
    
    
 
 
 
 

Using the Network as Bus System for Long Discharge  
Data Acquisition and Data Processing 

    
Ch. Henniga,* , T. Bluhma, P. Heimannb, H. Kroissb, G. Kühnera, H. Kühntopfa,  

J. Maierb, M. Zilkerb 

 
    

a Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstraße 1, 17491 Greifswald, Germany 
b Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, 85748 Garching, Germany 

 
    
 
  
 
Abstract 
 
        Data acquisition in shot-based fusion experiments is characterized by a large amount of data collected within a short time. 
The stellarator experiment W7-X will produce a considerable higher amount of data in a continuous and steady-state operation 
within half an hour. Therefore it is not sufficient to wait until all data has been acquired and stored in the database before being 
able to view and analyze data. Continuous and robust data transport is needed for (1) a distributed data monitoring system to 
visualize trends, (2) continuous data acquisition of data available at the network and (3) message signaling. 
        The paper introduces a network channel concept covering a system-wide available data description, half sync/half async 
communication pattern, data serialization, identification and matching of data. It is focusing on the IP Multicast/UDP 
implementation for the data monitoring system and presents results of performance measurements. Suitability and limitations are 
discussed and an appropriate answer to the question “When is IP Multicast/UDP reliable?” is given. 
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1. Introduction 
 

The fusion experiment Wendelstein 7-X will put 
high demands on data acquisition: Data taking will be 
the task of about 300 PCs. The experimental phases 
will last about half an hour. 

It is planned to use the LAN with commercially 

active components for periodic and asynchronous 
communication. Fields of application include the data 
monitoring system, continuous acquisition of data 
available at the network and message signaling. 

Therefore a general and easy-to-use network channel 
concept has been introduced. In contrast to existing 
TCP/IP based data pull techniques, the network is 
treated as a bus system. For data monitoring the 



underlying protocol is IP Multicast/UDP in a data push 
model with modules sending periodically and modules 
joining and listening. No additional protocol overhead 
is added because the data structure is globally defined 
for all modules in a common available database. Plug 
in of other hardware, like PCI or field bus systems, is 
supported and has been proven for a shared memory 
hardware. 

 
2. Fields of application for fusion devices 
 

At W7-X are planned two Ethernet based networks: 
the LAN and a dedicated Ethernet network (rtNet) for 
control purposes [1]. 
 
2.1. Data Monitoring 
 

For long running fusion experiments an online data 
monitoring system [2] is indispensable. To achieve 
this, (1) acquiring components send a representative 
portion of the measured data to the network, (2) a 
server reads, processes and sends processed data ready 
to visualize and (3) all clients who are interested in this 
data receive it.  

 
2.2. Network Data Acquisition 
 

Components of the Device Control System [3] 
contain measuring equipment inside PCs with a real 
time operating system to control the device within 
milliseconds. They use rtNet as a real time bus system 
[1]. If data has to be exchanged, the component sends it 
to the rtNet at high speed. 

More data producers are sensor components with 
LAN access, like PLCs, that send data to the LAN on 
timescales in the range of seconds. 

Thus, acquiring data already spread at the network is 
advantageous. The data acquisition [4] collects the data 
from the network using the channel concept (chapter 3) 
instead of doubling the measurement. 
 
2.3 Commands and messages 
 

Interaction between the central control and 
subordinate system components will be done by control 
commands sent to the network.  Moreover, system 
components have to periodically send status messages. 

 

3. The channel-concept for communication 
 

The network data communication described in 
chapter 2 is done via the network channel concept. 
Every data signal sent to the network is treated as an 
experiment-wide global signal. For every signal a 
connectionless channel is created per partner.  

 
3.1. Global definition and description of a data signal 
 

A list of all signals is available in the configuration 
database of the experiment. The description of a signal 
is defined per sender. It contains all information 
necessary for the sender as well as the receivers. As an 
example, a typical description of a PLC signal is given: 
- name = “DataBrick1” (a human readable name) 
- refProducer = “PlcCryo” (reference to sender) 
- netMedium = “StdUdp” (logical medium for 

transport; here LAN) 
- dataFormat = "2 float, 9 byte, 7 int" (type and 

format of data) 
- address = {“239.255.131.130”, 3004} (here IP 

Multicast address and UDP port) 
- id = 95 (for identification) 
- netType = 0x4000 (for identification) 
 
3.2. Writing and reading data 
 

If a partner has to write data it immediately sends it 
to the network. Reading works as follow: The partner 
needs to listen to the network addresses specified in the 
channels it has to scan. At the hardware layer an 
interrupt signals the arrival of data. The data has to be 
queued until the service layer is ready to read. 
Therefore the half sync/half async pattern [5] is 
employed (Fig. 1).  
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Fig. 1. The half sync/half async pattern [5] 



 
3.3. Implementation of OSI layers 2 and 3 

 
The layer 3 implementation is based on IP 

Multicast/UDP using the operating system independent 
Java multicast socket API which is not free of bugs 
([6]; search for Multicast). If listening on different 
multicast addresses but same port any unicast traffic to 
that port arrives at a random multicast socket. 
Therefore either it needs to be guaranteed that no 
unrequested unicast traffic is using the same port or it 
is possible to filter unwanted data (section 3.4). 

