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Abstract. The code TORIC solving Maxwell equations in toroidal axisymmetric
plasmas in the Ion Cyclotron (IC) frequency range has proven to be a useful tool for
the simulation of IC heating and current drive in tokamak plasmas. TORIC has now
been integrated in a package which includes, among other features, an interface to
the experimental data (Grad-Shafranov MHD configuration, density and temperature
profiles), interfaces to quasilinear Fokker-Planck solvers for the electrons and ions, and
a subroutine which allows to estimate the effects of suprathermal anisotropic minority
ions populations on wave propagation and absorption. This package allows somewhat
simplified but essentially selfconsistent simulations of heating and current drive in
this frequency domain. In this paper we summarize the physics included in TORIC,
with particular emphasis on the most recent extensions, and present an example of
application of the package to the analysis of two IC heating experiments in ASDEX
Upgrade and in JET.
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1. The TORIC code.

In this and the next section we briefly describe the code TORIC [1] and a few allied

modules for the numerical simulation of plasma heating and current drive in the ion

cyclotron (IC) range of frequencies. Our goal is to illustrate the physics included in the

wave equations solved by TORIC, referring for the details as much as possible to already

published documentation. These wave equations have been derived from the linearized

Vlasov equation in toroidal geometry, by making clearly formulated approximations

whose validity can be explicitly checked. Moreover, although the derivation is largely

based on the assumption that the wavelengths of interest are large compared to the

thermal ion Larmor radius (FLR approximation), enough large Larmor radius effects

are included to allow the correct simulation of essentially all scenarios of interest.

1.1. The model.

TORIC solves the vector Helmholtz equation

~∇× ~∇× ~E =
ω2

c2

[
~E +

4πi

ω

(
~JP + ~JA

)]
(1)

where ~JA is the antenna current, and ~JP is the high frequency (h.f.) plasma current. The

ion contribution to ~JP is evaluated in the FLR approximation, following Swanson [2]

and Colestock and Kashuba [3] (SCK approximation). The electron contribution is

evaluated in the FLR approximation in the low-frequency limit ω � Ωce. The resulting

wave equations describe damping by the ions at the fundamental ion cyclotron (IC)

frequency and its first harmonic, and Cerenkov damping by the electrons (Landau and

Transit Time damping, and the ‘mixed’ term discussed by Stix [4]). They also describe

linear mode conversion of the externally excited fast wave (FW) near ion-ion resonances

(and near ω = 2Ωci in a single species plasma) to short-wavelength hot-plasma waves,

namely the lowest-order ion Bernstein wave (IBW) and/or the shear wave or its kinetic

version, also known in this frequency range as quasi-electrostatic Ion Cyclotron wave

(ICW) [5].

The h.f. plasma current of the SCK model is a second-order integro-differential

functional of ~E, first derived in plane-stratified geometry by [2] and [3] from the

linearized Vlasov equation. Its expression for the tokamak has been obtained by writing

this functional in vector form [6], and then transforming to axisymmetric toroidal

coordinates [1]. In toroidal geometry, the wave equations are integral and non-local

also in the FLR limit, because in the poloidal direction parallel dispersion also plays an

essential role. Moreover, the evaluation of the orbit integrals along magnetic field lines

in ~JP has to be modified to take into account toroidicity effects near IC resonances, as

briefly discussed below. More recently [7], a direct derivation of ~JP in toroidal geometry

has given the same result.

It is worth recalling that in the SCK model the ion h.f. current includes only the

FLR contributions resonant at the first IC harmonic ω = 2Ωci, while those resonant at
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the fundamental are omitted. The latter are always small corrections to the terms of

order zero in the Larmor radius which are also resonant at ω = Ωci. As a consequence,

they have an appreciable influence on the local dispersion relation only in domains where

the FLR expansion breaks down, namely around and below the IC resonance [8]. If the

FLR corrections resonant at ω = Ωci are kept in ~JP, the lowest IB wave appears to

remain propagative down to zero frequency, with a very short wavelength such that

k⊥ρi � 1, where ρi is the thermal ion Larmor radius. This is contradicted by the full

hot plasma dispersion relation, which predicts that no such wave exists below the lowest

ion cyclotron frequency. The complete FLR expansion, moreover, falsifies the evaluation

of fundamental IC damping, suggesting that power could locally flow from the ions to

the waves even in a plasma in local thermal equilibrium. The SCK model does not

suffer from either of these problems. On the contrary, the local dispersion relation of

the SCK wave equations reproduces correctly the real part of the full hot-plasma index

of the IC and IB branches, even in domains where the FLR approximation is formally

not justified for these waves, and predicts the same fundamental IC damping as the full

hot-plasma dispersion relation. We propose to call the SCK ion current, completed by

the electron contribution as described above, the ‘reduced’ FLR expansion.

