other programs utilizing similar direct approaches have also been reported 32,33. Zhang et al. 

34 studied the deconvolution of RBS spectra for binary mixtures using Fourier transform 

techniques. Edge35 reported an iterative technique for depth profiling based on spectra taken 

at different angles. Michaelian and Andrade 36 presented a direct procedure for homogeneous 

multielemental samples. A more general matrix inversion code, BEAM EXPERT (see Tables 

1 – 8), was released by Kogan et al. 37.  
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Class C) 

In 1976 Ziegler and co-workers 38, ,39 40 published the first full simulation program code 

IBA (see Tables 1 – 8) utilizing the indirect method.  The principle of calculations was the 

same as earlier described by Ziegler and Baglin.  Beginning from a hypothetical sample 

structure, the corresponding theoretical RBS energy spectrum was simulated. This was 

accomplished by dividing the sample into slabs or slices in depth (see also for example 41), 

chosen sufficiently thin to render energy loss and cross section changes negligible within any 

slice. Tables of energies on the ion inward and outward paths were calculated from known 

stopping cross sections, with separate tables for scattering from every target atom species in 

every slice maintained on the outward path. The total scattering contributions from all slices 

where then convoluted with the detection system resolution to produce a final theoretical 

spectrum. Experimental and theoretical spectra were compared, followed by a few user-

initiated iterations of the sample composition, until sufficient overlap was achieved.  The 

hypothetical sample structure was then taken to correspond to the real sample structure. In 

addition to this general computational principle, detailed interactions could be readily 

incorporated in various stages of calculations. 

In 1978 Müller and coworkers 42 studied proton and heavy ion backscattering spectrum 

data analysis using a similar simulation program. The stopping of heavy ions was extracted by 

using polynomials from the tabulations of Northcliffe and Schilling 43. Rapid changes of 

composition vs. depth were examined. Careful handling of isotopes and detector resolution 

effects was found to be important for simulation heavy ions spectra. 

Throughout the 80’s, several similar simulation codes were developed. Marcuso et al. 44 

reported a program DAP (Deuterium Analysis Program) for analysis of D(3He, α)H reaction 

measurements. The program used reaction kinematics, Bragg’s Rule for stopping cross 

section additivity, and experimental reaction cross sections to produce an α-yield energy 
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spectrum which could be compared with experimental data. The DAP algorithm treated 

effects such as angular divergence and angular spread of ions, geometric effects, and Bohr 

straggling finite detector resolution in the final convoluted α-spectrum. 

 Rauhala 45 introduced automatic iterations in RBS data analysis through a full 

simulation procedure where parameters (signal heights, widths, areas, etc.) from an 

experimental spectrum were used as input.   The code automatically iterated the simulations, 

rapidly converging to a theoretical spectrum exactly reproducing the input parameters, and 

yielding a final analysis of the sample. 

Simpson and Earwaker 46,  47 extended the deuterium nuclear reaction data analysis to 

handle arbitrary reactions.  

Kido and Oso 48 described three types of computer simulation codes for the analysis of 

random and channeled RBS spectra: multielemental, multilayered structures, specimens with 

inhomogeneous distribution of impurities and single crystals damaged by ion implantation. 

Surface and interface roughness effects were also discussed. 

Doolittle 49,50 reported of a simulation program RUMP (see Tables 1 – 8) used in 

Cornell University, which was optimized for small computers. This program later became the 

first widely used RBS (and later also ERDA) data analysis software for PC’s. The code 

optimized performance by using approximations to the stopping powers and scattering cross 

sections integrals across thick slabs, retaining fine structure only in regions of varying 

compositions.  The code also introduced an automated sample structure parameter search 

(PERT) with quantitative estimation of uncertainties.  Other authors have published 

extensions to the program, e.g., Knox et al. 51 - fits of non-Rutherford cross sections included 

in RUMP - and studies of stopping cross sections adopted in RUMP by Climent-Font et al. 52. 
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Butler described a desktop computer program 53 and an automatic display 54 for 

simulating energy spectra of He ions scattering into two concurrent detectors, one at the 

backward and one at the glancing angle geometry.  

Computer data analysis of proton backscattering with an emphasis on non-Rutherford 

scattering cross sections was studied by Rauhala 55. 

In the subsequent decade, numerous additional codes have been developed with ever 

increasing versatility 56, , , , , , , , , , ,57 58 59 60 61 62 63 64 65 66 67. All ions, both RBS and ERDA, non-

Rutherford cross sections, plural and multiple scattering, finer details, such as corrections for 

basic screening and straggling, detector response, etc. have been incorporated. Some of these 

codes were also capable of automatic or semiautomatic iterations. 

Vizkelethy  reported a simulation program SENRAS for RBS, ERDA and NRA 

spectrum analysis. Any ion-target combination could be treated, with stopping powers based 

on the ZBL 68 formalism and cross sections taken from experimental data.  

More specific applications were studied by Guo et al. . They investigated the simulation 

of RBS spectra for laterally inhomogeneous sample structures, semiconductor device edge 

and sidewall structures, reporting a program for treating RBS data from three-layer stripe 

structures representing features of a three dimensional semiconductor integrated circuit.  

The simulation approach by Serryus et al. 58, ,59 60 introduced a “retrograde” method in a 

code PERM (see Tables 1 – 8), where the ions on the outward path are followed in a “time 

reversed” direction: ions recorded at the detector are assumed to penetrate back into the 

sample with an increasing energy in the sample. This method is more effecient as stopping 

powers need to be computed only once for each element (isotope) in the sample. 

Saarilahti and Rauhala  modified and extended the earlier software to include effective 

and extensive calculations fully utilizing the PC environment in a code GISA (see Tables 1 – 
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8). Examples were shown for ion backscattering data analysis for 12 MeV 12C ions incident 

on an YBa2Cu3O7 superconductor and 4.3 MeV 4He ions on a SrS film with non-Rutherford 

contributions from O and C.  

Skelland’s software package BAS  has special features for the analysis of charging 

effects in RBS spectra from insulators. 

The DVBS code (see Tables 1 – 8) developed by Boháč and Shirokov  incorporated a 

menu-driven interface with powerful capabilities to change automatically the concentration of 

a given element in a given element based on the difference between data and simulation in the 

corresponding energy range. 

An interactive simulation software package RBX (see Tables 1 – 8) was published by 

Kótai 9 in 1994. This package, which can perform automatic iterations, is versatile, general 

and widely distributed. 

The simulation code BSCAT by Rachel  was created to deal with the RBS and NRA 

data analysis of multielemental and multilayer samples prepared by the ion beam assisted 

deposition. 

Nishimura and coworkers 69 introduced nuclear model calculations of scattering cross 

sections in connection with a simulation code. By performing a partial wave phase-shift 

analysis and describing the 16O(He, He)16O resonance at 3.045 MeV by a single-level Breit-

Wiegner formula, the authors implemented the cross sections in the simulations as a two-

dimensional matrix of energy and scattering angle from 2.0 MeV to 3.2 MeV and from 70o to 

178o. Examples of YBa2Cu3O8 and Nd1+xBa2-xCu3O7-δ spectrum analysis were presented. 

 

Class D) 
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By the end of the 1990’s, simulation and ion beam analysis programs had developed in 

a multitude of directions. Several codes handling very general data analysis problems and 

various ion beam analysis techniques like RBS, ERDA, NRA etc. were, and are, in common 

use.  Many were highly automatic, while others focused on addressing specified problems 

with precision and completeness, such as in Marin et al. 70 Kótai 71, Weller (code Particle 

Solid Tools, see Tables 1 – 8) 72, and Stoquert and Szörényi 73.  The most recent software 

developments have evolved to incorporate many of the specific refinements into general 

codes coupled with automated spectrum evaluation and sample structure determination. 

