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I. INTRODUCTION

Physics experiments are always affected by instrumen-
tal restrictions, limited measurement time and inaccu-
rate standards. Therefore the typical problems encoun-
tered in the analysis of physics measurements are incom-
plete and noisy data. The reasoning about the interest-
ing quantities is hampered by the the ill-posed nature
of the underlying inversion problem. As a consequence,
there is usually a huge number of widely scattered solu-
tions consistent with the experimental data within the
experimental errors. The experienced physicist has no
problems in rejecting the ’unphysical’ solutions among
this manifold. This indicates that he disposes of prior
information about the general nature of the ’physical’
solutions. Bayesian Probability Theory (BPT) provides
a general and consistent frame for data analysis prob-
lems. It allows for the inclusion of information prior to
considering the data, which in turn permits to access
ill-posed or underdetermined problems. Of paramount
importance is the possibility to rank different candidate
models for the explanation of a given set of data. In this
paper we will present practical examples to which the
Bayesian Probability theory can be applied successfully.
Guided by these examples we will discuss typical features
of the BPT. The paper is organized as follows. In sec-
tion II we give a concise outline of the formalism with
sufficient information for the reader to be able to apply
the BPT. In section III to section V we present recent
applications of the theory in order to illustrate its power.
Section VI provides a summary and an outlook.

II. BAYESIAN CONCEPT

This section serves to state the theory and define the
terminology employed in this paper. A more in depth
coverage of the theory is provided by eg. [1, 2]. In
Bayesian probability theory (BPT), the viability of a hy-
pothesis H is assessed by calculating the probability of
the hypothesis given the observed data D and any back-
ground information I. Following Jeffreys [3] we write
such a probability as P (H |D, I). The BPT rests on two
rules [4] for manipulating conditional probabilities. The
sum rule states that the probabilities of a proposition H
and the proposition that H is false (signified by H) add
up to unity:

P (H |I) + P
(

H |I
)

= 1. (1)

Throughout this work, we will be concerned with exclu-
sive and exhaustive hypotheses, so that if one particular
hypothesis is true, all the others are false. For such hy-
potheses the normalization rule

∑

i

p (Hi|I) = 1 (2)

holds. The second rule is the product rule which states
that a joint probability or probability density function
P (H, D|I) can be factorized such that one of the propo-
sitions becomes part of the condition (i.e. moves right of
the vertical bar). Due to the symmetry with respect to
H and D, this can be done in two ways:

P (H, D|I) = P (H |I)P (D|H, I) = P (D|I) P (H |D, I) .
(3)

Comparison of the two equivalent decompositions in (3)
yields Bayes’ theorem

P (H |D, I) =
P (H |I)P (D|H, I)

P (D|I)
. (4)
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Bayes’ theorem relates the likelihood P (D|H, I) to the
posterior probability P (H |D, I). The posterior probabil-
ity distributions provide the full description of our state
of knowledge about H . It is often necessary to summa-
rize the distribution in terms of a few numbers. The
most common description is given by the mean value of
the posterior. Other possible choices are the position
of the most probable value of the posterior (also termed
maximum a posteriori (MAP) estimate) or the median of
the distribution. For a symmetric distribution the mean
value and the median coincide. All those numbers may
be strongly misleading in the case of skew or multimodal
distributions. Eq. 4 reveals also that the maximum-
likelihood (ML) estimate is usually different from the
posterior estimate except for the special case of a con-
stant prior. The maximum-likelihood estimate obtained
by maximizing the likelihood function is often mistaken
as the most probable estimate given the data. This is
not so: The obtained hypothesis is the one that would
make the observed data most probable. This is logically
quite different. An example taken from [5] highlights this
distinction. The probability of rain given that there are
clouds overhead and the probability of clouds overhead
given that it is raining are clearly not the same. The
quantity that is required (the most probable estimate
given the data) is instead given by the posterior proba-
bility P (H |D, I). It is related to the likelihood function
through the prior probability P (H |I). From a differ-
ent point of view Bayes’ theorem is a recipe for learning.
Initially available prior knowledge about the hypothesis
H coded in the distribution P (H |I) is modified by the
new information provided by the measured data D to
its posterior distribution P (H |D, I). The last quantity
to be explained in Eq. 4 is P (D|I). It follows from
the marginalization rule which is itself a consequence
of the sum and product rule. The extremely important
marginalization rule tells how to remove an ’unwanted’
nuisance variable from a Bayesian calculation:

P (D|M, I) =
∑

i

P (Hi|M, I)P (D|Hi, M, I) (5)