The resulting wave equations, however, miss electron Landau damping (ELD) of

IB waves. To evaluate this damping, large ion Larmor radius effects must be taken into

account. How this is done in TORIC is briefly recalled in subsection 1.3.

1.2. Spectral representation of the fields.

The solution of eqn (1) is assumed to be of the form (spectral representation)

~E =
∑
nϕ

einϕϕ
+∞∑

m=−∞

~Em(nϕ; ψ) eimϑ (2)

where ψ, ϑ, ϕ are the radial, poloidal, and toroidal coordinates, respectively; for

numerical convenience, ψ is linear in the distance from the magnetic axis (hence

ψ ∼
√

ΨP , the poloidal flux). TORIC takes advantage of axisymmetry to solve eqn (1)

separately for each toroidal wavenumber nϕ (a ‘toroidal mode’). The superposition

of different toroidal modes can be performed by a separate routine. The dependent

variables in TORIC are the physical components of ~E with respect to a local magnetic-

field-aligned triad of unit vectors,

~uψ = ~∇ψ/|~∇ψ| ~uη = ~uζ × ~uψ ~uζ =
~B0

B0
(3)

Here ~B0 is the static magnetic field, and ~uη points in the ‘diamagnetic’ direction. This

choice considerably complicates the form of the differential operators in eqn (1), but

is necessary because in the IC range Eζ is smaller than E⊥ by a factor ∼ me/mi due

to screening by the electrons. As a consequence, with any other choice of dependent

variables Eζ would be a small difference of two large quantities, and the evaluation of

ELD would be affected by a large numerical noise.
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The form of the differential operators and of the various contributions to ~JP in the

spectral representation are listed in [1]. The spectral ansatz transforms the integral

operators into a generalized convolution. Thus, truncated at a sufficiently large poloidal

number m, the representation (2) transforms Helmholtz equation into a (large) set

of ordinary differential equations in the variable ψ for the coefficients Em
α (ψ) of the

field (2). These equations are put into Galerkin weak-variational form, and discretized

using cubic Hermite finite elements [9]. We might mention in passing that for the

present problem this approach is free of spectral pollution [10] in the plasma, since in

the FLR approximation eqn (1) has three independent solutions. This is not the case,

however, in the vacuum layer between plasma and vessel; here the difficulty has been

eliminated using an approach suggested by [11] (essentially, it amounts to ensure that
~∇ · ~E = 0 is also satisfied). The spectral method, on the other hand, is only compatible

with a simple idealized antenna lying in a surface of constant ψ: it would be next to

impossible, for example, to include in the simulation currents flowing in radial feeders

and shorts. For this reason, the weights for the superposition of different toroidal modes

are preferentially evaluated using the antenna code FELICE [12].

It is important to note that each poloidal Fourier mode in the spectral

representation (2) of the field has a well-defined physical component of the wavevector

in the ‘parallel’ direction,

kmnζ (ψ, ϑ) =
m

Nϑ
sin Θ +

nϕ
R

cos Θ tan Θ =
Bpol

Btor
(4)

where Nϑ = g
1/2
ϑϑ is essentially the minor radius, and R is the major radius.

Since kmnζ varies only on the equilibrium scale length, it plays locally the same role

as k‖ in the uniform plasma limit in determining the local plasma response to the

corresponding Fourier component of the field near collisionless particle-wave resonances.

This circumstance allows to derive the wave equations used in TORIC from the

linearized Vlasov equation in a rigorous way, essentially equivalent to the gyrokinetic

approximation [7].

The dependence of k‖ on the wavenumbers m and n, on the other hand, implies

that each Fourier mode elicits a different response in the plasma. In this context,

two important differences between the toroidal situation and a uniform or a plane-

stratified plasma deserve to be stressed. In the first place, in the IC range of frequencies

coupling between modes with different poloidal wavenumbers due to toroidicity is very

strong, and can never be regarded as a perturbation. As a consequence, a quite

large spectrum of poloidal modes is always simultaneously excited: in mode-conversion

scenarios, several hundreds poloidal Fourier modes might be needed for the convergence

of the representation (2), and even minority heating scenarios dominated by the long-

wavelength FW require several tens. In particular, therefore, it is not possible to

characterize a toroidal mode by the single value k‖ ∼ nϕ/R: such an approximation

is not even qualitatively adequate. This is illustrated in fig. 1, which shows the range of

parallel wavenumbers and parallel phase velocities normalized to the electron thermal

speed associated to the dominant toroidal mode nϕ = 12 in a typical minority heating
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Figure 1. Parallel index and parallel phase velocity normalized to the electron thermal
velocity along the equatorial plane, nϕ = 12. The plasma parameters are those of
Table 1.

scenario in ASDEX Upgrade [13]. The spread in mode conversion scenarios can be

substantially larger.