In 1997, a computer program WiNDF (see Tables 1 – 8) 74,75, capable of extracting the 

depth profiles of elements in samples by automatic iterations without any user interference, 

was presented by Barradas and coworkers. The code marked a significant departure from 

existing packages by using a simulated annealing algorithm 76,77
, requiring the user only to 

input the data to be analyzed, the experimental conditions and the elements present. The 

analysis of several spectra from different techniques such as RBS, ERDA, etc. could be 

handled simultaneously and interrelated. This code is general, not optimized for any given 

system.   In 2000, Barradas and Vieira introduced a new artificial neural network (ANN) 

algorithm approach 78. This algorithm is optimized for a given system rendering instant 

analysis of large batches of similar samples. More than 30 articles have been published on 

WiNDF and ANN or their application to ion beam analysis, see references of  . 

Another general software package SIMNRA (see Tables 1 – 8) for RBS, ERDA and 

NRA data analysis was introduced by Mayer in 1997 79, ,80 81. The program, with a fully 

graphical interface, handles all ion-target combinations in any geometry including 

transmission with a capability of dual scattering calculation. It also contains an extensive 

database of more than 300 non-Rutherford scattering and nuclear reaction cross sections. 
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Tosaki and coworkers 82 considered the influence of energy straggling for rapidly 

changing cross-sections in a code BS1 (see Tables 1 – 8) , for instance around a sharp 

resonance, and showed that the peak profile due to a sharp resonance is very sensitive to the 

degree of energy straggling. 

Many of the RBS data analysis programs referred to in C) included the ability to 

simulate also ERDA and NRA spectra measured with the conventional Si-charged particle 

detector. ERDA spectrometry has recently shifted to using additional specific detection 

systems, such as time-of-flight (TOF) or gas ionization detectors. Analysis of spectra taken 

with such systems is more dependent on the experimental technique and apparatus, and 

similar general data analysis software, as in the case of RBS, do not yet exist and may not be  

feasible. Software for ERDA are thus usually tailored to solve a variety of specific data 

analysis problems, such as the channel-depth conversion 83, , , , , , ,84 85 86 87 88 89 90 or to study surface 

roughness effects 91,92. Extensive studies based on analytical calculations on the effects of 

energy-spread phenomena and multiple scattering in the depth resolutions (the DEPTH code, 

see Tables 1 – 8) 93, 94 , and in ERDA data analysis have been published by Szilágyi 95 and 

Wielunski et al. 96. Heavy ion ERDA with magnetic spectrometers is often used to achieve 

very good depth resolution, even atomic resolution, near to the surface 97. Simulations taking 

into account the main energy spread effects for high-energy resolution HI-ERDA 

measurements have been performed . To extend the analytical calculations, many recent 

approaches for treating ERDA utilize Monte Carlo techniques. 

 

Class E) 

In addition to computational techniques intended for data analysis, other methods are  

also widely used in ion beam physics. First principles methods, primarily Monte Carlo and 

Molecular Dynamics calculations, are increasingly being used to study physical processes 
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taking place in lower energy interactions, such as ion implantation. The most recent codes are 

also capable of simulating the higher energy processes relevant for ion beam analysis, using 

high performance computer systems to obtain results in reasonable time. These include, e.g., 

Monte Carlo treatment of multiple scattering, rough targets, ion transport through time-of-

flight detector systems etc. Such computational techniques are rapidly approaching a stage 

where they could be incorporated in real time data analysis calculations. 

Monte Carlo calculations have been used for example to evaluate the effects of surface 

roughness in RBS by Shorin and Soshin 98 and multiple and plural scattering in RBS spectra 

by Bauer, Biersack and Steinbauer 99, ,100 101, Li and O’Connor 102, Eckstein and Mayer 103, 

Pusa et al. 104; and in heavy ion ERDA spectra by Sajavaara, Arstila and coworkers 105,106 and 

Franich, Johnston and coworkers. 107,108. 

 

 

III. Fundamental databases 

 

 The validity of ion beam data analysis is ultimately linked to a few physical processes 

and to a small number of critical databases.109. Fundamentals include understanding of the 

energy transfer between energetic particles and the sample, commonly treated as a stopping 

power cross section, and the strength of the nuclear interactions or scattering cross sections. 

The accuracy of any simulation software is hence critically dependent on the accuracy of the 

underlying models and/or databases, as well as the specific implementation algorithms. 

 The depth sensitivity of ion beam analysis, i.e., the correspondence between detected 

particle energy and areal density, arises from the slowing of incident particles in the target 

material. Although physically associated with discrete events, the average behaviour is 

modelled as stopping cross sections.  For simulations, the semi-empirical models developed 
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by Ziegler, Biersack and co-workers in  the 70’s are most commonly used.  These high-energy 

models, appropriate for most ion beam analysis conditions, use a Bethe-Bloch formulation 

approach with parameters derived from a large database of compiled experimental 

measurements. Any projectile ion, any elemental target and a wide energy window from keV 

to GeV energies can be treated. The models continue to be developed and updated within the 

framework of the SRIM (TRIM) 110 package. Accuracy is thought to be of the order of 5% for 

MeV 1H and 4He projectiles, but worse for heavier ions and lower energies. The older 

formulations may be less accurate than the newer ones. Recently the SRIM package has 

included a module that can be directly incorporated into the code. Other databases also exist, 

including PSTAR, ASTAR, and MSTAR 111, ,112 113, for protons, alpha particles and heavier 

projectile ions, and an empirical formula for ions with energies of 0.1-1.0 MeV/amu in 

elemental targets114. The KKKNS compilation 115 is useful for particular ion/target 

combinations, including the important case of He in Si. 

 The stopping in compound samples and mixtures is usually treated in simulations by 

using the Bragg additivity rule. In addition, stopping cross sections are presumed to be 

independent of target density.  The vast majority of simulation packages neglect known 

deviations from these rules, although some corrections and modifications are in use to 

improve accuracy. 

 Quantification of atomic concentrations is based on the scattering or reaction cross 

sections, which are assumed known in the data analysis. For elastic scattering in RBS and 

ERDA, the pure Coulomb scattering or Rutherford scattering cross sections can be 

incorporated analytically. The validity of the Rutherford model is, however, restricted to an 

energy window for a given projectile, target and scattering geometry. The low energy limit is 

set by electronic screening and is usually treated in simulations as a few percent correction 

116, ,117 118. Recently an algorithm for the efficient computation of screened Coulomb interatomic 
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scattering has been presented 119 The high-energy limit is set by the onset of interactions 

between the projectile and the atomic nucleus. Above this threshold, elastic scattering cannot 

in general be predicted by theoretical models, e.g., the optical model or the R-matrix theory, 

without experimental data to establish model parameters. Used with adequate experimental 

data, however, these models are very useful in extrapolating cross sections to angles and 

energies where data are not available 120, , , , ,121 122 123 124 125. There are a several computer 

databases of scattering cross sections available (NRABASE 126, SIGMABASE 127) containing 

data mostly for 1H and 4He ions backscattering from light elements for some fixed scattering 

angles relevant for ion beam analysis. There is a growing need for additional data, as well as 

for the critical evaluation of data and the development of additional theoretical model 

calculations. A code SIGMACALC for calculating the cross sections from tabulated 

theoretical model parameters is under development by A. Gurbich under the auspices of the 

IAEA. This action has also led to the integration of NRABASE and SIGMABASE into a 

single database called IBANDL 128. 

 The internal representations of the models and/or databases, and the algorithms for 

implementation, differ from code to code. These differences are likely to produce additional 

deviations in simulation results beyond those attributable to the input data or models. 

 

IV. Basic simulation status 

 

 It is reasonable to compare ion beam analysis simulation codes since the fundamental 

physics of RBS, ERDA and NRA is well established and there is substantial similarity in the 

basic algorithms of must current packages. Almost all of the codes developed for general 

purpose analysis have adopted the indirect simulation method, using similar basic algorithms 

of energy loss calculations based on sub-division of a hypothetical layered target structure 
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into thin slices. Calculation of stopping and scattering cross sections are also, in principle, 

similar. All ultimately achieve, as a result of data analysis, substantial agreement between the 

experimental and theoretically simulated spectra, yielding good absolute accuracy in spectrum 

analysis and sample characterization. 