Here we have split off the model M which specifies the
bunch of hypotheses Hi we are considering from the gen-
eral background information I. That is, the denominator
of Bayes’ theorem, which does not depend on H plays the
role of a normalization constant. An additional signifi-
cance of the evidence derived from Eq.5 is the probability
of the data averaged over all hypotheses in the class spec-
ified by M . Therefore the evidence is of vital importance
for model comparison (see IV).
The Bayesian formalism has been known for more than
two centuries and it is extensively used in many fields
as in robotics [6] or astronomy [7]. The routine use of
Bayesian methods in the analysis of physics data, how-
ever, has still to come [8, 9]. The formalism is simple
although the application may sometimes be computa-
tionally demanding. But the development of the last
10-15 years provided adequate computing power avail-

able to experimenters. So there are no longer any ob-
stacles which prevent the use of BPT. Nevertheless the
experience of many physicists trained in orthodox statis-
tics that tackling realistic problems requires an (hardly
available) arcane expert knowledge is in some areas only
slowly superseded by the insight that there is a straight-
forward and general method for the evaluation of physics
measurements.

A. Prior probability distributions

All of the rules we have written down so far show how
to manipulate known probabilities to find the values of
other probabilities and skipped the problem of how to for-
mulate a distribution given certain prior knowledge. But
to be useful in applications, we need rules that assign
numerical values or functions to the initial probabilities
that will be manipulated. Indeed, one of the advantages
of Bayesian analysis is that it explicitly admits the exis-
tence of prior information. In other types of analysis it is
often not easy to recognize the specific assumptions made
by the analyst and (even worse) the implicit assumptions
of the method (the latter assumptions are often unknown
to the average practitioner). Prior information can con-
sist of numerical values for the maximum, width or mo-
ments as mean or variance. Alternatively prior informa-
tion can consist of properties which we expect for the
posterior distribution of a problem. Essentially there are
two different principles to derive a prior distribution.

1. Transformation invariance

E.T. Jaynes [10] (but also others eg. [11]) applied
group theoretical methods to the problem of assigning
priors. He demonstrated for a number of simple but prac-
tically important cases that, even if one is completely
ignorant about the numerical values of the estimated pa-
rameters, the symmetry of the problem determines the
prior unambiguously. Prominent examples are priors for
scale parameters, location parameters or even priors for
hyperplanes which are essential for Bayesian Neural Net-
works [12, 13]. We shall consider for concreteness in more
detail the specific case of a prior for straight lines through
the origin y = ax. A possible, naive prior for the slope
of the straight lines would be P (a|I) = const. On the
other hand, the only sensible transformation of the coor-
dinate system is in our specific case a rotation. P (a) da
is then an element of probability mass whose value must
be independent from the system of coordinates which we
use to evaluate its numerical value. Hence, for a different
system of coordinates a′ we must require that

P (a) da = P (a′) da′ (6)

yielding the Transformation Invariance equation [12]

∂

∂ǫ

{

p (Tǫ (a))

∣

∣

∣

∣

∂Tǫ(a)

∂a

∣

∣

∣

∣

}

ǫ=0

= 0 (7)
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FIG. 1: Left panel: The density of the slope is constant. This
results in a non-constant distribution for the angle between
the straight lines and the x-axis. Right panel: The angular
density is kept constant (from [14]).

where the infinitesimal transformation which maps a onto
a′ is denoted as Tǫ (a). In our case this functional equa-
tion is solved by

p (a) =
1

π

1

1 + a2
(8)

which is not an obvious prior for the slope. But a vi-
sualization of both priors (Fig.1) shows that the prior
Eq.8 is in agreement with our intuition: The angles of
the straight lines with the x-axis are equally distributed
(Fig.1, right hand panel), whereas the constant slope
prior strongly favors large angles (Fig.1, left hand panel)
[14].
If a location parameter is to be estimated, for instance

the mean µ of a Gaussian, the prior must be invariant
under a shift b of the location. The solution of Eq.7 is
in this case a constant prior P (µ) = const. If we are
indifferent about a scale parameter σ such as the decay
length of an exponetial or the width of a Gaussian the
appropriate prior satisfying transformation invariance is
Jeffrey’s prior [3]

P (σ) =
1

σ
. (9)

Both priors P (µ) = const and P (σ) = 1
σ

are called im-
proper because they are not normalizable on their respec-
tive supports −∞ < µ < ∞ and 0 ≤ σ < ∞. Improper
priors should always be used with care in Bayesian calcu-
lations. The proper procedure is to consider eg. Jeffrey’s
prior as the limit of properly normalized priors on the
support 1

B
≤ σ ≤ B

P (σ) =
1

2 lnB

1

σ
. (10)

Inferences from the posterior are then considered for B →
∞. If the inference depends on B in this limit the prior
Eq. 9 leads to inconsistensies and the whole problem
must be reassessed.