The second toroidal effect taken into account in TORIC is the fact that near

cyclotron resonances ω = pΩci the width of the domain of non negligible parallel

dispersion and absorption is influenced not only by the usual thermal Doppler effect,

but also by the finite length of individual ion resonances [14]. This leads to a toroidicity

induced broadening of cyclotron resonances, which is particularly important for modes

with small kmnζ . This broadening, however, is evaluated assuming that all ions transit

through resonance with nearly constant parallel velocity. This is not be entirely

accurate, since quasilinear effects predict some accumulation of energetic trapped ions

with turning point close to resonance.

1.3. Large Larmor radius effects: Ion Bernstein waves.

As mentioned above, a number of modifications to the FLR wave equations have been

introduced in TORIC to take into account effects not adequately described by the

reduced FLR model.

The FLR approximation is always well justified for the FW in the IC frequency

range. The same is true also for the ICW, in spite of wavelengths of the order of the ion

Larmor radius, because the plasma response to this wave is determined essentially only

by the electrons. The situation is different, however, in the case of the IBW. This wave is

excited by mode conversion at ion-ion resonances, and propagates towards the high-field

side with rapidly decreasing wavelengths. As k⊥ρi approaches unity, refraction due to

toroidicity causes a rapid upshift or downshift of k‖, and thus (since IB waves are nearly

electrostatic) a corresponding increase of E‖ [15]. When this occurs, efficient ELD of

this wave is expected. While the reduced FLR expansion predicts with good accuracy

the wavelengths of this wave also in domains where k⊥ρi � 1, however, it misses ELD
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completely [8].

In principle, when k⊥ρi >∼ 1, the IBW satisfies a complicated non-local integro-

differential wave equation. The failure of the FLR expansion to describe ELD of the

IBW, however, occurs in a domain where the wavelength of this wave is so short that a

WKB (Wentzell-Kramer-Brillouin) solution of the exact wave equation would certainly

be adequate. It is possible to modify the FLR wave equations solved by TORIC in such

a way that in the regions in question they admit for the IBW the same WKB solution,

including damping. It is then legitimate to expect the solution evaluated by TORIC to

be a good approximation to the solution of the exact problem. This has been confirmed

by comparison with ray-tracing calculations [15]. The procedure involves adding to ~JP an

appropriate differential contribution from the electrons, whose coefficients are evaluated

by solving the full hot-plasma local dispersion relation (LDR) at each point and for each

poloidal mode; the details can be found in [16]. The search for the IBW root of the

LDR has been optimized so that this approach makes it possible to take into account

large Larmor radius effects without altering the structure of the equations to be solved,

and allows a fair description of propagation and absorption of IB waves in tokamak

geometry with a relative modest numerical effort.

1.4. Large Larmor radius effects: higher cyclotron harmonics.

Large ion Larmor radius effects must be taken into account also in order to simulate

IC damping of the FW at higher harmonics. In the high β plasmas of NSTX [17], even

the FW at a moderate IC harmonic has wavelengths comparable with the thermal ion

Larmor radius. The strength of IC damping at ω = pΩci , moreover, is proportional

to the modified Bessel function Ip−1(k
2
⊥ρ

2
i /2), and is, therefore, missed by the FLR

expansion for p ≥ 3.

To allow the simulation of FW IC damping at higher harmonics by TORIC, we

have followed an approach similar to that implemented for the description of IB waves.

Namely, when this option is chosen, the coefficients of the wave equations are modified

in such a way that the differential equation solved by TORIC and the complete integral

equation following from Vlasov equation admit the same local dispersion relation to all

orders in the ion Larmor radius, this time for the FW. The details, and some application,

can be found in [20]. This approach can be expected to give accurate results as long as

it can be proven that the conditions for a local WKB approximation are satisfied by the

FW: this is usually true, although not by such a large margin as in the case of IBWs. It

is clear, however, that this assumption breaks down in the presence of a mode-conversion

layer. As a consequence, scenarios in which the first (2Ωci) and higher IC harmonics are

simultaneously present in the plasma cannot be simulated with TORIC.
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2. The Fokker-Planck Quasilinear solver SSFPQL.

In this section we briefly present the satellite routines which use the output of TORIC, in

particular those which allow to estimate the production of suprathermal ion populations

by IC heating, and their effects on wave propagation and absorption.