 The codes, however, differ widely in the details of how they handle the fundamental 

physics and the basic simulation procedures. Whether this leads to differences in the 

calculated spectra remains untested. We now cover several aspects where multiple approaches 

can be implemented. 

 The sub-division of target layers into slices is handled in many ways. The simplest 

algorithms adopt a fixed pre-determined maximum slice thickness. This can lead to poor 

accuracy in some cases, especially when the angle of incidence and detection differ widely. 

Alternatively, a different fixed sub-division can be adopted for incoming ions and for the 

outgoing detected ions.  The energy loss through any given slice, dependent on the local 

stopping power, is usually kept small to retain accuracy in the simulations and hence sets a 

maximum slice thickness for a given ion and target.  Some codes take a mixed 

analytical/numerical approach by using expansions of the stopping power and cross sections 

to handle much thicker slices with comparable accuracy.  Equally, since slices that are 

substantially thinner than the energy resolution (spread) at a given depth are computationally 

inefficient, efficiency can be improved by dynamically adjusting the slice thicknesses taking 

the stopping power and the energy resolution at the current depth into account. 

 The most widely used method is to follow the beam on its way from the surface into 

the sample where it is scattered at a given depth, and then follow each of the scattered 

particles on the way out to the surface. This leads to a table of energies of the detected beam 

that must then be interpolated to the energies of the MCA bins actually measured. In the 

retrograde method  the beam is followed in time-reversed mode, starting with the energy 
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actually detected. This can lead to a more efficient calculation since fewer interpolations are 

required. 

 While Rutherford scattering cross sections are handled analytically with corrections, 

non-Rutherford cross sections are almost invariably implemented as look-up tables. Simple 

interpolations for the required energy can be made, but this will lead to inaccuracies for very 

sharp resonances. Various solutions to this problem have been adopted, such as using the 

cross section in integrated form (thus using the correct total cross section for a given slice), or 

by forcing the slices to be sufficiently thin to cover all the points in the known cross section 

table, which is slower but may be more accurate129. Tabulated values may also be fit to 

continuous differentiable functions (such as a spline) and handled analytically, or 

implemented as specific nuclear model calculations. 

 Stopping power cross sections can also be stored as look-up tables and interpolated 

during calculations. This approach is fast but may ignore variation of the stopping power 

inside a slice. If a differentiable continuous function is used to represent the stopping curve, 

this variation can be taken into account analytically, leading to improved precision at some 

computational cost. 

 The discrete nature of ion stopping events leads to energy loss straggling and a spread 

in energy as the incident beam penetrates a target.  Implementations of straggling vary widely, 

ranging from being completely ignored to detailed algorithms, which address asymmetric 

distributions near the surface. The physics included in some of the more advanced energy loss 

straggling algorithms will be covered in the next section. Most of the basic simulations use a 

Gaussian-shaped resolution function with varying width through the sample.  This straggling 

spread is convoluted with a detector resolution function, also normally Gaussian, to yield the 

final spectrum.  
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 Finally, some codes have restrictions on the number of elements and layers allowed in 

the sample description. When restrictions on the number of slices exist, problems can arise 

when a very thin slice description is required (for instance, in high-resolution experiments 

using a magnetic spectrometer, or if the cross section has very many sharp resonances). 

 In the following sections, finer details and capabilities of the simulation codes are 

reviewed. This review does not purport to discuss the physical origin of all of these 

phenomena, but rather only their implementation in data analysis codes. 

 

V. Further simulation physics 

 

 While all simulation codes treat basic ion stopping and scattering phenomena, many of 

the subtle features in spectra arise from more complex interactions.  Some of these effects 

include energy loss straggling, multiple and plural scattering. Energy loss straggling, as 

mentioned above, is a consequence of the statistical nature of the energy loss and results in a 

degradation of the spectrum with depth. The term plural scattering describes trajectories 

where the ion suffers several large angle scattering events before being detected. A particular 

case is double scattering, corresponding to two large angle events. Multiple scattering refers 

to the succession of many small angle scattering events, leading to an angular broadening in 

the beam path. This separation between plural and multiple scattering is, to some extent, 

arbitrary as it depends on the definitions for "large" and "small” angles. However, the effects 

on the experimental spectra are quite distinct, and the theoretical treatment of plural and 

multiple scattering is usually treated separately. 

 Some codes do not model energy loss straggling. Those that do implement the Bohr 

model 130, with or without the Chu correction 131,132. Another issue, that pertains not only to 

energy loss straggling but to all energy resolution effects, is the slope of the stopping power 

19 



 

with energy which can broaden or narrow the distribution, an effect first treated by Tschalär 

133, ,134 135. 

 The energy straggling distribution function is not strictly Gaussian, an effect which 

can be taken into account either by using a measured resolution function, or by some 

convenient analytic form.  The former has not, as far as is known, been implemented in any 

codes while the latter is incorporated in some.  (Although non-Gaussian distributions have not 

been used in direct simulations, such a resolution function has been used to deconvolute the 

effect of the system resolution from data 136), A particular case is the asymmetric energy loss 

straggling near the surface of the sample, which no code for RBS, ERDA, or non-resonant 

NRA currently implements. This effect is likely to be observable only with high-resolution 

systems. 

 To faithfully reproduce spectral features, especially from sharp resonance scattering, 

the energy dispersion from straggling must also be incorporated into the scattering 

calculations of each layer.  For any layer, straggling of the incident beam energy creates a 

distribution of incident energies, which scatter with varying cross sections to yield a modified 

distribution of scattered energies.  This new energy distribution then propagates with further 

straggling on the outward path.   This is the most accurate method, and possibly the only one 

able to reproduce the signal of sharp resonances occurring deep in the sample.  However it is 

difficult to implement and increases calculation times by several orders of magnitude. Codes 

implementing such algorithms include the BS1 code, dedicated to the RBS analysis , and 

SPACES, a code for resonant NRA . 

 Multiple scattering models are based on the Sigmund theory 137, extended by Amsel et 

al. 138 and implemented by Szilágyi et al. . Multiple scattering manifests itself mostly as an 

additional contribution to the energy spread  and as small low energy tails on signal edges  

arising from non-Gaussian wings in the energy distribution. Most analytic codes do not 
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directly calculate multiple scattering. However, the energy resolution loss effects can be 

incorporated , including or not non-Gaussian resolution function shapes. The theory assumes 

symmetrical scattering , which is not true in grazing angle experiments, leading to increasing 

inaccuracies with depth. The small tails have not, so far, been modelled analytically. The most 

realistic calculations, including all the effects, can currently only be treated properly with 

Monte Carlo methods 98-107. In this case, multiple scattering cannot be distinguished from 

plural scattering, which is thus also included. 

 Plural scattering leads to an increase of the yield at low energies, and to a low energy 

background 139. Most analytic codes do not fully model it, but double scattering has been 

successfully modelled for RBS 12, , ,13 14 103, with current approximations for ERDA being still 

unsatisfactory 140. All models imply the calculation of many trajectories, requiring several 

orders of magnitude more time than single scattering and leading to fairly long calculations. 

Most implementations impose a strict minimum scattering angle in the calculations (to avoid 

the singularity in the Rutherford cross section at 0º), leading to difficulties in modelling 

grazing angle experiments. Refinements taking into account the actual path of each trajectory, 

in comparison with the primary scattering event, can be made 141. Some analytic models have 

been proposed, but are of limited applicability 142,143. 