2. The Maximum Entropy Principle

A principle-based approach for coding numerical in-
formation into prior probability densities is the Maxi-

mum Entropy (ME) principle [15–17]. It is a rule for
converting certain types of information called testable
information to a probability assignment. The informa-

tion Q
(

~θ
)

is testable if, given a probability distribution

p
(

~θ|M, I
)

, we can determine unambiguously if the dis-

tribution p
(

~θ|M, I
)

is consistent with the information

Q
(

~θ
)

. Q may be the already mentioned maximum or

mean of a distribution. But in general, there may be
many distributions consistent with the given testable in-
formation Q. For example we may know the mean value
of many roles of a die was 2.5 and want to use this knowl-
edge to assign probabilities to the six possible outcomes
of the next role of the die. This information is testable -
we can calculate the mean value of any probability distri-
bution for the six possible outcomes of a roll and see if it
is 2.5 or not - but it does not single out one distribution.
The basic idea is to choose the prior probability distri-
bution that is compatible with the given information yet
has minimal information content otherwise. A functional
satisfying this requirement is the entropy

S = −
∑

i

pi ln pi (11)

subject to the constraining information. If the only in-
formation at hand is that the probability distribution is
normalized to one in a interval [a, b] then the ME princi-
ple provides a uniform distribution over the interval

P (θ|Q0 = 1, M, I) =
1

b − a
(12)

If additionally the expectation value θ0 of the distribu-
tion is given then the most uninformative distribution
for positive variables 0 ≤ θ < ∞ compatible with those
constraints is

P (θ|Q0 = 1, Q1 = θ0, M, I) =
1

θ0
exp

(

− θ

θ0

)

. (13)

As a final example assume we know the point estimate
θ0 of θ and also its variance < ∆θ2 >= σ2. In this
case maximum entropy selects as the least informative
distribution a Gaussian in −∞ < θ < ∞

p
(

θ|Q0 = 1, Q1 = θ0, Q2 = σ2, M, I
)

=

1

σ
√

2π
exp

(

− 1

2σ2
(θ − θ0)

)

. (14)

III. APPLICATIONS I: RUTHERFORD

BACKSCATTERING

In the following sections will apply the BPT to vari-
ous ill-posed inversion problems, encountered in analyz-
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ing experimental data from surface physics experiments.
We begin with the deconvolution of RBS data which is
also of importance for the improved depth resolution of
RBS measurements in the next paragraph. Rutherford
backscattering (RBS) is a surface analytical technique
which is routinely used to determine surface composi-
tions and depth profiles[18]. Its importance derives from
its quantitative nature. In RBS, the energy distribu-
tion d (E) of backscattered ions is measured for a fixed
scattering angle φ. In the lower MeV range an elastic
Coulomb collision model can be employed, in which the
energy of the backscattered ions, usually either protons
or helium nuclei is determined by the incident energy E0,
the scattering angle φ and the mass ratio ri = m0/mi of
projectile ion m0 and target atoms mi. Since the projec-
tile target interaction is coulombic, the scattering cross
section is the quantitatively known Rutherford scattering
cross section and only the mass ratio is unknown. The
energy E of the of the backscattered ions is given by

E = E0





√

1 − r2
i sin2 φ + ri cosφ

1 + ri





2

(15)

From Eq. 15 it follows that ions undergoing a collision
with a heavy target atom loose less energy than ions col-
liding with target atoms of lower atomic mass. In an
ideal RBS experiment the energy distribution of a thin
film sample d̃(E) would be composed of delta peaks for
the different masses. In the real world we have to deal
with a limited resolution due to the apparatus function
and also with thick samples. In a thick sample both pri-
mary ions and scattered ions loose energy on their way
through the sample, depending on the stopping power.
This enables RBS to be depth sensitive but may also
give rise to overlapping peaks in the spectrum.

A. Deconvolution of apparatus functions

Small, cheap and easy-to-use semiconductors are used
in most RBS experiments for the energy analysis of the
backscattered particles. Their performance is hampered
by the energy-loss straggling in the Au entrance electrode
of the detector and in the dead layer of the detector and
by the statistics of the electron-hole pair creation. To-
gether with additional contributions to the energy broad-
ening, namely energy spread of the incident beam, elec-
tronic noise of the detector-preamplifier system and (for
higher fluxes) pile-up the achievable resolution is lim-
ited. Therefore the energy distribution for fixed target
mass is rather broad. As long as the masses, or rather
the respective backscattering energy distributions, are
well separated, it is straightforward to extract the mass
composition from the bare experimental data. If, how-
ever, the masses are similar, particularly in the case of
isotopes, the information is not readily accessible. The
different contributions to the energy broadening can be