2.1. Superposition of toroidal modes.

As mentioned above, TORIC takes advantage of axisymmetry to solve the wave

equations separately for individual toroidal modes nϕ. The fields and power deposition

profiles of different toroidal modes add linearly, with weights depending on the antenna

configuration. The subroutine SUMNPH performs such a superposition for the power

deposition profiles, with weights obtained either from a simple antenna model, or from

the output of the antenna code FELICE [12].

2.2. Quasilinear diffusion coefficient for the electrons.

The module QLDCE [21] uses the fields evaluated by TORIC to evaluate the bounce-

averaged quasilinear diffusion coefficient De
QL for the electrons on each magnetic surface.

Although in the FLR approximation the definition of De
QL is in principle entirely

consistent with the evaluation of electron damping in TORIC, achieving consistency

in the numerical implementation is far from trivial. In the IC range of frequencies the

discreteness of the k‖ spectrum in tokamaks, combined with the toroidal localization of

Cerenkov resonances, causes De
QL to be a very spiky function of v‖. In turn, inaccuracies

in the evaluation of De
QL are greatly amplified by the exponential variation of the number

of resonant electrons as a function of v‖. A special interpolation algorithm had to

be developed to ensure that the quasilinear electrons heating rate evaluated with De
QL

agrees within a few percent to the power deposited in the electrons according to TORIC.

The module QLDCE has been coupled to a Fokker-Planck solver for the electron

distribution function developed in collaboration with Dr. I. Pavlenko, and used to

estimate the efficiency of h.f. current drive by IC waves.

2.3. A simple quasilinear Fokker-Planck solver for the ions.

The module SSFPQL [22] solves the quasilinear equations for ions heated at the

fundamental and the first cyclotron harmonic, using the output of TORIC to build the

surface averaged quasilinear diffusion coefficient, and solves the resulting quasilinear

kinetic equation on each magnetic surface. This code provides information on the

radial profiles of the suprathermal populations generated by IC heating (distribution

functions, perpendicular and parallel energies, number of fast ions), and on the collisional

exchanges between these tails and the background ions and electrons. It should be noted,

however, that SSFPQL is based on a rather simplified model. The main simplifications

are:
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• The uniform-plasma Kennel-Engelmann quasilinear operator [23] is surface-

averaged, neglecting several effects of toroidicity on IC heating, such as toroidal

trapping, finite banana width, and losses.

• The collisional operator is linearized, assuming that the distribution of fast ions

reaches steady state by losing energy on the background ions and electrons.

Exploiting the second assumption, SSFPQL solves directly for the steady-state, and

is, therefore, very fast: the distribution functions of two ion species (minority heated at

the fundamental, majority at the first harmonic) can be evaluated in less than 20 sec

on 100 magnetic surfaces on a laptop. Because of the simplified quasilinear operator,

however, SSFPQL cannot be regarded as a full substitute for a more sophisticated

Fokker-Planck solver or for Montecarlo simulations [24], particularly for the most

energetic ions. For the bulk of the hot ion populations it nevertheless provides reliable

information with a very modest computational effort.

2.4. Iterating TORIC.

In the basic option, TORIC evaluates the coefficients of the wave equations assuming

Maxwellian distribution functions. Once the quasilinear distribution function of the

minority ions has been evaluated by SSFPQL, however, the module QLMINH allows

to iterate TORIC to estimate the influence of the suprathermal population on wave

propagation and absorption.

The evaluation of the coefficients of the wave equations for arbitrary distribution

functions involves multiple integrations in velocity space with resonant denominators,

and can be orders of magnitude slower than the solution of the wave equations

themselves. QLMINH short-circuits this problem by taking advantage of the fact

that the distribution function of minority ions heated at the fundamental IC resonance

can be approximated with reasonable accuracy as the superposition of two anisotropic

Maxwellians, generalizing the well-known analytical approximations obtained by Stix [4]

Fm(v‖, v⊥) = (1− f)
e
−[(v2

‖/α
2
‖1)+(v2

⊥/α
2
⊥1)]

π3/2α2
⊥1α‖1

+ f
e
−[(v2

‖/α
2
‖2)+(v2

⊥/α
2
⊥2)]

π3/2α2
⊥2α‖2

(5)

Here f is the fraction of minority ions in the tail, and α⊥k = (2T eff
⊥k/mm)1/2, α‖k =

(2T eff
‖k /mm)1/2, with T eff

⊥k and T eff
‖k the effective perpendicular and parallel temperatures.