 

VI. Measurement system effects 

 

 Experimental spectra are also influenced by physical realities and limitations of the 

accelerators, detection systems, and methods of data acquisition.  Several of these effects, and 

the methods for handling them in simulation packages, are considered next.  There are large 

variations in this regard in the codes. This section will emphasis effects associated with solid-
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state detectors, since most codes model only such detectors.  A few packages are able to 

handle more sophisticated detection systems, such as time-of-flight, and are briefly discussed. 

 Geometric straggling for solid-state energy dispersive particle detectors (the most 

commonly used detectors in ion beam analysis) arise from the finite size of the incident beam, 

finite spread in angle of incidence, detector solid angle, and geometric path length 

distribution. Both kinematic and stopping power effects arise, with the two effects fully 

correlated 144,94. This leads to an extra apparent degradation of energy resolution (including at 

the surface), and may lead to minor changes in yield if the scattering cross section varies 

strongly with scattering angle. While many codes ignore this effect, some implement model 

for circular or rectangular detector shapes, as far as it affects the energy resolution (but not the 

yield). A summation of partial spectra over a distribution of exit angles can also be easily 

executed, but this approach is both slower and less accurate. 

 Geometric straggling for other detection systems requires a detailed understanding of 

the overall system, such as timing error in TOF systems, and is not yet supported in any 

analytic code. Only Monte Carlo codes currently simulate this effect properly. 

 Beam energy spread in the incident beam is an additional energy broadening that 

appears before any straggle broadening.  It is normally approximated as a Gaussian 

distribution and handled as part of the system resolution. 

 The detection system contributes significantly to the energy spread, depending on both 

the ion and the energy. For surface barrier detectors, this broadening is fairly constant with 

energy for H and He in the energy range normally used in ion beam analysis.  However, for 

heavy ions, the dependence is substantial and must be considered. Separate energy-dependent 

system resolution calculations for each ion can be realised. 

 Absorber foils in ERDA can be handled either as part of the sample or as part of the 

detection system. When considered as part of the sample, energy loss, straggling, foil 
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inhomogeneity, and all other effects normally considered are included in a natural way. Other 

approaches include: measuring and calibrating the foil as part of systems characteristics; pre-

calculating effects of the foil on beam energy and straggling as a function of incident ion and 

energy; or propagating the energy distribution through the foil. Monte Carlo calculations 

describe foils in a natural way. 

 Pulse pileup occurs when two ions reach a detector within a time response window, 

leading to a single erroneous event being recorded 145, ,146 147. Two low energy events are lost, 

replaced by one event at an energy that depends on the time lag between the two ions and the 

electronic pulse shape; the observed energy lying between that of the first event and the 

summed energy of both ions 148,149. This effect is proportional to the count rate, and hence 

important for high current or high Z measurements. Pulse pileup manifests itself as a high 

energy tail on peaks, and as changes in the exact shape of a plateau. Thus simple 

extrapolations of the signal observed at high energies are inadequate. Some codes simulate 

pileup as the auto-convolution of the raw data 150, or more precisely as a convolution of the 

data with the electronic pulse shape (dependent on the shaping time constant). The 

autoconvolution approach is fast, but only accurate if a pile-up rejector is used during the 

measurement. Other codes adopt more sophisticated approaches . However, unstable beam 

fluence (and thus count rate) during the experiment, as well as the low level MCA 

discrimination point prevent knowing the true yield to low energies and limit accuracy. 

 The pulse height defect for solid-state energy dispersive particle detectors is the 

difference between the actual energy of the ion incident on the detector and the energy 

reported 151. This defect arises from several different phenomena. First, ions lose energy 

traversing the dead layer of the detector. Second, some of the energy lost in the active layer 

does not lead to the creation of electron-hole pairs, but non-ionising processes such as phonon 

or lattice vacancy creation, related to the nuclear stopping. A third contribution arises from 
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the formation of a dense cloud of electron-hole pairs along the ion trajectory, with a higher 

rate of recombination, and an additional screening of the electric field increasing the 

collection time and recombination probability 152. A severe case may occur in NRA, when the 

energy of the reaction product is so high that ions are not stopped within the sensitive zone of 

the detector. In such cases, the normally Gaussian shaped amplitude response quickly widens 

and becomes asymmetric due to energy straggling in the depletion layer and other statistical 

effects 153. Finally, it has been proposed that the energy required to create electron-hole pairs 

may depend on the atomic number of the ion154.  

These effects lead to an apparent non-linear and ion-dependent energy calibration. In 

H and He scattering, it may represent a 1% difference in calculated yield 155. For heavy ion 

scattering, these effects can be major. Few codes directly model this effect. Some implement a 

polynomial energy calibration, which, if accurate, mask the effects. A full analytic calculation 

of the dead layer and of the nuclear stopping effects (which account for most of the pulse 

height defect) can be made, with the remaining effects being treated as a non-linear energy 

calibration 155,156. 

 Slit scattering leads to the production of the low energy incident ions with a broad 

angular dispersion. It depends critically on the experimental configuration, and leads mostly 

to a low energy background, fairly similar to that arising from plural scattering , ,157 158 159. Only 

Monte Carlo codes currently account for this effect. 

 Sample charging, which creates an electric field at the surface of the sample, 

effectively changes the energy of the incident beam.  In general, it is not modelled in most 

data analysis codes though the BAS code  has been developed for this special case. 

 

VII. Sample effects 
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 The sample effects discussed below include roughness, lateral inhomogeneity, 

porosity and crystalline structures. These effects are handled minimally in only a few of the 

existing data analysis codes. They can be treated in great detail in a Monte Carlo simulation 

98-107. The results of such simulations can then be parameterised and fed into analytical models 

to be incorporated in continuum data analysis codes. 

 Roughness is a very poorly defined concept, with a multitude of types and length 

scales, requiring potentially different approaches in simulation. A minimum classification 

should include, at the very least, substrate roughness, layer roughness, and surface roughness, 

noting that these concepts are, in most cases, correlated. For instance, a given substrate 

roughness may be propagated through all layers up to the surface, or a surface pit may extend 

down through several layers. 

 An additional difficulty is that ion beam analysis data are seldom adequate to 

characterise the roughness. For instance, the effects of interdiffusion and of layer roughness 

(with equivalent average depth) in a given interface are undistinguishable by RBS. Also, 

inhomogeneous layer thickness may be analysed as sample corrugation (although in some 

cases collecting spectra at different angles may help to distinguish between the cases 160). 

With few exceptions, a-priori knowledge of the roughness characteristics are required for 

correct analysis of the ion beam analysis data. This knowledge never really exists, as various 

microscopies probe very different spatial scales. None of the standard microscopy methods, 

i.e.,transmission electron microscopy, scanning electron microscopy (SEM), or atomic force 

microscopy can probe areas comparable to those averaged with the ion beam.   Larger areas 

can be analysed with SEM, but only the surface is accessible and propagation of this 

roughness into deeper layers must be assumed.  In this respect, ion beam analysis of 

roughness requires extra knowledge, complemented by further assumptions, and is thus 

approximate. 
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 Different methodologies for treating roughness effects have been developed 

15, , , , , , -49 73 91 92 98 161 175. The most accurate line of study is Monte Carlo simulation of known 

surface and interface features, but this also requires the most prior knowledge (or prior 

assumptions). In analytic codes, one approach is the summation of partial spectra over a 

distribution function of some sample characteristics, such as surface height distribution, film 

thickness distribution, step height distribution, or other. Correlation effects (such as incidence 

through a hill and exit through a valley and the like) are usually neglected.  Addressing such 

effects requires detailed knowledge of the roughness distribution. By using Bayesian 

inference, it can be also used to derive roughness distributions from measured RBS spectra176 

Another analytic approach, used for small levels of roughness, is to approximate its effect as 

an equivalent energy broadening in spectral features for given model types of roughness. This 

method is fast but has the most stringent limits of applicability. 