FIG. 2: a) Amplitude versus position. The initial spectrum
(- -)is convolved with a Gaussian to yield the solid line. Be-
fore the inversion one count from the right-hand peak has
been removed. b) The inversion result showing the dramatic
influence of noise on the stability of deconvolution.

summarized in a transfer function of the whole system,
the apparatus function A(E). The measured spectrum
d(E) is given by the convolution of the ideal spectrum

d̃(E) with the apparatus function:

d(Ei) =

∫

∞

−∞

dE′ d̃(E′)A(Ei − E′) ≈
Nd
∑

j=1

Aij d̃(Ej) (16)

The matrix Aij represents the discretized apparatus func-
tion, taking into account that the measured spectrum is
binned. The convoluted spectrum d(E) can be calculated

easily if d̃(E) and A are known. The inversion of (16)
yields the ideal spectrum. Unfortunately, the inversion
is frequently utterly ill-posed if the eigenvalue spectrum
of Aij varies over orders of magnitude [19]. This is gener-
ally the case for Gaussian apparatus functions and entails
a strong amplification of experimental errors. An illus-
trative example is shown in Fig.2. An assumed spectrum
shown as the dashed curve in Fig.2a turns into the solid
curve by convolution with a Gaussian of approximately
the same width. Note that the signal (solid curve) in this
artificial counting experiment has a maximum of about
5x105 counts in the right-hand side spectral density. To

4
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demonstrate the effect of noise, we changed the counts
in the right-hand side peak channel by just one count.
Fig.2b shows the dramatic influence of noise on the sta-
bility of the deconvolution. While the left-hand peak is
restored correctly because its data were exact, the effect
of noise on the level of 10−6 in the right-hand peak is dis-
astrous. The reconstruction oscillates wildly and attains
even unphysical negative values. To overcome this prob-
lem the statistical nature of the error has to be taken
into account properly in conjunction with the intrinsic
properties of the objective solution. The goal is to deter-

mine the posterior probability density P
(

~f |~d, ~σ, I
)

for

the RBS spectrum fj at the N energies Ej , given Nd

experimental data di and the respective errors σi. Prior
knowledge to be incorporated is that there may be corre-
lations between neighboring channels: A random permu-
tation of the energy channels results in a spectrum not
accepted as RBS spectrum by any expert. The correla-

tions are imposed on ~f through a convolution of a hidden

density ~h with a smoothing kernel B with spatially vary-
ing widths. The image f is then obtained from

f (x, h, b) =

∫

dy B

(

x − y

b (y)

)

h (y) . (17)

In [20] a gaussian kernel

B

(

x − y

b (y)

)

=
1

b (y)
√

2π
exp

[

−1

2

(

x − y

b (y)

)2
]

(18)

has been used. In the Bayesian approach, since the in-

terest is in ~f , the nuisance parameters ~h and ~b have to
be marginalized,

P
(

~f |~d, ~σ, I
)

=

∫

dNh dNb P
(

~f,~h,~b|~d, ~σ, I
)

. (19)

Bayes theorem relates the yet unknown P
(

~f,~h,~b|~d, ~σ, I
)

to known quantities, namely the likelihood P
(

~d|~f, ~σ, I
)

and the prior probability densities P
(

~h|I
)

and P
(

~b|I
)

via

P
(

~f,~h,~b|~d, ~σ, I
)

∝ P
(

~d|~f, ~σ, I
)

P
(

~f |~h,~b
)

P
(

~h|I
)

P
(

~b|I
)

.

(20)

The uninformative prior P
(

~h|I
)

for a PAD is the en-

tropic prior [21] and the prior P
(

~b|I
)

constrains the ker-

nel widths to a sensible range. Finally, the probability

density P
(

~f |~h,~b
)

is given by δ
(

~f (~x) − ~f
(

~x,~h,~b
))

be-

cause the knowledge of ~h and ~b uniquely determines the

value of ~f .
The application of the adaptive deconvolution method

is shown in Fig.3. The spectrum was measured with 2.6
MeV 4He at a scattering angle of 165◦. The appara-
tus function (left peak) was determined by measuring

FIG. 3: RBS spectra of thin Co and Cu films on a Si sub-
strate, measured with 2.6 MeV He. The Cu spectrum (right
hand side) is deconvolved with the apparatus function ob-
tained from the Co spectrum (left hand side). The two Cu
isotopes are clearly resolved with measured abundances close
to the natural abundances (from [22]).