The layer 2 implementation based on MAC multicast 
is written in C++ and wrapped to Java via Java Native 
Interface. MAC multicast hardware filtering is enabled 
at the network interface card. The implementation for 
Windows is using winpcap [7], the only documented 
facility to send layer 2 packets. The API is well 
documented. The hardware filtering works fine ([8]; 
search for OID_802_3_MULTICAST_LIST). A Linux 
implementation is based on packet socket and directly 
using the socket link layer API. Complete control over 
the hardware filtering was not possible. If the number 
of MAC multicast addresses is larger than the memory 
the operating system puts the card automatically in a 
hashing mode. 
 
3.4. Identification, filtering and security 
 

Any receiver reading from a channel gets 
everything that is coming in at the specified address. 
This may include misdirected or broken data as well as 
LAN intrusion attacks. Identification of data including  
removal of unrequested data is necessary. 

A couple of match criteria are part of the signal 
description: address, id and netType (section 3.1). 
Their matching, combined with checking the length and 
checksum of the frame, allows primitive filtering and 
security protection. 
 
3.5. Multi homed hosts 
 

Some PCs work as a bridge between the separated 
Ethernet networks LAN and rtNet. They need two 
network interface cards working with different IP 
addresses. For Windows systems it is necessary to 
configure only one default gateway per machine ([8]; 
Microsoft tech tips; search for multi homed host). 

Multicast implementations for multi homed hosts 
require network hardware information: At which 
network interface has the PC to send or receive the 
multicast traffic? This host-specific mapping of logical 
networks to hardware devices needs to be added to the 
configuration in the database for every partner. 
 
3.6. Serialization and de-serialization 
 

Marshalling data to the network needs a serialization 
into a byte array. To save bandwidth and because the 
data in a channel has always the same format, a simple 
serialization is in use. In contrast to web technologies 
like Service Oriented Architectures, the type definition 
is not written into the byte array, only the “raw” data 
itself. No protocol is added. The format specification is 
contained in the description.  
 
4. Multicast Tests 
 

In this section the focus will be the IP 
Multicast/UDP implementation that has been 
developed and tested for data monitoring (section 2.1). 
It pointed out some losses in our prototype. Moreover, 
experiences from other fusion labs suggested testing 
robustness and scaling. The following questions will be 
addressed by the tests: 
(1) How reliable is UDP in connection with IP 

Multicast? How much loss occurs and under which 
circumstances? 

(2) Does a pause between send cycles guarantee 
delivery of data? 

(3) Does Multicast scale with respect to the… 
(3a) Size of data? (including the effects of UDP 

fragmentation) 
(3b) Number of senders and receivers? 
(3c) Number of multicast groups? 

(4) Is there a difference between OSI layer 2 and 3? 
(5) How does the normal network traffic affect the 

multicast traffic? 
 
4.1. The test bed 
 

Two Windows PCs running Microsoft XP with 
network interface cards SMC EtherPowerII are 
connected to a layer 2 Foundry BigIron 8000 switch. 
The backbone consists of two layer 3 Foundry BigIron 
8000 switches; DVMRP enabled. Thus, two “hops” are 



between the PCs. The bandwidth in the backbone is 1 
Gbit/s. The PCs in the office net are connected with 
100 MBit/s (Fig. 2). The test bed is part of the LAN 
and all usual LAN traffic is present. All IP 
Multicast/UDP packets are transmitted with TTL=16 
(local area scope).  
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Fig. 2. The topology of the network tests 
 
4.2. Test Scenarios 
 

To test connectionless network performance, two 
scenarios have been used [9]. The see-saw scenario is a 
round-trip transaction between two partners in a cycle: 
Partner A sends, Partner B receives, Partner B sends, 
Partner A receives and so on. The one-way scenario 
matches the fields of application at W7-X. One sender 
sends periodically. One or many receivers receive. All 
receivers have a java Thread.sleep (1000) timeout 
which has been measured to be nearly 2 ms in average. 
All tests have been repeated about ten million cycles. 
 