 Lateral inhomogeneities also exist over multiple length scales, leading to varying 

effects and different simulation approaches. If the length scale is large compared to the ion 

entrance and exit points, a single structure is probed by each given ion. In this case, partial 

spectra summation over distribution of sample structures is reasonable. However, if each ion 

crosses multiple structures along its path, only Monte Carlo simulations of known structures 

are likely to be accurate. In general, lateral inhomogeneity is more effectively studied using 

microbeam techniques. 

 Porosity can also have different scales. In nano-porosity, pore-induced stopping power 

changes must be considered. Analytic methods for the statistical averaging of the effect of 

pores (or inclusions, of which nano-pores are one particular case) have been developed for 

specific pore configurations. On the other hand, microporosity can be similar to the lateral 

inhomogeneity and/or roughness conditions, depending on the exact structure considered. 

26 



 

All the above mentioned sample effects, i.e., rough surface, lateral inhomogeneity, 

inhomogeneity in the thickness, voids, etc., increase the energy spread and lead to a 

corresponding decrease in the depth resolution. In this case a new energy spread contribution 

can be introduced which is connected to the structure of the sample, the so called “structure-

induced energy spread”. Investigating its dependence on the experimental parameters, more 

often on the tilt angle, allows one to obtain information on the sample structure, e.g., surface 

roughness of the substrate , inhomogeneity of the layers in multilayer systems 177 and pore 

structure in porous silicon 178, , ,179 180 181. To interpret the measurements on porous structures, 

Monte Carlo simulations were performed by the RBS-MAST code  taking a 3D sample 

structure into account.  

 The simulation of crystalline structures, including channelling and the effect of 

extended and point defects, is not normally handled in analytic codes. Some codes include 

limited models for given structures and types of defects that can be used for data analysis 71.  

To determine the depth profile of the defect distribution the knowledge of stopping powers of 

charged particles in the channelling direction of single crystals is very important182, 183. In the 

general case, Monte Carlo programs are used for simulating channelling and defects 184,185. 

 

VIII. Profile extraction 

 

 In realistic samples, the distribution of elements usually varies continuously with 

depth. The simple reduction of this distribution to layers of constant composition in 

simulation codes is thus often inadequate. There are a great variety of methods to handle the 

description of depth profiles and their extraction from the data. 

 The direct method described in the section II above converts each yield in a given 

channel into a concentration value. This relies either on an iterative calculation of stopping 
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powers from the data, or from stopping powers calculated for a user-input structure. Either 

way, it is necessary to separate the signals coming from different elements from each other, or 

at least that any signal superposition can be unambiguously solved. This is possible in many 

cases, particularly in heavy ion ERDA with mass or Z sensitive detectors, where the signal of 

each element is separated. The biggest inconvenience of this method, however, is that the 

profiles derived are not real concentration depth profiles since they still have the energy 

resolution convoluted. Other effects such as multiple scattering induced spread or geometrical 

straggling will also distort the profile obtained. Sample effects such as roughness will also 

result in an apparent concentration gradient, which is not real. One method of taking this into 

account is to use the apparent depth profiles generated with the direct method as raw data for 

a Bayesian inference analysis, based on a Monte Carlo calculations that considers all other 

effects, in order to derive the final depth profile 186.  

 The common goal of ion beam data analysis software that employs the indirect 

method is the extraction of concentration and thickness of samples, or more generally, of 

depth profiles. The first question is how the code can describe the sample. Practically all 

codes implement a layer description of the sample, where each layer is considered to have a 

constant composition. In this case, a slowly changing concentration must be described by 

many small layers with slightly different concentrations, in a way that, considering the depth 

resolution, the calculated spectrum is similar to the measured one. Some codes implement 

functional dependence of elemental concentrations. These are normally then transformed 

during the calculations into thin slices of constant composition. The difference to a layer 

specification is then mostly only in the degree of user control of the code, and of convenience 

in the specification of given profiles. 

 The sample features considered in the previous section also belong to the sample 

specification (to be extracted from the data) and are included in some codes. 
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 Given a well-defined sample structure, a well-defined definition of the physics 

included in a code, and a well-defined computer simulation of that physics, the corresponding 

spectrum can be calculated. The inverse problem, of having a spectrum, the physics and its 

application in the code, to calculate the corresponding sample structure, is an ill-posed 

problem in the general case 17, , , , , ,18 19 187 188 189 190. This means that there may be more than one 

solution consistent with the spectrum. Furthermore, if the spectrum is an experimental one 

with errors associated, in general there is no solution that exactly satisfies the conditions of 

the problem. Instead, there will be many solutions consistent with the data within the errors. 

 Also, multiple spectra are often collected from the same sample, using different 

experimental configurations that may include different geometrical arrangements, beam ion 

and energy, or detection system. Each spectrum normally accesses different information and 

has different statistics. For instance, an ERDA spectrum may have very poor statistics, but it 

can be the only information available about the H content of a sample. The final depth profile 

obtained should describe well all the data collected. 

 Moreover, the data analyst normally has prior information over the sample at their 

disposal. This can be other experiments already done, information about the origin and 

nominal composition of the sample (that may or may not correspond to the real one), 

chemical information about the proportions in which given elements form bonds, or any other 

prior beliefs about the sample. It is normally useful to incorporate this information in the data 

analysis, and often it is essential to do so in order to remove ambiguities in the final solution. 

However, the beliefs may or may not be true, so the question of how much should they 

constrain the final solution is also important. 

 Many different approaches are used to tackle these issues. All codes can generate a 

calculated spectrum for a given sample structure and compare it to experimental data, leading 

to interactive analysis in which the user tries to guess which depth profile best simulates the 
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data, given any prior constraints (that the user may decide to relax during the analysis). If 

multiple spectra were collected, the user normally first simulates one, proceeds to the next, 

corrects the depth profile already obtained, and so on. The analysis is done until the user 

decides the simulation is good enough or runs out of patience. These are subjective criteria, 

but possibly still the most widely used in ion beam data analysis. 

 In semi-automated procedures, the user inputs an initial guess, which is then refined 

automatically by the computer using some criterion such as the χ2 test . Normally, the initial 

guess must include the number of layers, and a good initial guess is essential to reach a good 

final solution. 

 Different algorithms to obtain depth profiles in a fully automated procedure have been 

developed. Such a procedure includes a direct analytic inversion of the data into a 

composition profile, provided that regularizing conditions are imposed . These can be a priori 

information or simply the rejection of any structure thinner than the depth resolution. The 

disadvantage of this method is that it is mathematically rather complex. 

 A fairly new class of algorithms can also be employed, such as artificial neural 

networks  or genetic algorithms. Artificial neural networks have the disadvantage of being 

developed for specific systems, thus not being suited for a general data analysis package. The 

genetic algorithm does not guarantee to find the general minimum of the target function (e.g. 

χ2). In both cases, prior information is difficult to introduce. 

 The simulated annealing algorithm has been used to solve the inverse problem, at least 

in the sense that it can obtain the minimum χ2 value, taking into account all the spectra and all 

the prior information available 74, , ,75 191 192. It has the further advantage of not requiring an 

initial guess. It does require, in order to provide meaningful solutions, some regularization 

method, which can be simply that the final solution obtained should have the minimum 
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number of layers that leads to a good fit, by penalising in the χ2 function the introduction of 

the extra layers. This is not a systematic approach, but in practice works well. 

 The biggest disadvantage of the methods already described is that they do not provide 

the analyst with errors on the final results, that is, on the depth profile obtained. Bayesian 

inference is a systematic method to do this.  All the information present in the data can be 

extracted, and additional prior information can be taken into account. This allows, for 

instance, to obtain confidence limits for the depth profile. All implementations for ion beam 

analysis 186, , ,  187 193 194 use the Markov chain Monte Carlo integration method, which leads to 

calculation times several orders of magnitude larger than other analysis methods. Some 

implementations also use the maximum entropy prior, which ensures, in a systematic way, 

that the final solution is the simplest consistent with the data . However, current 

implementations are still fairly complicated, and in practice are used almost exclusively by 

the code authors. The long calculation times also mean they are not yet suited for routine data 

analysis, but progress is being made. 