an RBS spectrum of a thin cobalt layer of about 0.75
nm thickness on a silicon substrate (cobalt is isotopi-
caly pure). The width of the Co peak is about 19 keV
FWHM which reflects the limited resolution since the in-
trinsic energy spread due to energy-loss and energy-loss
straggling in the thin Co layer is only about 3 keV. The
apparatus function is slightly asymmetric. Using this
measured apparatus function A with its pointwise un-
certainty ~σA due to the counting statistics, the likelihood

function P
(

~d|~f, ~σ, I
)

of counting experiments obeys the

Poisson statistics. Since we deal with large numbers of
counts the Poisson distribution is well approximated by
a Gaussian distribution

P
(

~d|~f, I
)

=
1

∏Nd

i=1

√

2πσ2
eff,i

·

exp






−1

2

Nd
∑

i=1

(

di −
∑N

j=1 Aijfj

)2

σ2
eff,i






(21)

with σ2
eff,i = σ2

i +
∑N

j=1 σ2
A,ijf

2
j [23]. Using Eq.19 and

the measured apparatus function for cobalt the copper
signal on the right hand side was deconvolved[22]. After
deconvolution, the two isotopes 63Cu and 65Cu are clearly
resolved. The FWHM of the dominant 63Cu peak after
deconvolution is 3.0keV, which is about 6 times better
than the achieved experimental resolution and far be-
yond any conceivable experimental resolution with the
available setup. The measured abundances of the iso-
topes are 70.1% 63Cu and 29.9% 65Cu. This compares

5
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favourably to the natural abundance of 69.2 % 63Cu and
30.8 % 65Cu.

B. Depth profiles

Backscattering spectroscopy using ion beams with en-
ergies in the MeV range is used extensively to deter-
mine the distribution of target elements in the sample
as a function of depth below the surface. The ideal
RBS spectra f is a linear superposition of the spectra
of the individual elemental depth profiles ci(x). But
the energy of the penetrating and backscattered par-
ticles depends in a complicated, nonlinear way on the
sample composition and morphology. Therefore simu-
lation codes are required to simulate an RBS spectrum
given the sample. State-of-the-art software considers the
energy-dependent electronic and nuclear stopping for the
ions and energy loss straggling[24]. The depth profiles
are then obtained by varying the sample parameters un-
til a minimum quadratic misfit is achieved (Maximum-
likelihood solution). Although this approach, guided by
the experimentalists experience often succeeds it has the
severe shortcoming that it does not solve the inverse
problem[25]. A good fit is a necessary but not a suffi-
cient condition: different depth profiles can result in very
similar fits (see eg.Fig.2). The posterior expectation (the
mean) for the concentration c is

〈c〉 =

∫

dc c p (c|d, I) (22)

and the variance

〈

δc2
〉

=

∫

dc (c − 〈c〉)2 p (c|d, I) . (23)

The analysis is completely analogous to the one in the
section III A. Only the linear relationship given by Eq.16
is now replaced by the forward calculation of the simula-
tion codes

d′ (Ei) = g (c (x)) (24)

given a depth profile c (x). A prior which incorporates
the knowledge of the concentrations being larger than
0 and allows in addition for the inclusion of a default
model is given by the entropic prior [21]. An example
is provided by a study of first-wall materials for fusion
experiments. Carbon is considered as a favorable first
wall material for fusion reactors, in particular for plasma
facing components subject to exceptionally high thermal
heat loads. Apart from the lifetime of a material under
such conditions, a critical issue in the case of carbon is
the possible formation of significant tritium inventories
by codeposition with redeposited carbon atoms [26, 27].
Both issues are mainly determined by the carbon ero-
sion rate resulting from physical sputtering and chemi-
cal erosion[28]. To estimate the carbon erosion rates in
the divertor of the fusion experiment ASDEX Upgrade

FIG. 4: RBS data of the sample before and after plasma
exposition

graphite probes were covered with a 150nm layer of 13C
and exposed to a single plasma discharge. 13C was used
because the chemical erosion is unaffected by isotope sub-
stitution and to allow the measurement of redeposited
12C eroded at other plasma facing components. The RBS
spectrum of the sample before exposure is shown in Fig.4
as the solid line. The right peak indicates the 13C layer
on top of the 12C sample. After exposure the high-energy
edge is shifted towards lower energies, indicating the ab-
sence of 13C at the surface. The increased intensity in
the channels at 500keV indicates a mixture of 12C and
13C but no further information is easily extracted from
the spectrum. Additionally a small amount of oxygen
is present after exposure (peak at 700keV). The results
of the Bayesian depth profile reconstruction are given in
Fig.5[29]. Before exposure a 13C layer can be seen, ap-
proximately 2.2x1018atoms/cm2 thick, but with an aver-
age contribution of 20% 12C. After exposure most of the
13C is still present but there is an additional layer of 12C
deposited on top of it. Oxygen has been codeposited.
The RBS spectrum calculated from the estimated depth
profiles agrees with the experimental data within the er-
ror bars [30]. The surprising result is the coexistence of
erosion and deposition at the area where the outermost
closed magnetic surface intersects the divertor. This so
called ’strike-point’ area experiences extremely high ther-
mal loads and was considered as erosion dominated. At
the same time this measurement shows that conclusions
based on net changes in sample thickness may strongly
underestimate the dynamical modifications.