With this approximate distribution function, the coefficients of the wave equations can

be expressed in terms of the Plasma Dispersion Function Z, modified for toroidal effects

as described in section 1. The contribution of the minority species to the coefficients

of ~JP to order 0 and 2 in the Larmor radius [1] are

δL̂ = −
ω2

pm

ω2

∑
k

fk I0(λk) e−λk
[
− γkx0 Z (γkx1)

]

δλ̂
(2)
i =

1

2

ω2
pm

Ω2
cm

∑
k

fk
α2
⊥k
c2

2I1(λk) e−λk

λk

[
− γkx0 Z (γkx2)

]
f1 = 1− f, f2 = f (6)
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Table 1. Main parameters used in the simulations. The experimental profiles for n
and T have been used for ASDEX Upgrade; the profiles of JET have been approximated
analytically.

AUG # 19314 JET # 52095
Major radius 1.67 m 2.95 m
Plasma radius 0.47 m 0.85 m
Plasma composition 6% H in D 4% H in D
Central magnetic field 1.97 T 2.77 T
Ohmic current 836 kA 2645 kA
Central density 6.53 1019 m−3 3.8 1019 m−3

Central electron temperature 4.35 keV 8 keV
Central ion temperature 4.33 keV 8.0 keV
Applied frequency 30.5 Mhz 42.0 Mhz
Representative toroidal wavenumber nϕ = 12 nϕ = 24
Position of minority resonance (r/a) 0.197 (h.f.s.) 0.070 (h.f.s.)
Estimated total power coupled 4 MW 9 MW
Peak power density 2.5 W/cm3 2.5 W/cm3

where xp = (ω − pΩcα)/k‖vthα, γk = vthα/α‖k, λk = k2
⊥α

2
⊥k/2Ω2

α with k⊥ the

perpendicular wavenumber of the FW, and the other notations are standard. The

factors involving the modified Bessel functions take into account large Larmor radius

effects in the presence of energetic suprathermal tails. Iterating TORIC including these

contributions only involves a larger number of evaluations of the function Z and of

Bessel functions, for which purpose efficient algorithms are available.

The parameters of the representation (5) are determined by matching as well as

possible the logarithmic slopes in the parallel and perpendicular velocity, and the energy

content of the quasilinear distribution evaluated by SSFPQL. Accurate matching of

the slopes is particularly important, since IC absorption is proportional to velocity

derivatives of the distribution function. From eqns (6) it is also clear that the effective

parallel and perpendicular temperatures play a very different role in the wave equations.

Only the former influences the Doppler width of the resonance. An increasing effective

perpendicular temperature decreases slightly the strength of fundamental IC absorption,

and increases the wavelength of IB waves excited by mode conversion. It is, therefore,

important to know the anisotropy of the minority distribution function, which is a

sensitive function of the local power density and collisionality. Notwhistanding its

limitations, SSFPQL is perfectly adequate to provide this information.

3. Hydrogen minority heating in ASDEX Upgrade.

As an example, we have used TORIC to simulate minority heating of Hydrogen in

a Deuterium plasma in the shot 19314 of ASDEX Upgrade (AUG). The parameters

of the experiment are summarized in Table 1. The experimentally determined MHD

equilibrium and the density and temperature profiles measured at t=3.2 sec have been
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Figure 2. Convergence investigation with the number of poloidal modes: left nϕ = 1,
right nϕ = 6. The ordinate is the total absorption in each channel (im MW) per 1 kA
of current in the corresponding nϕ mode of the antenna.

used. The estimated H concentration has been assumed radially uniform, and higher Z

impurities have been neglected.

3.1. Convergence investigation.

As a preliminary, it is instructive to discuss briefly the results of a study of the

convergence of the field evaluation with respect to the number M of poloidal Fourier

modes (in all the runs M = 2N−1 − 1, where 2N is the number of points in the

poloidal mesh, so that the poloidal wavenumber m scans the range −(M − 1)/2 ≤
m ≤ (M − 1)/2). Since the Doppler width of IC resonances is roughly proportional

to the toroidal wavenumber nφ, modes with small nφ are expected to require a finer

poloidal mesh, and correspondingly a larger M . This is confirmed by the variation of

the absorption in the different channels vs M, presented in fig. 2.

The predicted fundamental IC absorption by H decreases somewhat with

increasing M , while harmonic IC absorption by D increases, and electron damping,

although always small, increases even faster. This behaviour is easily related to the

physics of the different damping mechanisms. Harmonic IC and electron damping are

weighted towards large poloidal numbers, because the former is a Finite Larmor radius

effect, and the latter requires slow parallel phase velocities (high m). Damping of IB

waves, moreover, is at the same time a large Larmor radius effect. Since fundamental

and harmonic IC damping require an adequate sampling of the absorption region, on

the other hand, one would expect both these channels to increase with M , at least

initially. There is, however, a compensating effect, namely that |E+| must have a

rather marked minimum at the minority resonance, which requires enough poloidal

modes to interfere destructively at the right position. Insufficient screening of E+ at

low poloidal resolution can explain why fundamental IC damping actually decreases with

increasing M . Harmonic damping, being a FLR effect, depends on the derivatives of E+,

and is, therefore, much less sensitive to the accuracy of the interference in question, and
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Figure 3. Poloidal Fourier spectrum of |E+(m)| on 5 equidistant magnetic surfaces,
ASDEX Upgrade plasma, nϕ = 1. The width of the spectrum increases monotonically
from the axis to the edge.

more to the inclusion of sufficiently large values of m.