 

IX. Other experimental conditions 

 

 In addition to ion beam analysis techniques based on the elastic collision of atomic 

particles, a number of other techniques exist. Various experimental techniques can be coupled 

together to give a more comprehensive view of the sample under study.  

 In resonant NRA one measures the charged particle yield in a given energy window 

versus the incident beam energy. This is the reason to exclude this technique here, since with 

RBS, ERDA and non-resonant NRA, the beam energy is fixed, leading to similar calculations. 

Nevertheless, it is feasible to integrate resonant NRA in a code for RBS, ERDA, and non-

resonant NRA. 
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 PIXE and PIGE detect x-rays and γ-rays, both leading to different analysis methods. 

Nevertheless, these techniques are complementary to RBS and ERDA, and it would be useful 

to have all these techniques integrated in one single analysis package. 

 The treatment of more elaborate detection techniques could also be incorporated in 

data analysis codes. Detection systems such as magnetic analysers, other position sensitive 

detectors or TOF, are increasingly used, and efforts towards implementing their specific 

features (including direct analysis of time spectra) are desirable. 

 Microbeam tomography, normally coupled to other techniques such as PIXE, has been 

excluded here since it has specific analysis methods based on image analysis (often coupled to 

quantitative analysis of overall concentrations, or even analysis of 3D structures). Analysis of 

microbeam and macro beam data will very likely continue to be made by separate 

communities using different software packages. 

 

X. Conclusion 

 

 We have reviewed the major issues concerning modern data analysis of RBS, ERDA, 

and non-resonant NRA data. In Tables 1 through 8 we present some characteristics of 12 ion 

beam data analysis software packages that employ the indirect method based on analytic 

simulations (note however that many of the codes also perform direct method calculations). 

This listing is not exhaustive, since more codes exist which are not mentioned here. In some 

cases the authors did not wish their code to be included, in other cases the authors could not 

be contacted. Codes dedicated to very specific problems, or codes that use only the direct 

method, were not included. Finally, some codes may have been disregarded due to our own 

ignorance of their existence. Note also that Monte Carlo codes were excluded from the 

comparison because they are essentially different from analytic codes. 
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 We stress that inclusion or exclusion of a code in these tables bears no meaning on its 

correctness and accuracy. The International Atomic Energy Agency is currently organising an 

intercomparison exercise of ion beam data analysis software dedicated to programs using the 

indirect method to simulate theoretical spectra and analyse experimental data of RBS, ERDA, 

and non resonant NRA 195. The desired primary outputs are: to validate existing and newly 

developed methods; to determine the absolute accuracy achievable from well defined 

measurements of well defined samples; to estimate the errors in the information extracted by 

the different programs; to quantify differences produced by different physics, algorithms, and 

implementations used. These outputs will be used to: drive developments in new physics and 

improved algorithms; facilitate user training in learning to extract correct information; assist 

regression testing of modifications in existing codes and models; drive improvements in 

software documentation and usability; evaluate and validate existing and new databases. 

 The most important methods and approaches employed in the different codes were 

discussed. The stopping power and scattering cross section data bases employed, the ion-

target interaction physics, the experimental and detection system, and structural 

characteristics of the samples all have a strong impact on the data, and the way they are 

modelled in different codes and algorithms were discussed in detail. Limitations in the 

existing codes and perspectives for further developments are given. The importance of 

ascertaining the correctness and accuracy of different methods and codes used in ion beam 

data analysis is stressed. 

 Finally, traditionally each code has been developed independently from other codes, 

leading to multiplication of efforts. Also, each code has developed its own input and output 

data formats, different definitions and conventions of quantities and units, making interchange 

of information difficult. Some degree of standardisation, and in particular the development of 

a universal data interchange format, would be extremely desirable. Increased cooperation, and 
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ideally sharing of algorithms and source code between authors, would lead to faster 

developments and ultimately better codes. 
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Appendix: Status of 12 ion beam analysis software packages 

 

TABLE 1. General information about analysis programs. 
Analysis 
Program 

Technical Contact Initial code 
date 

Operating Systems 

BEAM 
EXPERT 

Leonid Kuzmin 
Institute for Nuclear Research, Russian Academy of Sciences, Russia. 
Present contacts: Dimitry Kogan, DmitryKogan@rambler.ru and 
Alexander Kazantsev, kazants@mail.ru  

1986 DOS (or 
emulators) 

BS1 Mitsuo Tosaki 
Radioisotope Research Center, Kyoto University 
Kyoto 606-8502, Japan 
tosaki@barium.rirc.kyoto-u.ac.jp

1999 UNIX (Windows) 

DEPTH Edit Szilágyi 
KFKI Research Institute for Particle and Nuclear Physics 
Budapest, Hungary 
szilagyi@rmki.kfki.hu; www.kfki.hu/~ionhp/ 

1994 DOS (or 
emulators) 
(New version will 
be Windows) 

DVBS Vlastimil Bohac 
Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovak 
Republic 
and Dmitryi Shirokov 
(JINR, Dubna, Russia at the time of creating program) nowadays - 
Phase Forward Incorporated, Waltham, MA, USA 
bohac@savba.sk; dshirokov@phaseforward.com; www.fu.sav.sk

1990 
(published in 

1994) 

DOS (or 
emulators) 

GISA Eero Rauhala 
University of Helsinki, Helsinki, Finland 
and Jaakko Saarilahti, Technical Research Center of Finland 
Eero.rauhala@helsinki.fi; Jaakko.Saarilahti@vtt.fi

1983 DOS (or 
emulators) 

IBA James Ziegler 
United States Naval Academy  
Annapolis, MD, USA 
Ziegler@SRIM.org; www.SRIM.org

1968 Windows, UNIX, 
OS2 

Particle 
Solid Tools 

Robert A. Weller 
Vanderbilt University 
Nashville, TN, USA 
robert.a.weller@vanderbilt.edu

1992 All systems with 
Mathematica 4.1 
and higher. 

PERM Yves Serruys  
CEA-Saclay, France 
Yves.Serruys@cea.fr

1990 Windows 

RBX Endre Kótai 
KFKI Research Institute for Particle and Nuclear Physics 
Budapest, Hungary 
kotai@rmki.kfki.hu

1985 Windows 

RUMP Mike Thompson 
Dept. of Materials Science, Cornell University 
Ithaca, NY USA 
mot1@cornell.edu; www.genplot.com

1983 Windows, Linux, 
UNIX, OS2 

SIMNRA Matej Mayer 
MPI for Plasma Physics 
Garching, Germany 
Matej.Mayer@ipp.mpg.de; www.rzg.mpg.de/~mam/ 

1996 Windows 

WiNDF Nuno Barradas 
Technological and Nuclear Institute 
Sacavem, Portugal 
nunoni@itn.pt; www.ee.surrey.ac.uk/Research/SCRIBA/ndf/

1997 Windows, UNIX 
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TABLE 2. Current status of analysis programs. 
Analysis 
Program 

 

Current Status Current 
Version 

Current 
Programming 

Language 

Date of last 
distributed 

documentation 

Distribution Mode Status of 
source code 

BEAM 
EXPERT 

In use. 1.5.1 (1997) Borland 
C/C++ 

1994 None. Restricted to 
author -not 
available. 
 

BS1 Active 
Development 
 

2.0(2002) Fortran 90 (77) none none Restricted to 
author -not 
available. 
 

DEPTH Active 
Development 

2.0 (1998) Turbo Pascal 
(Delphi Pascal 
for Windows) 

1995 No charge.  
Downloadable from 
the WEB. 

Restricted to 
author -not 
available. 
 