IV. APPLICATIONS II: MODEL COMPARISON

So far we have seen the Bayesian approach to paramet-
ric estimation: Compute the posterior probability distri-

6



U. v. Toussaint and V. Dose ‘Bayesian Inference in Surface Physics’ Published with Appl. Phys. A 82 (2006), p.403-413

FIG. 5: Reconstructed depth profiles and asymmetric confi-
dence intervals from the RBS spectra shown in Fig.4. The
upper panel shows the sample composition before exposure,
the lower panel after exposure (from [29]).

bution (and derived quantities like mean or variance) of
the parameters of a given model. A more complex sit-
uation arises when we have several models Mi, each of
which might depend on several, possibly different param-
eters. The formal Bayesian approach is identical to the
one of parameter estimation, where the previous evidence
plays now the role of the likelihood:

P (M |D, I) =
P (D|M, I)P (M |I)

P (D|I)
, (25)

where P (D|M, I) can be computed with the help of Eq.5.
If we have no reason to prefer a model we can assign equal
prior probabilities to all of them P (Mi|I) = P (Mj |I).
This is a frequently arising situation, but it should be
kept in mind that more precise prior knowledge can be
incorporated and should be used if available. With an in-
different state of knowledge about the prior model prob-
ability P (Mi|I) the ratio of the posterior model proba-
bilities P (Mi|D, I) and P (Mj |D, I) reduces to the ratio
of the evidences, the so called Bayes factor

Bij =
P (D|Mi, I)

P (D|Mj , I)
. (26)

We can provide a simple interpretation of the evidence
and the way Ockham’s razor (avoiding unnecessarily
complex models) is incorporated in the model compar-
ison, as follows [31]. First, we write the marginal likeli-
hood P (D|M, I) in the form

P (D|M, I) =

∫

d~θ P (D|M, θ, I)P
(

~θ|I
)

. (27)

In the by far most common cases the prior is much more
diffuse than the likelihood. It’s variations over the range
where the likelihood peaks can then be neglected. There-
fore we can move the prior term taken at θML, the point
where the likelihood attains its maximum value, outside
the integral

P (D|M, I) ≈ P
(

~θML|I
)

∫

d~θ P
(

D|M, ~θ, I
)

(28)

The remaining θ-integral over the likelihood may be fur-
ther approximated by

P (D|M, I) ≈ P
(

D|M, ~θML, I
)

P
(

~θML|I
)

(∆θlike)
Nθ

(29)

where (∆θlike)
Nθ is the approximate likelihood volume.

If we take the prior to be approximately uniform over
some interval ∆θprior larger than the posterior peak and
note that the prior is normalized to one then we can

estimate P
(

~θML|I
)

≈ 1/ (∆θprior)
Nθ . Eq.29 becomes

P (D|M, I) ≈ P (D|M, θML, I)

(

∆~θlike

∆θprior

)Nθ

(30)

Under these assumptions the evidence is approximately
equal to the maximum likelihood solution penalized by
the second term, which is referred to as an Ockham fac-
tor. Since by assumption ∆θlike ≪ ∆θprior the Ockham
factor is ≪ 1. With an increasing number of model
parameters Nθ the improvements in the likelihood will
eventually be counterbalanced by the decreasing second
term in Eq.30 thus defining an optimal model complexity.

A. Mass Spectroscopy

Plasma-based surface processing is widely used in the
microchip and display industry, where many manufac-
turing processes occur in plasma reactors. The identifica-
tion and quantification of plasma products for processing
control have become one of the urgent topics for plasma
physicists. Detailed knowledge of concentrations of reac-
tive particles like free radicals is needed to understand
the underlying microprocesses [32]. Mass spectroscopy
is a convenient technique to directly monitor the parti-
cle fluxes at the substrate sites. Traditional quadrupole
spectrometers are widely used due to high sensitivity, rea-
sonable stability and low costs. To be filtered in the
quadrupole field, neutral gases have to be ionized, most
commonly by electron impact. At a typical electron en-
ergy of 50-100 eV (used to achieve a high ionization effi-
ciency) stable molecules decompose in a variety of frag-
ment ions leading to the so called cracking pattern. For
overlapping cracking patterns subtraction methods have
been devised to disentangle the measured spectra[33].
These methods suffer from excessive error buildup and
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are not applicable, when unstable constituents like radi-
cals are assessed, due to the lack of knowledge of crack-
ing patterns. Furthermore the fragmentation is also an
instrument specific property and thus requires an instru-
ment specific calibration. A rigorous analysis of com-
posite mass spectra employs BPT which also succeeds
without exact cracking patterns [34, 35].

