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Abstract

Angular and energy distributions due to multiple small angle scattering were calcu-
lated with different models, namely from the analytical Szilágyi theory, the Monte
Carlo code MCERD in binary collision approximation, and the molecular dynamics
code MDRANGE, for 2 MeV 4He in Au at backscattering geometry and for 20 MeV
127I recoil analysis of carbon. The widths and detailed shapes of the distributions
are compared, and reasons for deviations between the different models are discussed.
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1 Introduction

The trajectories of MeV ions in matter are usually approximated by straight
lines. This is, however, only a crude approximation due to many small angle
deflections by collisions with large impact parameters. This has been called
multiple scattering. The combined effect of these collisions results in angular
and energy straggling, leading to a degradation of the achievable depth resolu-
tion. An analytical theory describing these spreads was developed by Szilágyi
et al. [1–4], and is employed in several widely used computer simulation codes
for ion beam analysis, such as DEPTH [1], SIMNRA [5,6], and WiNDF [7].

However, as experimental data for multiple scattering distributions at typi-
cal IBA geometries are almost non-existent, the analytical theory was never
seriously validated. Monte-Carlo and molecular dynamics simulations include
multiple scattering naturally, but require much longer computing times. Ad-
ditional energy broadening effects, such as energy loss straggling or surface
roughness effects, can be switched off in simulations, thus allowing an even
clearer comparison than with experimental data.

In this work we compare predictions of the analytical theory with Monte-Carlo
and molecular dynamics simulations for typical RBS and ERDA applications.

2 Analytical theory and computer codes

2.1 Analytical multiple scattering theory

Angular spread distributions of ions in mono-elemental targets without stop-
ping were calculated analytically by Sigmund and Winterbon (SW) [8]. The
SW theory was expanded to multi-elemental targets with stopping by Szilágyi
et al. [1] and Amsel et al. [3]. Energy spread distributions are derived from an-
gular and lateral spread distributions, taking the correlation between angular
and energy spread into account [3, Section 4].

2.2 DEPTH and SIMNRA codes

The analytical Szilágyi theory is implemented in the DEPTH code [9], which
is also used by WiNDF [7].

SIMNRA is a simulation program for RBS, ERD and NRA energy spectra
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[5,6,10], and contains an independent implementation of the Szilágyi theory 1 .

SIMNRA and WiNDF utilize only the widths of the multiple scattering energy
distributions. Their shape is approximated by Gaussian functions.

2.3 MCERD Monte-Carlo code

MCERD is a TRIM-like Monte Carlo (MC) code in binary collision approxima-
tion [11,12]. ZBL electronic stopping powers [13] and the universal interaction
potential were used. Electronic energy loss straggling was switched off.

2.4 MDRANGE molecular dynamics code

MDRANGE is a molecular dynamics (MD) code for calculation of ion ranges
and deposited energies [14,15]. ZBL electronic stopping powers [13] were used.
Electronic energy loss straggling was switched off. The targets were assumed
to be

• Single crystalline gold at random orientation. Ions channeled for distances
larger than 100 nm were rejected, corresponding approximately to polycrys-
talline material with a maximum grain size of 100 nm.

• Two different kinds of amorphous carbon: a tetrahedral amorphous network
obtained from density-functional theory calculations [16], and a placement
of atoms in 3 dimensions which is completely random, except that the min-
imum separation between the atoms is set to slightly less than the covalent
bond distance.

3 Results and discussion

3.1 Backscattering

Fig. 1 shows the widths of the angular and energy spread distributions of
2 MeV 4He penetrating through Au. As already pointed out in [1,3], angular
and energy distributions are non-Gaussian. The distributions obtained from
MCERD and MDRANGE were fitted with Pearson VII distributions in order

1 Previous versions of SIMNRA treated the correlation between energy and an-
gular spread only approximately, the complete Szilágyi theory is implemented in
SIMNRA 5.76 and higher.
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Fig. 1. Penetration of 2 MeV 4He through Au at an incident angle of 15◦ (to surface
normal). Top: FWHM of the angular spread distribution as a function of sample
depth. The results from the DEPTH and SIMNRA codes are almost identical and
cannot be distinguished. Bottom: FWHM of the multiple scattering induced energy
spread distribution as a function of sample depth.

to obtain the full width at half maximum (FWHM). The distributions get
asymmetric at larger depths (see Section 3.3), and the approximation with
Pearson VII distributions gets increasingly inaccurate. Angular distributions
are generally more symmetric than energy distributions.

The widths of the distributions from the analytical theory agree with the MC
and MD results within the error bars of the fit until a depth of about 1000 nm.
At that depth the incident particles have lost 35% of their initial energy.

The multiple scattering induced energy spread at the target surface is shown
in Fig. 2. While Fig. 1 compares angular end energy spread on incident or exit
paths, distributions at the surface also take the correlation between angular
and energy spread into account. Analytical theory and MC agree within about
2 keV until a depth of about 600 nm, at which the particle energy at the surface
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Fig. 2. FWHM of the energy spread distribution at the target surface as a function
of the depth of origin. 2 MeV 4He in Au, incident angle 15◦, exit angle 15◦, scattering
angle 150◦. The results from the DEPTH and SIMNRA codes are almost identical
and can hardly be distinguished.

has decreased to about 1000 keV. At larger depths the disagreement increases
due to progressing asymmetry of the energy distributions (see Section 3.3).

We also found, that for multi-elemental targets (4He and 127I in WC) the same
level of agreement between analytical theory and Monte-Carlo simulation is
obtained as already shown in Figs. 1 and 2.