DVBS In Use 1995 Microsoft 
Fortran 77 

1995 No charge.  
Downloadable from 
WEB upon request 

Restricted to 
author -not 
available. 
 

GISA In Use 3.991 (1993) Quick Basic 
4.5 

1992 
published, 
1995 last 
manual 

No charge.  Write to 
author for copy. 

Restricted to 
author -not 
available. 

IBA In use. - APL 2000 No charge. 
Downloadable from 
www.SRIM.org.  
Must get compiler 
from IBM (free). 
 

Source code 
available. 

Particle 
Solid Tools 

Active 
Development 
 

1) Mathematica Not known. Available from the 
author. 

Source code 
available. 

PERM Active 
Development 
 

2003.02 Digital Visual 
Fortran 

2002 No charge. Restricted to 
author -not 
available. 
 

RBX Active 
Development 

5.1 (2002) Delphi Pascal 1992 No charge.  Write to 
author for copy. 

Restricted to 
author -not 
available. 
 

RUMP Active 
Development 

4.00 (2004) Microsoft C6.0 
Most Unix C 

1992 with 
enhancement 
log 

Commercial through 
Computer Graphics 
Service - $250. 
Evaluation copies 
available on WEB. 
 

Source code 
available. 

SIMNRA Active 
Development 

5.70 (2005) Delphi Pascal 
6.0 

2005 Commercial through 
MPI for Plasma 
Physics - $250. 
Evaluation copies 
available on WEB. 
 

Restricted to 
author -not 
available. 

WiNDF Active 
Development 

8.0 (2005) Digital Fortran 
90 for 
Windows 
version 

2004 Commercial through 
Univ. of Surrey 
£2000. 
Evaluation copies 
available by request. 
 

Restricted to 
author -not 
available. 

1) Various components of the system have differing individual version numbers. 
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TABLE 3. User interface properties of the analysis programs. 
Analysis 
Program 

 

Primary 
Interface 
"nature" 

Primary simulation modes Maximum 
spectrum size 

Spectrum 
input 

formats 

Scattering 
information 

Graphic 
Output 

BEAM 
EXPERT 

Interactive Fully automated search; 
manual iteration.  

512 MCA, 
ASCII also 
possible. 
 

Independent 
files 

Screen only 

BS1 Interactive 
or batch 

Manual iteration -  ASCII Draft quality 

DEPTH Interactive 
or batch 
 

N/A N/A N/A ASCII N/A 

DVBS Interactive Automated iteration. 
Manual iteration is 
supported by graphical 
editor for concentration 
profile. 

1024 Formatted 
ASCII, 
RUMP, 
special 
binary 
format 
 

Independent 
files 

printer 
/plotter 
/HPGL file 

GISA Interactive Manual iteration; 
automated parameter 
search 
 

2048 ASCII, 
Canberra 

Independent 
files 

Screen only 

IBA Interactive Manual iteration Unlimited ASCII User input, 
saved with 
spectra in 
GIF files. 
 

Publication 
Quality 

Particle 
Solid Tools 

Interactive. 
Tools are 
callable 
Mathematica 
functions. 

RBS simulator returns 
callable continuous 
function. 

Simulated spectra 
are continuous 
functions. Data 
arrays may be of 
any length. 
 

Any data 
format 
compatible 
with 
Mathematica 

Stored 
within the 
spectrum 
object. 

Uses 
Mathematica 

PERM Interactive Manual iteration, 
automated profile search 
 

1024 ASCII, 
PERM 

Stored with 
spectra 

Draft quality 

RBX Interactive Manual iteration 4096 RUMP, 
ASCII, SP4 

Stored with 
spectra 

Draft quality 

RUMP Interactive Manual iteration; 
automated parameter 
search 
 

16384 RUMP, 
ASCII, user 
DLL 

Stored with 
spectra 

Publication 
quality 

SIMNRA Interactive Manual iteration; 
automated parameter 
search 

8192 ASCII, 
Canberra, 
RUMP, user 
DLL 

Stored with 
spectra 

Draft quality 

WiNDF Batch 
directed or 
interactive 

Fully automated search; 
manual iteration 

512 ASCII, 
Canberra; 
multiple 
user 
requested 

Independent 
files; 
optional 
XML output 
with all 
information 

Draft quality 
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TABLE 4. Fundamental databases used by analysis programs. 
Analysis 
Program 

 

Stopping powers 
 

Cross Sections 

BEAM 
EXPERT 

Janni 196 , ZBL'85 68, ZBL'98 Internal (modifiable) library of cross sections. 
 

BS1 Andersen and Ziegler 197 , user defined 
correction per layer and ion. 
 

User defined from file. 

DEPTH ZBL'95 User defined from file. 
 

DVBS ZBL'92  and user defined stored in data 
tables. 
 

User defined from file. 

GISA TRIM1991  or Ziegler and Chu 198 ; 
User defined correction per layer. 
 

User defined from file. 

IBA SRIM2000 Contains only H, He cross-sections for 
NRA/ERDA. 
 

Particle Solid 
Tools 

Default is 199. User redefinable. 
 

Default: Lenz-Jensen 200, computed. 

PERM ZBL'85 68 Rutherford with L'Ecuyer's  correction. 
 

RBX ZBL'95  With channeling correction 
possible; User defined correction per layer. 

Internal (modifiable) library of cross sections; 
external Cross-section Library Editor (import  
Sigmabase R33 127, 128; user defined). 
 

RUMP ZBL'92 , KKKNS 201  
User defined compounds and databases, 
user defined correction per layer or per 
element. 
 

SIGMABASE 127, 128 ; user defined. 

SIMNRA Either 197, SRIM1997 , SRIM2003 , or 
KKKNS  201, user defined correction per 
layer and ion. 
 

SIGMABASE 127, 128 ; user defined. 

WinDF ZBL'85 68 (SRIM2003  in non-commercial 
versions), KKKNS  201 (Si), MSTAR 113. 
Ability to load other values; user defined 
correction per ion/element. 
 

User defined from file. 
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TABLE 5. Fundamental physics handled in the simulations. 
Analysis 
Program 

Isotope 
Calculation 

Screening 
Calculation 

Stragglin
g models 

Plural 
Scattering 

Multiple 
Scattering 

Geometric 
Straggling Channeling 

BEAM 
EXPERT 

1) Energy/ 
Angle - 
[1], 
empirical 
formula 
for HIBS    

[2] 
with 
fitting 
factor 

None None No Defect Calculation 

BS1 2) 
 

 [2] None None No No 

DEPTH 2) Yes [3] None Yes.   
Pearson VII 
distribution [11] 

Yes No 

DVBS 3) No [4] None None Yes No 
 

GISA 1) Energy/ 
Angle - [5] 

[2] + [6]  None None No No 

IBA 1) Yes, 
SRIM 
formalism 

[7] None None No No 

Particle 
Solid 
Tools 

- [8] [9] None Available, but 
not part of RBS 
simulation. 

No Substrate 
channeling  
may be 
parameterized in 
the simulation to 
facilitate fitting. 