At nϕ = 1, 31 poloidal modes seem to be about sufficient to produce the required

minimum of |E+| (in fact, there is no significant visual difference in the field plots

between the 4 runs of this scan). Because of the other requirements, the run with 127

modes is acceptably, and the run with 255 modes well converged. The latter statement

is confirmed by fig. 3, which shows a logarithmic plot of the amplitudes of the Fourier

modes of E+ for nϕ = 1, on 5 equidistant magnetic surfaces, 0.05 ≤ r/a ≤ 0.95. This

figure also illustrates the fact that problems of numerical resolution are always more

severe near the plasma edge, as it is to be expected for geometrical reasons. With

nφ = 6, convergence is acceptable with M = 63, and good with M = 127. As a

consequence of this convergence study, in the scan over toroidal modes presented next,

we have used 255 poloidal modes for nϕ = 1, 127 for 2 ≤ nϕ ≤ 6, 63 for 7 ≤ nϕ ≤ 12,

and 31 for |nϕ| ≥ 13.

It is worth mentioning here that the relatively low number of poloidal modes

required for an adequate representation of ~E in the resonance region is typical of

Hydrogen minority in Deuterium. In this scenario, because of the simultaneous

resonance of the majority FLR contributions to the hf current at ω = 2ΩcD, the poloidal

variation of E+ in the layer between IC resonance and mode conversion is relatively

smooth. In other scenarios, such as Helium3 minority, the variation is much sharper,

and many more modes may be needed. A convergence check as sketched here is then

particularly important, since using incompletely converged runs of TORIC in these

scenarios can lead to grossly overestimate the heating of the minority. As an example,

we show in fig. 4 the fraction of power predicted to be absorbed by the He3 minority

in a deuterium plasma in ASDEX Upgrade, as a function of concentration, for nφ = 6

and 12 (current drive and and heating antenna configurations, respectively). To obtain

the correct transition from minority to mode conversion regimes when nHe3/ne exceeds
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Figure 4. Fraction of power absorbed by He3 minority in Deuterium, versus
concentration, in ASDEX Upgrade. Central magnetic field 2.7 T, f = 30.5 Mhz,
ne(0) = 5 1019 m−3,, Te(0) = Ti(0) = 4 keV.

∼ 4%, in agreement with the theoretical [18] and experimental [19] expectations, it was

necessary to run the parallelized version of toric with a mesh of 512 poloidal points and

255 poloidal Fourier modes. With the finest mesh practical on a serial computer (128

points and 63 modes) the field pattern appears already to some extent acceptable, but

the predicted absorption by the He3 in the mode conversion domain remains roughly

constant at high level as a result of incompete screening of E+ at ω = ΩcHe3.

3.2. Full scan over toroidal modes.

Figure 5 shows the coupled power spectrum predicted by the FELICE code [12], and

the repartition of power among the different absorption channels, evaluated by TORIC

and weighted with the spectrum produced by FELICE, for the ASDEX Upgrade case

of Table 1. The two strap antenna is excited in the antisymmetric configuration; for

simplicity, we have neglected the slight asymmetry between positive and negative values

of nϕ which nevertheless exists due to toroidicity. In running FELICE, outward radiation

conditions have been imposed before the IC resonance layer, explaining the smoothness

of the spectrum obtained. Because of the plane-stratified geometry approximation,

when the integration is extended over the entire plasma column until the “opposite”

metallic wall FELICE tends to overestimate the quality of internal eigenmodes. As a

consequence, imposing outward radiation conditions often predicts a loading resistance



Simulation of Ion Cyclotron Heating 13

Power 
coupled

H (fund.)

electrons

D (harm.)

nφ

P(n  )φ

Figure 5. Toroidal power spectrum. The total coupled power is normalized to unity.
The coupled spectrum is evaluated by FELICE, the fraction absorbed in each channel
by TORIC.

H (fundam)

D (harm.)

electrons

W/cm3

r/a

Figure 6. Radial power deposition profiles evaluated by TORIC, and weighted with
the coupled spectrum of FELICE, including the toroidal modes 0 ≤ nϕ ≤ 40. The
total coupled power is normalized to 1 MW. The spike in harmonic damping of D
occurs where the resonance cuts the equatorial plane, and might be spurious.

in better agreement with the experimental observations. In this case, however, the

absorption per transit is sufficiently strong to largely suppress internal modes excitation

even in the limit of straight geometry. The spectrum obtained by integrating over

the entire plasma, therefore, although presenting some more structure, does not differ

significantly from the one shown in fig. 5.