Assuming a linear response of the mass spectrometer

the mass signal vector of measurement j, ~dj is the sum
of the contributions of all species in the mixture

~dj = C~xj + ~ǫj (31)

with gaussian noise ~ǫ. The goal is to determine the pos-
terior distribution of the cracking matrix elements C,
the vector ~xj of species concentrations in measurement
j and also the number of species E. ~ǫj is the vector of

measurement errors associated with the signal vector ~dj .
The cracking column vectors are normalized to sum up
to one. The likelihood is given as

P (D|C,X, {S} , E, I) = (32)
∏

j

1
∏

i

√
2πsij

exp

(

−1

2

(

~dj − C~xj

)T

S
−1
j

(

~dj − C~xj

)

)

.

{S} denotes the ensemble of diagonal matrices Sj with
components (Sj)ii

= s2
ij , given by the measurement er-

ror of j-th measurement in the i-th mass channel. The
only components which still need to be specified to start
the Bayesian inference are the prior distributions for the
number of components P (E|I), the concentration ma-
trix P (X|E, I) and finally the cracking matrix elements
P (C|E, I). For the prior probability a constant prior
is chosen P (E|I) = 1/Emax. Cracking patterns of sta-
ble molecules are listed as point estimates, e.g. in the
tables of Cornu and Massot [36]. Together with the re-
quirement that the cracking coefficients are confined to
the interval [0, 1] this allows the computation of an ex-
ponential prior for the cracking coefficients P (C|E, I).
Note however that this prior, though still exponential,
is more complicated than Eq.13 since the support of the
cracking coefficients is not infinite but rather confined to
the interval [0, 1](Ref. [34]. Prior knowledge about the
components of a CH4 plasma is chosen from experimen-
tal experience. Common knowledge is that H2 and CH4

are the main neutral constituents and all other species
remain below a few percent with declining intensity as
the carbon content of a species rises. This allows again
the assignment of exponential prior distributions for the
concentrations. The probability for a particular set of E
species in the model is given in terms of the data D and
variances {S} by Bayes theorem

P (E|D, {S} , I) =
P (E|I)P (D| {S} , E, I)

P (D| {S} , I)
(33)

The marginal likelihood P (D| {S} , I) is obtained from

P (D| {S, E} , I) = (34)
∫

dC dXP (C|E, I)P (X|E, I)P (D|C,X, {S} , E, I) .

FIG. 6: Natural logarithm of P (E|D,S, I) and the misfit
between data and model for combinations of six free radicals
(C2H5, CH3,H,C2H3,CH,CH2). x axis shows the number of
radicals involved in the model, which were taken in the given
order (from [37]).

The dimension of the integral is high and increases with
the number of data sets represented by D and the number
of species chosen to model the observations. Such high
dimensional integrals (for interpretation of the spectrum
shown in Fig. 7 the dimension exceeds 400) can be tack-
led either by Markov Chain Monte Carlo techniques (us-
ing thermodynamic integration for a faster convergence)
or approximately by saddle point approximations which
may not always exist in the analysis of mass spectra.
A low temperature methane plasma was analyzed with
respect to H2 and C1Hx and C2Hy molecules. In partic-
ular the identification of the relevant radicals and their
concentrations was of interest. As can be seen from Fig.6
the misfit decreases monotonously as more radicals are
incorporated into the model. By contrast, the evidence
attains a maximum for inclusion of three radicals (C2H5,
CH3) and H and decays slowly for more complicated
models. This result is rather reasonable since these radi-
cals are produced by breaking just one atomic bond from
the stable and abundant molecules H2, CH4 and C2H6.
The next step after the identification of the number of
species contributing to the set of measurements is the
estimation of the concentrations and the cracking coeffi-
cients. The required posterior probability distribution is
given by

P (X,C|D,S, E, I) = (35)

P (X|E, I) P (C|E, I)P (D|C,X,S, E, I)

P (D|S, E, I)
.