PERM 5) Energy  
only - [10] 

[2] None None None No 

RBX 1) Yes [3] None Yes (same model 
as DEPTH) 

Yes Defect Calculation 
Simulation of 
Channeled spectra 

RUMP 1) Energy  
only - [10] 

[2] None None No No 

SIMNRA 1) Energy/ 
Angle - [5] 

[7] Dual scattering 
approx. (run 
time option) 

Yes  
(DEPTH model 
approximated as 
Gaussian) 

Yes No 

WinDF 1) Energy/ 
Angle –  
[5] and  
[10] 

[3] Dual scattering 
approx. (run 
time option); 
and ad-hoc 
parameterizati
on (user 
specified) 

Yes - Gaussian 
approximation 
from DEPTH 
calculation 

Yes -  from 
DEPTH 
calculation 

No 

Comments: References: 
1) Specific isotopes and/or natural abundance [1] Huttel et al. 202  
2) Single isotope currently [2] Bohr 130

3) Yes, if provided external tables by users [3] Bohr 130, Chu 131, Yang et al. 132, Tschalär 133, 134, 135

4) Default: All with natural abundances [4] Bohr 130, Chu 131, Yang et al. 132

5) Natural or modified abundance [5] Andersen et al 
 [6] Lindhard/Scharff 203

 [7] Chu 131 and Tschalär 133, 134, 135

 [8] Lenz-Jensen 200

 [9] Yang et al. 132

 [10] J. L'Ecuyer et al. 116

 [11] Pearson VII distribution 93
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TABLE 6. Experimental conditions and simulation capabilities. 
Analysis 
Program 

Incident 
Ions 

Analytical 
Techniques 

Scattering 
Geometries 

Pileup 
correction 

Detection 
Systems Stopper Foils Energy 

calibration 
BEAM 
EXPERT 

All RBS, HIBS, 
non-resonant 
NRA 
 

IBM No Energy 
dispersive 

Simulated; 
Homogeneous 
foils only 

Quadratic; 
varying by ion 
species 

BS1 All RBS, NRA  No Energy 
dispersive 

Simulated; 
Homogeneous 
foils only 
 

Polynomial 

DEPTH All RBS, ERDA, 
NRA 

IBM, 
Cornell 

No Energy 
dispersive 
(magnetic 
spectrograph 
coming) 
 

Simulate; 
including 
inhomogeneities 

Linear 

DVBS All RBS Cornell, 
IBM, 
General 
 

No Energy 
dispersive 

N/A Polynomial 

GISA All RBS IBM No Energy 
dispersive 
 

N/A Quadratic 

IBA All RBS, ERDA, 
NRA 

General No Energy 
dispersive 

Simulated; 
Homogeneous 
foils only 
 

Linear 

Particle 
Solid 
Tools 

All RBS and 
medium 
energy 
backscattering. 

General No Default: energy 
spectra. 
Velocity and 
time of flight 
available. 
 

N/A Arbitrary. User 
defined. 

PERM H,D,T, 
He-4 

RBS IBM No Energy 
dispersive 
 

None Linear 

RBX All RBS, ERDA, 
non-resonant 
NRA 
 

IBM, 
Cornell 

Yes Energy 
dispersive 

Simulated; 
Homogeneous 
foils only 

Linear 

RUMP All RBS, ERDA Cornell, 
IBM, 
General 

Yes Energy 
dispersive, 
partial TOF 

Simulated, or 
from user 
calibration 
 

Linear 

SIMNRA All RBS, ERDA, 
non-resonant 
NRA 
 

General No Energy 
dispersive 

Simulated; 
equivalent 
treatment to 
sample 

Quadratic; 
varying by ion 
species 

WiNDF All RBS, ERDA, 
non-resonant 
NRA, NDP, 
PIXE 

IBM, 
Cornell 

Yes Energy 
dispersive 

Simulated; 
Homogeneous 
foils only 

Quadratic; 
varying by ion 
species 
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TABLE 7. Fitting capabilities (BS1, DEPTH, IBA and RBX have no fitting capabilities). 

Analysis 
Program 

Starting 
conditions 

Optimization 
method 

Error estimation Statistics 
used 

Searchable 
experimental 
parameters 

Auto- 
refinement 
of layers 

Limitations 

BEAM 
EXPERT 

Elements only 
or guess; 
elemental 
search also 
possible 

P'itiev 
reduction 

Creation the 
variance-
covariance 
matrix of the 
solution error    
 

Poisson Ecal,  charge No Method considers 
all parameters 
variable 

DVBS Build up 
concentration 
profile based 
on displayed 
element edges 
in calibration 
module. 
 

χ2 
minimization 

χ2 Gaussian Ecal, charge, 
scattering 
angles 

No Autofit capabilities 
for just one partial 
spectrum in 
concentration 
profile with more 
elements in a time. 

GISA Reasonable 
guess 

χ2 
minimization 
 

None returned  None No One  layer  
at a time 

Particle 
Solid 
Tools 

Reasonable 
guess. 

Levenberg-
Marquardt 

Full covariance 
matrix 

User 
definable. 
Default, 
Poisson. 

In principle 
possible 
within 
Mathematica 
 

N/A Any continuous 
parameters of the 
user's model may 
be fit. 

PERM Reasonable 
guess 

"Profile 
reconstitution" 
method 

N/A Poisson Ecal, charge, 
surface 
potential 
(insulators) 

No N/A 

RUMP Reasonable 
guess 

Marquart 
search 

Curvature of chi-
square matrix; 
full correlation 
of error 
sensitivities 
(intrinsic in 
search method) 
 

Poisson E0, Ecal, 
charge, 
current, 
θ, Φ, φ 

No No internal limit, 
practical of 30 
parameters at a 
time 

SIMNRA Reasonable 
guess 

Simplex 
search 

Additional 
search to 
determine 
curvature near 
best fit 
(comparable to 
fit time) 

Poisson  
< 4; 
Gaussian 

Ecal,   
charge 

No One layer at a time, 
all characteristics 

WiNDF Elements only 
or guess; 
elemental 
search also 
possible 

Simulated 
annealing plus 
grid search 

Bayesian 
inference with 
Markov chain 
Monte Carlo 
integration (time 
intensive) 

ad-hoc in 
SA; 
Poisson in 
BI 

Ecal,  charge Yes Method considers 
all parameters 
variable 
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TABLE 8. Sample definition and complexity handled. 
Analysis Program 

 
Sample Description Continuous Profiles Slab Limitations 

/Elements 
Substrate  

Roughness 1) 
Layer  

Roughness 1) 
BEAM EXPERT Layer definition Histograms - sensitive 

mode of operation for 
error function, defect 
distributions  etc. 

unlimited layers; up 
to 92 elements 

No No 

BS1 Layer definition    None No No 
 

DEPTH  Layer definition Slabs only 10 layers; 10 
elements in each 
layer (limits to be 
removed in 
Windows) 

No No 

DVBS Layer definition with 
the help of graphical 
editor (splitting, 
joining slabs and 
setting their elements 
concentration and 
thicknesses by cursor 
and keyboard tabs). 

No 100 layers 
10 elements 

o No 

GISA Layer definition or 
profile function 

Maps continuous 
profiles onto slab 
structure 

10 layers; 10 
elements; User can 
define so layer*elem. 
is constant 

No No 

IBA Layer definition Maps continuous 
profiles onto slab 
structure 

None No No 

Particle Solid 
Tools 

Layer definition Arbitrarily complex 
convolution of multiple 
computed spectra by 
user-definable 
Mathematica functions. 

None By 
convolution  
of spectra. 

By 
convolution  
of spectra. 

PERM Layer definition or 
profile function 

Maps continuous 
profiles onto slab 
structure 

400 layers, 12 
elements, 60 isotopes 

Yes, roughness 
parameters 
search 

Yes, roughness 
parameters 
search. 

RBX Layer definition User defined functions 
(Gauss, error functions 
etc.). Channeling defect 
distributions. 

None No No 

RUMP Layer def'n w/ 
equation overlays 

Gaussian implants, 
error function diffusion, 
Pearson IV profiles, 
one-sided and two-
sided diffusion. 

None No Yes - single or 
dual sided, all 
interfaces 
possible. 

SIMNRA Layer definition Slabs only 100 layers in 
description; 20 
elements per layer 

Yes - via input 
of Lorentzian 
angular 
distribution 

Yes, all 
interfaces 
possible. 

WinDF Layer definition; 
limited use of profile 
function 

Effective error function 
interdiffusion profiles 
between layers. 

50 layers; up to 92 
constituents 

Yes - 
approximated 
as energy 
broadening 
through 
roughness. 

Yes - 
approximated 
as energy 
broadening 
through 
roughness. 

1) For Surface and layer roughness see text for definition. 
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