

Using the Network as Bus System for Long Discharge
Data Acquisition and Data Processing

Ch. Henniga,* , T. Bluhma, P. Heimannb, H. Kroissb, G. Kühnera, H. Kühntopfa,

J. Maierb, M. Zilkerb

a Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstraße 1, 17491 Greifswald, Germany
b Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, 85748 Garching, Germany

Abstract

 Data acquisition in shot-based fusion experiments is characterized by a large amount of data collected within a short time.
The stellarator experiment W7-X will produce a considerable higher amount of data in a continuous and steady-state operation
within half an hour. Therefore it is not sufficient to wait until all data has been acquired and stored in the database before being
able to view and analyze data. Continuous and robust data transport is needed for (1) a distributed data monitoring system to
visualize trends, (2) continuous data acquisition of data available at the network and (3) message signaling.
 The paper introduces a network channel concept covering a system-wide available data description, half sync/half async
communication pattern, data serialization, identification and matching of data. It is focusing on the IP Multicast/UDP
implementation for the data monitoring system and presents results of performance measurements. Suitability and limitations are
discussed and an appropriate answer to the question “When is IP Multicast/UDP reliable?” is given.

Keywords: Wendelstein 7-X; Network Communication; Long Duration Discharge; Data Monitoring, IP Multicast, UDP

* Corresponding author. Tel.: +49-3834-88-2410
 fax: + 49-3834-88-2509;
E-mail address: Christine.Hennig@ipp.mpg.de (Ch. Hennig).

1. Introduction

The fusion experiment Wendelstein 7-X will put
high demands on data acquisition: Data taking will be
the task of about 300 PCs. The experimental phases
will last about half an hour.

It is planned to use the LAN with commercially

active components for periodic and asynchronous
communication. Fields of application include the data
monitoring system, continuous acquisition of data
available at the network and message signaling.

Therefore a general and easy-to-use network channel
concept has been introduced. In contrast to existing
TCP/IP based data pull techniques, the network is
treated as a bus system. For data monitoring the

underlying protocol is IP Multicast/UDP in a data push
model with modules sending periodically and modules
joining and listening. No additional protocol overhead
is added because the data structure is globally defined
for all modules in a common available database. Plug
in of other hardware, like PCI or field bus systems, is
supported and has been proven for a shared memory
hardware.

2. Fields of application for fusion devices

At W7-X are planned two Ethernet based networks:
the LAN and a dedicated Ethernet network (rtNet) for
control purposes [1].

2.1. Data Monitoring

For long running fusion experiments an online data
monitoring system [2] is indispensable. To achieve
this, (1) acquiring components send a representative
portion of the measured data to the network, (2) a
server reads, processes and sends processed data ready
to visualize and (3) all clients who are interested in this
data receive it.

2.2. Network Data Acquisition

Components of the Device Control System [3]
contain measuring equipment inside PCs with a real
time operating system to control the device within
milliseconds. They use rtNet as a real time bus system
[1]. If data has to be exchanged, the component sends it
to the rtNet at high speed.

More data producers are sensor components with
LAN access, like PLCs, that send data to the LAN on
timescales in the range of seconds.

Thus, acquiring data already spread at the network is
advantageous. The data acquisition [4] collects the data
from the network using the channel concept (chapter 3)
instead of doubling the measurement.

2.3 Commands and messages

Interaction between the central control and
subordinate system components will be done by control
commands sent to the network. Moreover, system
components have to periodically send status messages.

3. The channel-concept for communication

The network data communication described in
chapter 2 is done via the network channel concept.
Every data signal sent to the network is treated as an
experiment-wide global signal. For every signal a
connectionless channel is created per partner.

3.1. Global definition and description of a data signal

A list of all signals is available in the configuration
database of the experiment. The description of a signal
is defined per sender. It contains all information
necessary for the sender as well as the receivers. As an
example, a typical description of a PLC signal is given:
- name = “DataBrick1” (a human readable name)
- refProducer = “PlcCryo” (reference to sender)
- netMedium = “StdUdp” (logical medium for

transport; here LAN)
- dataFormat = "2 float, 9 byte, 7 int" (type and

format of data)
- address = {“239.255.131.130”, 3004} (here IP

Multicast address and UDP port)
- id = 95 (for identification)
- netType = 0x4000 (for identification)

3.2. Writing and reading data

If a partner has to write data it immediately sends it
to the network. Reading works as follow: The partner
needs to listen to the network addresses specified in the
channels it has to scan. At the hardware layer an
interrupt signals the arrival of data. The data has to be
queued until the service layer is ready to read.
Therefore the half sync/half async pattern [5] is
employed (Fig. 1).

<<sync service>> <<sync service>> <<sync service>>

<<queue>>

<<async service>> external event source

<<read/write>>

<<read/write>>

<<read/write>>

<<dequeue/enqueue>>

<<interrupt>>

Fig. 1. The half sync/half async pattern [5]

3.3. Implementation of OSI layers 2 and 3

The layer 3 implementation is based on IP

Multicast/UDP using the operating system independent
Java multicast socket API which is not free of bugs
([6]; search for Multicast). If listening on different
multicast addresses but same port any unicast traffic to
that port arrives at a random multicast socket.
Therefore either it needs to be guaranteed that no
unrequested unicast traffic is using the same port or it
is possible to filter unwanted data (section 3.4).