4.3. Test parameters 
 

A set of  test parameters (A) to (G) is defined to 
match the questions (1) to (5) in ascending order 
(Table1). One parameter is varied per question, all 
others are in their default setting (marked bold). 
(A) test scenario {one-way; see-saw} 
(B) pause between transmissions {1 ms; 10ms} (one-

way scenario only)  
(C) number of bytes in a datagram packet {100; 

50,000*} (*layer 3 only) 
(D) number of receivers {1; 96} 
(E) number of multicast addresses in use {1; 100} 
(F) OSI layer {3; 2} 
(G) network load {normal; high} 

 
4.4. Remarks and results 
 

(A) Results from see-saw and conclusions to one-way  
The see-saw scenario showed up very promising 

results. All 10,000,000 packets have been successfully 
received. The sum of both directions took approx. 0.48 
ms. Therefore, a 1 ms pause between transmissions for 
the one-way scenario seemed to be appropriate. 
 
(B) Varying the pause between sends 

With 10 ms pause 9,958,406 packets had been 
received. This is a loss of approx. 0.5%. With 1 ms 
pause 9,690,541 packets had been received, the loss 
increased to approx. 3%. 
 
(C) Varying the number of bytes 

Sending 50,000 bytes with 1 ms pause would exceed 
the network capability. Therefore, in this test a 10 ms 
pause is applied. 8,326,563 packets had been received, 
thus the loss is approx. 17%. All UDP packets had to 
be fragmented into 34 Ethernet frames (max. 1500 
byte). The loss is in the range as expected: 0.5 (loss in 
test B) * 34 (number of frames) = 17%. 
 
(D) Varying the number of receivers 

96 receivers have been incorporated. Only 21 of 
them did not have premature timeout. At 70 receivers, 
a timeout greater than 1,000 ms (which is 1,000 times 
the pause) occurred after 14 seconds and at 5 receivers 
the timeout occurred after 7 minutes. This leads to the 
supposition that there is a congestion at the switch or 
the receivers 

17 out of 21 successful receivers reached losses less 
than 1%. The overall loss rate of the 21 receivers is 
about 4.8% and ranges from 0.004 to 44.8%.  
 
(E) Varying the number of Multicast addresses 

When sending to 100 different addresses instead of a 
single one 9,999,200 packets had been received. This is 
a loss of approx. 0.008%. 
 
(F) Varying the OSI layer 

For layer2 the test bed is modified. There are no 
hops between the participating PCs possible. In the test 
9,984,042 packets had been received. This is a loss of 
approx 0.2%.  
 
(G) Varying the network load 

In this test a high network load has been produced 
by subsequently copying a huge file (5 Gbyte) over the 



test bed. The additional load was about 18.2 Mbit/s.  
In the tests 9,921,371 packets had been received. 

This is a loss of approx. 0.8%. 
 
Table 1 
Summary of the IP Multicast/UDP test results 
 

question ���� test* Packets received Loss in % 
default settings 9,690,541 3.095 

 1 ���� A  all 10,000,000 0.000 
 2 ���� B 9,958,406 0.416 
3a ���� C 8,326,563 16.734 
3b ���� D average 9,517,272 4.827 
3c ���� E 9,999,200 0.008 
 4 ���� F 9,984,042 0.159 
 5 ���� G 9,921,371 0.786 

 

*The matching of tests to answer questions (1) to (5) by 
varying parameter (A) to (G) 

 
A summary of all tests is shown in Table 1. With the 

default parameters, no data losses have been predicted 
because the test data amount is small compared to the 
network bandwidth. If reproducing the tests the losses 
vary. Further tests are necessary to clarify the reasons 
for the data losses detected.  

One hypothesis is that the robustness of multicast 
depends on the performance of the active component 
and the implementation of the multicast routing 
protocol. Test (D) buttresses this. The typical 
commercial application using IP Multicast is Video 
Conferencing. Possibly the switches are optimized for 
that purpose.  

Performance becomes poor especially if data has to 
be fragmented or the sending rate is very high. 
Technologies in use by commercially available video 
camera server using IP Multicast/UDP with streaming 
technology could be an alternative for the monitoring 
of video data. 
 
5. Summary 

 
A flexible channel concept has been introduced for 

communication between partners. It is independent of 
the underlying hardware that is treated as a network 
with senders pushing data and receivers listening.  

Three fields of application for continuously 
operating fusion devices have been introduced: (1) data 

monitoring, (2) network data acquisition and (3) 
signaling between system components. 

The data monitoring system will be an indispensable 
application for long duration fusion experiments. For 
this it is planned to use IP Multicast/UDP on standard 
network hardware. Performance tests tests show 
limitations for large size data, complex network 
infrastructure and many receivers. Further tests are 
necessary to clarify the reasons for the data losses 
detected.  

It is already widespread that manufacturers integrate 
network capabilities into sensor components. They 
push data to the network and other subsystems have to 
collect and store them in the database. For this purpose 
network data acquisition plays an important role. 

The channel concept is flexible enough to allow 
substitution or addition of concrete implementation 
technology. 
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