Figure 6 shows the corresponding power deposition profiles. These profiles,

multiplied by the estimated power of 3.6 MW actually coupled in the experiment, are

used by SSFPQL to evaluate the quasilinear ion velocity diffusion coefficient as function

of radius. Figure 7 shows the minority (Hydrogen) distribution function at the point
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Figure 7. AUG experiment: Minority distribution function at r/a = 0.25, for a total
coupled power of 3.6 MW. The dashed curve is the unperturbed Maxwellian at this
radius, with a temperature of 3.83 keV.
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Figure 8. AUG experiment: power absorbed by H+ and collisionally transferred to
the electrons, and parameters of the minority distribution function vs radius, for a
total coupled power of 3.6 MW.

where the absorbed power density is maximal, r/a ∼ 0.25. The effective perpendicular

temperature (logarithmic energy derivative at v‖ = 0) of the tail is about 28 keV, in

good agreement with the charge exchange measurement of 30-35 keV [25]. The parallel

effective temperature of the tail is about half the above value, 12.5 keV. Finally, fig. 8

shows the power collisionally transferred to the electrons, and the parameters of the

minority distribution function evaluated by fitting the representation (5) to the results

of SSFPQL. Because of the modest effective temperature of the suprathermal tail, most
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Figure 9. AUG experiment: power absorbed by D+ and collisionally transferred to the
electrons, parameters of the majority distribution function vs radius, and distribution
function at r/a = 0.25, for a total coupled power of 3.6 MW.

of the power absorbed by the protons from the waves is collisionally transferred to

the background ions: integrated over the volume, less than 30% goes to the electrons,

namely about 10% by direct absorption, and the rest by collisional transfer. In the

experiment no substantial electron heating during the h.f. power pulse was observed [30].

The same results are shown in fig. 9 for the majority species. The power per

ion directly absorbed by Deuterium is more than one order of magnitude less than

for Hydrogen. Thus not only the effective tail temperatures are much lower, but the

contribution of suprathermal deuterons to the total energy is minimal, indicating that

their number is very small. This is confirmed by the details of the Deuterium distribution

function: discrepancies from the unperturbed Maxwellian begin at a much higher energy

than in the case of Hydrogen. This is also a consequence of the well-known fact that

harmonic heating is a finite Larmor radius effect.

3.3. Quasilinear effects on power absorption.

In the present case, the effect of suprathermal ions on the power deposition profiles is

quite modest. In fig. 10 we compare the profiles for the toroidal mode nϕ = 12 (at the

peak of the power spectrum) for the unperturbed Maxwellian plasma, and taking into

account the quasilinear Hydrogen distribution function evaluated by SSFPQL using the

approach outlined in section 2. Some increase and broadening of the ion absorption at

the expense of electron heating is visible. Since the effect is small and limited to the

central region, however, the changes in the global power balance integrated over the

plasma volume are of the order of one per cent only.
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Figure 10. Power deposition profiles of the toroidal mode nϕ = 12 in the unperturbed
Maxwellian plasma (dotted curves) and with the quasilinear minority distribution
function evaluated by SSFPQL (dashed and full curves) for the AUG experiment.
The ordinates are W/cm2 normalized to a total power of 1 MW, the power coupled
3.6 MW.

3.4. Selecting a representative toroidal mode.

It is common practice to run TORIC for a single value of nϕ, corresponding to the peak

of launched power, and regard the results as representative for the entire spectrum.

Clearly, this procedure is best justified for ‘selective’ antennas with 4 or more straps.

Comparing the profiles of fig. 9 with those of fig. 5 shows, however, that in many

situations it can be safely used even in the case of a simple two-strap antenna. The

profiles weighted over the whole spectrum are slightly broader than those for the mode

nϕ = 12 alone, but neither the absolute values nor the shapes are substantially different.

This can be understood from well-known properties of the FW. Namely, IC absorption,

integrated over the Doppler width of the resonance, depends quite weakly on k‖. This is

not true, of course, for absorption by the electrons; due to the dependence of k‖ on the

poloidal number m, however, even a single toroidal modes excites a sufficiently broad

range of parallel phase velocities to be representative of the whole spectrum, at least

as a first approximation (cfr. fig. 1). The largest discrepancy can be expected near the

magnetic axis, where only the mode m = 0 survives to contribute to ELD and TTMP;

this is also confirmed by the comparison of the electron profiles in fig. 5 and 9.
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Figure 11. JET experiment: Minority distribution function at r/a = 0.25, for a total
coupled power of 3.6 MW. The dashed curve is the unperturbed Maxwellian at this
radius, with a temperature of 8 keV.