The layer 2 implementation based on MAC multicast
is written in C++ and wrapped to Java via Java Native
Interface. MAC multicast hardware filtering is enabled
at the network interface card. The implementation for
Windows is using winpcap [7], the only documented
facility to send layer 2 packets. The API is well
documented. The hardware filtering works fine ([8];
search for OID_802_3_MULTICAST_LIST). A Linux
implementation is based on packet socket and directly
using the socket link layer API. Complete control over
the hardware filtering was not possible. If the number
of MAC multicast addresses is larger than the memory
the operating system puts the card automatically in a
hashing mode.

3.4. Identification, filtering and security

Any receiver reading from a channel gets
everything that is coming in at the specified address.
This may include misdirected or broken data as well as
LAN intrusion attacks. Identification of data including
removal of unrequested data is necessary.

A couple of match criteria are part of the signal
description: address, id and netType (section 3.1).
Their matching, combined with checking the length and
checksum of the frame, allows primitive filtering and
security protection.

3.5. Multi homed hosts

Some PCs work as a bridge between the separated
Ethernet networks LAN and rtNet. They need two
network interface cards working with different IP
addresses. For Windows systems it is necessary to
configure only one default gateway per machine ([8];
Microsoft tech tips; search for multi homed host).

Multicast implementations for multi homed hosts
require network hardware information: At which
network interface has the PC to send or receive the
multicast traffic? This host-specific mapping of logical
networks to hardware devices needs to be added to the
configuration in the database for every partner.

3.6. Serialization and de-serialization

Marshalling data to the network needs a serialization
into a byte array. To save bandwidth and because the
data in a channel has always the same format, a simple
serialization is in use. In contrast to web technologies
like Service Oriented Architectures, the type definition
is not written into the byte array, only the “raw” data
itself. No protocol is added. The format specification is
contained in the description.

4. Multicast Tests

In this section the focus will be the IP
Multicast/UDP implementation that has been
developed and tested for data monitoring (section 2.1).
It pointed out some losses in our prototype. Moreover,
experiences from other fusion labs suggested testing
robustness and scaling. The following questions will be
addressed by the tests:
(1) How reliable is UDP in connection with IP

Multicast? How much loss occurs and under which
circumstances?

(2) Does a pause between send cycles guarantee
delivery of data?

(3) Does Multicast scale with respect to the…
(3a) Size of data? (including the effects of UDP

fragmentation)
(3b) Number of senders and receivers?
(3c) Number of multicast groups?

(4) Is there a difference between OSI layer 2 and 3?
(5) How does the normal network traffic affect the

multicast traffic?

4.1. The test bed

Two Windows PCs running Microsoft XP with
network interface cards SMC EtherPowerII are
connected to a layer 2 Foundry BigIron 8000 switch.
The backbone consists of two layer 3 Foundry BigIron
8000 switches; DVMRP enabled. Thus, two “hops” are

between the PCs. The bandwidth in the backbone is 1
Gbit/s. The PCs in the office net are connected with
100 MBit/s (Fig. 2). The test bed is part of the LAN
and all usual LAN traffic is present. All IP
Multicast/UDP packets are transmitted with TTL=16
(local area scope).

layer2
switch

layer2
switch

layer3
switch

layer3
switch

backbone

office net office net

backbone backbone

Fig. 2. The topology of the network tests

4.2. Test Scenarios

To test connectionless network performance, two
scenarios have been used [9]. The see-saw scenario is a
round-trip transaction between two partners in a cycle:
Partner A sends, Partner B receives, Partner B sends,
Partner A receives and so on. The one-way scenario
matches the fields of application at W7-X. One sender
sends periodically. One or many receivers receive. All
receivers have a java Thread.sleep (1000) timeout
which has been measured to be nearly 2 ms in average.
All tests have been repeated about ten million cycles.

4.3. Test parameters

A set of test parameters (A) to (G) is defined to
match the questions (1) to (5) in ascending order
(Table1). One parameter is varied per question, all
others are in their default setting (marked bold).
(A) test scenario {one-way; see-saw}
(B) pause between transmissions {1 ms; 10ms} (one-

way scenario only)
(C) number of bytes in a datagram packet {100;

50,000*} (*layer 3 only)
(D) number of receivers {1; 96}
(E) number of multicast addresses in use {1; 100}
(F) OSI layer {3; 2}
(G) network load {normal; high}

4.4. Remarks and results

(A) Results from see-saw and conclusions to one-way
The see-saw scenario showed up very promising

results. All 10,000,000 packets have been successfully
received. The sum of both directions took approx. 0.48
ms. Therefore, a 1 ms pause between transmissions for
the one-way scenario seemed to be appropriate.