3.2 Recoil detection

Fig. 3 (top) shows the FWHM of the angular spread distribution of 20 MeV 127I
penetrating through C. The small difference between SIMNRA and DEPTH
is due to the use of slightly different stopping powers. The agreement with the
MC and MD results is good. Fig. 3 (bottom) compares the widths of the energy
spread distributions. Two different results are shown for MCERD: With energy
transfer to target atoms (i.e. with nuclear stopping) and without. Energy
transfer to target atoms is not included in the analytical theory, see Section 3.3.
As can be seen in Fig. 3 (bottom), the FWHM of the energy spread distribution
for depths smaller than 300 nm is only slightly changed by including energy
transfer to target atoms. The agreement between the Monte Carlo result and
the analytical Szilágyi theory is excellent close to the surface, while at larger
depths the energy spread is overestimated by the analytical theory. The two
different amorphous carbon MD models were identical within the error bars.
But we also observed, that good agreement with MD is obtained only for
amorphous carbon: For crystalline carbon the distributions differ markedly
due to channeling effects, which play an important role at these low energies.
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Fig. 3. Penetration of 20 MeV 127I through C at an incident angle of 70◦ (to surface
normal). Top: FWHM of the angular spread distribution as a function of sample
depth. Bottom: FWHM of the multiple scattering induced energy spread distribu-
tion as a function of sample depth.

The energy spread of 12C recoils at the target surface is shown in Fig. 4. The
overall shape of the depth-dependent energy spread is well reproduced by the
analytical theory. Close to the surface the agreement between the Monte Carlo
result and the analytical theory is excellent. At depths between 100 nm and
300 nm the analytical theory deviates from the Monte Carlo results, but less
than 15%. At larger depths the angular spread distributions get so broad, that
the analytical theory is not valid any more. The break-down of the theory is
handled differently by DEPTH and SIMNRA, resulting in different results at
depths larger than 400 nm.

3.3 Limitations of the analytical theory

The analytical Szilágyi theory makes the following approximations:
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Fig. 4. FWHM of the energy spread distribution of 12C recoils at the target surface
as a function of the depth of origin. 20 MeV 127I in C, incident angle 70◦, exit angle
70◦, scattering angle 40◦.

(1) Symmetry of angular and energy distributions around a mean value.
(2) Angular independence of the scattering cross section during the main

scattering event. The main scattering event is scattering with large scat-
tering angle in RBS, or recoil creation in ERDA.

(3) No energy transfer to target atoms during small angle deflections.

The first two approximations are valid as long as the width of the angular
spread distributions is not too large. The approximation of symmetric energy
distributions is most strongly violated at grazing incidence or exit angles,
and at normal incidence: At normal incidence deflections to either side lead
to lower, but never higher, energies, resulting in asymmetric energy distribu-
tions. The angular dependence of the scattering cross section during the main
scattering event plays especially a role in forward scattering due to the strong
angular dependence of the forward scattering cross section, and may be also
important at small recoil angles.

Energy transfer to target atoms is the source of nuclear stopping, and fluctua-
tions in this energy transfer are called nuclear straggling. The variance of the
nuclear straggling distribution can be calculated for realistic potentials [17],
but this result has little practical relevance: As was already pointed out by
Schmelmer et al. [18] and was shown recently by Glazov and Sigmund [19],
the nuclear straggling distributions are asymmetric and strongly non-Gaussian
with long low-energy tails. These tails lead to large variances of the distribu-
tions, but change the FWHM only slightly [18]. This can be seen in Figs. 3
and 4 by comparing the MCERD results with energy transfer to target atoms
(i.e. with nuclear stopping and straggling) and without it. The FWHM is only
slightly changed. Nevertheless, despite the small influence on the FWHM’s,
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Fig. 5. Energy distributions of 20 MeV 127I in a depth of 300 nm C. Calculations
with and without energy transfer to target atoms, incident angle 70◦. Both curves
are normalized to the same area.

nuclear straggling changes the mean and the shape of the energy distribu-
tion considerably. This is shown in Fig. 5 for 20 MeV 127I in C at a depth of
300 nm. The dashed line shows the energy distribution without nuclear energy
loss: The distribution is almost symmetric. The FWHM of the angular spread
is about 3◦ in this depth (see Fig. 3), and the small asymmetry is due to path
length differences between particles deflected towards the surface and away
from the surface. With nuclear energy loss (solid line) the particle energies
are lower, and the distribution gets more strongly asymmetric with a long
tail towards lower energies. The shapes of these asymmetric distributions are
difficult to describe analytically.

4 Conclusions

Angular and energy distributions due to multiple small-angle scattering, as
calculated from the analytical Szilágyi theory by the DEPTH and SIMNRA
code, Monte Carlo (MC) simulation in binary collision approximation us-
ing the MCERD code, and molecular dynamics (MD) using MDRANGE,
were compared for typical light ion backscattering and heavy ion recoil de-
tection analysis applications. The agreement between MC and MD is good.
The widths (characterized by their FWHM) of the angular distributions are
accurately described by the analytical theory until large depths. For not too
large depths, the analytical theory also predicts the FWHM of the energy
distributions accurately, while at larger depths deviations up to 20% are ob-
served. The energy distributions are asymmetric with long tails towards lower
energies due to energy transfer to target atoms, i.e. nuclear straggling. The
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tails and asymmetries are not correctly described by the analytical theory, but
they change the FWHM of the distributions only slightly. These limitations
of the analytical theory have to be kept in mind when using simulation codes
which rely on it, such as DEPTH, WiNDF and SIMNRA. If necessary, a more
accurate description can be obtained from Monte Carlo simulations, at the
cost of longer computing times.
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