4. Hydrogen minority heating in JET.

In contrast to the AUG results, in a similar experiment on the JET tokamak [26] strong

electron heating was observed. The AUG and JET scenarios were quite similar: low

minority concentration well within the minority regime, and almost identical coupled

power densities (the main parameters of the JET experiment are summarized in the

right column of Table 1). Simulations with TORIC and SSFPQL reproduce well the

observations, and allow to ascribe the different outcome to the lower collisionality and

somewhat lower Hydrogen concentration of the JET plasma.

Taking advantage of the remark at the end of the previous section, in the JET

case only the most representative toroidal mode nϕ = 24 has been taken into account.

The results of TORIC and SSFPQL for the minority are shown in figs 11 and 12.

The absorbed power density in the central region is comparable to that in the AUG

experiment: the much larger plasma volume in JET is compensated by the larger total

power available, and by a better focusing of the waves in the central region. In JET,

however, the predicted effective temperatures of the minority suprathermal population

are much higher, and more anisotropic: T⊥eff ' 380 keV, T‖eff ' 60 keV (fig. 12). Except

for minor differences in the power deposition profiles, these results are consistent with

the analysis made in [26]. The critical temperatures for preferential slowing down on

electrons are about 90 keV in ASDEX Upgrade, and 210 keV in JET. As a consequence

of the high effective tail temperatures, in the core of JET ∼ 80% of the power absorbed

by the minority is thermalized on the electrons (∼ 65% integrated over the entire

plasma). The difference with the AUG case is due to the larger power per minority ion

available in JET (both the total density and the minority concentrations being lower),

and to the lower collisionality (by about a factor 4) of the JET plasma. Simulations

scanning the total power and the minority concentration in the two devices confirm this
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Figure 12. Jet experiment: power collisionally transferred to the electrons, and
parameters of the minority distribution function vs radius, for a total coupled power
of 9 MW.

interpretation.

The result of iterating TORIC for this JET scenario are shown in fig. 13. They are

similar to those for ASDEX Upgrade, except that the differences between the Maxwellian

and the quasilinear case are somewhat larger. It is interesting to note that in both

cases the peak absorption by the minority decreases when the suprathermal tails are

taken into account. In the JET example, the total h.f. power absorbed by the minority

decreases from ∼ 72.3 % in the Maxwellian plasma to ∼ 66.5 % in the quasilinear

case. This is in agreement with the fact that the Bessel function I0(λk) in eqn 6 is a

decreasing function of the average perpendicular particle energy. Replacing I0(λk) by

unity in the simulations, however, shows that only about half of the difference between

the Maxwellian and the quasilinear case is due to large Larmor radius effects.

It should also be mentioned that the slight broadening of the minority absorption

profile predicted by TORIC in the quasilinear case takes into account only the increased

width of the resonance due to the larger T‖eff . In JET, the perpendicular energy of

the ions in the tails is so large that the thin banana orbit approximation required to

justify surface averaging the quasilinear equation becomes questionable. Describing the

effects of finite orbit width on the IC absorption profiles requires a more sophisticated

approach [24].
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Figure 13. JET experiment: power deposition profiles of the toroidal mode nϕ = 24 in
the unperturbed Maxwellian plasma (dotted curves), and with the quasilinear minority
distribution function evaluated by SSFPQL (dashed and full curves). The ordinates
are W/cm2 normalized to a total power of 1 MW, the power coupled was 9 MW.

5. Comments and conclusions.

We have presented the models on which the full-wave toroidal code TORIC and the

quasilinear Fokker-Planck solver SSFPQL are based, and we have summarized the

physics which can be investigated by combining the two codes. The wave equations

solved by TORIC are based on the FLR approximation, but take into account all large

Larmor radius effects as required for the correct simulation of essentially all scenarios

of interest. SSFPQL neglects a number of interesting toroidal effects, most notably the

accumulation of energetic trapped ions with turning point just inside resonance, which

can be observed in more detailed quasilinear simulations. As mentioned in section 4,

however, the main source of inaccuracy is the fact that SSFPQL, in common with most

surface averaged Fokker-Planck solvers, neglects the finite radial width of the orbits

of the most energetic ions. Nevertheless, simulations with the combined TORIC and

SSFPQL codes reproduce satisfactorily the essential experimental observations, and

help in their interpretation, with a modest numerical effort. The output of SSFPQL, as

presented in figs 7, 8, and 10, can directly be used as input to transport codes.
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