(B) Varying the pause between sends

With 10 ms pause 9,958,406 packets had been
received. This is a loss of approx. 0.5%. With 1 ms
pause 9,690,541 packets had been received, the loss
increased to approx. 3%.

(C) Varying the number of bytes

Sending 50,000 bytes with 1 ms pause would exceed
the network capability. Therefore, in this test a 10 ms
pause is applied. 8,326,563 packets had been received,
thus the loss is approx. 17%. All UDP packets had to
be fragmented into 34 Ethernet frames (max. 1500
byte). The loss is in the range as expected: 0.5 (loss in
test B) * 34 (number of frames) = 17%.

(D) Varying the number of receivers

96 receivers have been incorporated. Only 21 of
them did not have premature timeout. At 70 receivers,
a timeout greater than 1,000 ms (which is 1,000 times
the pause) occurred after 14 seconds and at 5 receivers
the timeout occurred after 7 minutes. This leads to the
supposition that there is a congestion at the switch or
the receivers

17 out of 21 successful receivers reached losses less
than 1%. The overall loss rate of the 21 receivers is
about 4.8% and ranges from 0.004 to 44.8%.

(E) Varying the number of Multicast addresses

When sending to 100 different addresses instead of a
single one 9,999,200 packets had been received. This is
a loss of approx. 0.008%.

(F) Varying the OSI layer

For layer2 the test bed is modified. There are no
hops between the participating PCs possible. In the test
9,984,042 packets had been received. This is a loss of
approx 0.2%.

(G) Varying the network load

In this test a high network load has been produced
by subsequently copying a huge file (5 Gbyte) over the

test bed. The additional load was about 18.2 Mbit/s.
In the tests 9,921,371 packets had been received.

This is a loss of approx. 0.8%.

Table 1
Summary of the IP Multicast/UDP test results

question ���� test* Packets received Loss in %
default settings 9,690,541 3.095

 1 ���� A all 10,000,000 0.000
 2 ���� B 9,958,406 0.416
3a ���� C 8,326,563 16.734
3b ���� D average 9,517,272 4.827
3c ���� E 9,999,200 0.008
 4 ���� F 9,984,042 0.159
 5 ���� G 9,921,371 0.786

*The matching of tests to answer questions (1) to (5) by
varying parameter (A) to (G)

A summary of all tests is shown in Table 1. With the

default parameters, no data losses have been predicted
because the test data amount is small compared to the
network bandwidth. If reproducing the tests the losses
vary. Further tests are necessary to clarify the reasons
for the data losses detected.

One hypothesis is that the robustness of multicast
depends on the performance of the active component
and the implementation of the multicast routing
protocol. Test (D) buttresses this. The typical
commercial application using IP Multicast is Video
Conferencing. Possibly the switches are optimized for
that purpose.

Performance becomes poor especially if data has to
be fragmented or the sending rate is very high.
Technologies in use by commercially available video
camera server using IP Multicast/UDP with streaming
technology could be an alternative for the monitoring
of video data.

5. Summary

A flexible channel concept has been introduced for

communication between partners. It is independent of
the underlying hardware that is treated as a network
with senders pushing data and receivers listening.

Three fields of application for continuously
operating fusion devices have been introduced: (1) data

monitoring, (2) network data acquisition and (3)
signaling between system components.

The data monitoring system will be an indispensable
application for long duration fusion experiments. For
this it is planned to use IP Multicast/UDP on standard
network hardware. Performance tests tests show
limitations for large size data, complex network
infrastructure and many receivers. Further tests are
necessary to clarify the reasons for the data losses
detected.

It is already widespread that manufacturers integrate
network capabilities into sensor components. They
push data to the network and other subsystems have to
collect and store them in the database. For this purpose
network data acquisition plays an important role.

The channel concept is flexible enough to allow
substitution or addition of concrete implementation
technology.

References

[1] Laqua H., Niedermeyer H. and Willmann I. Ethernet
based real time control data bus. IEEE Trans. Nucl. Sci. 49
(2002), pp 478-482.

[2] Hennig Ch. et al. A concept of online monitoring for the
Wendelstein 7-X experiment. Fusion Engineering and
Design 71 (2004), pp 107-110.

[3] Laqua H. et al. Control system of WENDELSTEIN 7-X
experiment. Fusion Engineering and Design 66-68 (2003),
pp 669-673.

[4] Heimann P. et al. Status report on the development of the
data acquisition system of Wendelstein 7-X. Fusion
Engineering and Design 71 (2004), pp 219-224.

[5] Schmidt D. C. et al. Pattern-Oriented Software
Architecture Vol. 2. Patterns for Concurrent and Networked
Objects. Wiley, Chichester, 2000.

[6] http://bugs.sun.com/bugdatabase/index.jsp.

[7] http://winpcap.polito.it/.

[8] http://msdn.microsoft.com.

[9] Irey P. M. et al. Techniques for LAN Performance
Analysis in a Real-Time Environment. Real-Time Systems
14 (1998) pp. 12-44.