Detection and quantification of radicals is one attrac-
tive result of the Baysian analysis of a beam shutter
(on/off) experiment in the diagnostic of a low temper-
ature plasma. Equally important and equally demand-
ing is the analysis of the neutral gas mass spectra in
particular for plasmas with hydrocarbon fuel gases. Fig
7 displays a result from a comprehensive data set from
34 mass channels for 27 different plasma conditions of
an inductively coupled pulsed plasma discharge, together
with calibration measurements for 11 species. Two mod-
els with a different number of hydrocarbon molecules
are compared. The modeled data agree extremely well
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FIG. 7: Comparison of data computed by 2 different models
with the measured mass spectrometer values.

with the measurements for masses below 35. For higher
masses there is a discrepancy between model 1 and the
data whereas model 6 gives a nearly perfect match, in-
dicating the presence of C4H2 and C4H6 in the plasma.
The large number of different species possibly present in
the plasma lead to a huge number of different models
to be compared. A detailed discussion of the results is
therefore beyond the scope of this paper and will be given
elsewhere. Nevertheless the algorithmic implementation
of the Bayesian method is so efficient that CPU time
is no longer a valid argument to digress to less-reliable
methods, except for monitoring purposes [38].

B. Discordant Data Sets

Experimental data from different sources may suffer
from discordant calibrations and possibly cover different
regions of the independent variables. Here we give an
example how to treat unknown scale factors of different
data sets.

Chemical erosion due to hydrogen ion bombardment
is the dominant erosion process for carbon-based plasma
facing materials in fusion experiments. In the low flux
regime, i.e. θ < 1019/m2s the mechanism of chemical
erosion is reasonably well understood. At high fluxes θ,
such as experienced in fusion devices, there was indica-
tion from various data that the chemical sputtering yield
decreases with ion flux [39]. Weight loss measurements
are available for the low flux regime [40]. Those mea-
surements are the most reliable ones, since these data
require no further calibration factors. The function for
the chemical erosion yield is taken from Ref.[41]. For the
weight loss measurements we assume that the erosion
yield φ (θ, θ0) depends on flux through

φ (θ, θ0) = Ychem · 1

1 + θ/θ0
. (36)

In contrast, calibration factors are necessary for mass
spectroscopy and optical emission spectroscopy. For the

high flux data the eroded molecule flux was determined
spectroscopically from the CH band intensity. The re-
duction of the CH band emission to a total erosion yield
requires accurate knowledge of the CH optical transition
rates. We allow here for an uncertainty of the measured
erosion data by introducing an unknown calibration fac-
tor γ. However, with erosion data collected in fusion ma-
chines the situation may also be different. The optical
system used to record hydrogen and CH band emissions
may suffer from a calibration error which translates into
a common recalibration factor γ for both the hydrogen
flux θ and the erosion yield. In this case the appropriate
model is given by

φ (θ, θ0, γ) = Ychem · 1

1 + γθ/θ0
(37)

The first term Ychem varies very weakly with flux θ and
shall be considered constant. In the end we have to dis-
tinguish between a data set from weight loss measure-
ments δ considered to be scaled correctly

δi = c · φ (θi, θ0) + ei (38)

and the data sets from optical measurements ∆j with a
possible scale factor γ either only for the erosion yield

γ∆j = c · φ (Θj , θ0, ) + Ej (39)

or also for the incoming flux

γ∆j = c · φ (Θj, θ0, γ) + Ej . (40)

Assuming the expectation value of the error to be zero
and the variance given by s2

i (S2
i ) the likelihood functions

for the two data sets read

P
(

~δ|~θ,~s, θ0, c
)

=

∏

i

1

si

√
2π

exp

{

−1

2

[

δi − cφ (θi, θ0)

si

]2
}

(41)

P
(

~∆|~Θ, ~S, θ0, γ, c
)

=

∏

j

γ

Sj

√
2π

exp

{

−1

2

[

γ∆j − cφ (Θj , θ0, (γ))

Sj

]2
}

(42)

Unfortunately, the experimental error estimates for the
available data sets are not compatible with the observed
scatter of the data (so called outliers are present). Out-
lier tolerance may be obtained in the following way [42].
Let us assume that the probability density for the true
error σ is given by a distribution which allows for large
discrepancies between scattered data and specified errors

P (σi|si, I) =
2

π

(

si

σi

)2

exp

(

s2
i

σ2
i

)

(43)

9



U. v. Toussaint and V. Dose ‘Bayesian Inference in Surface Physics’ Published with Appl. Phys. A 82 (2006), p.403-413

but with mean < σ >=s of the error estimate. Marginal-
ization of σ yields a modified likelihood (compare with
Eq.41)

P
(

~δ|~θ,~s, θ0, c
)

=

∏

i

1

si2π
√

2

{

1

π
+

1

2
[δi − cφ (θi, θ0)]

}

−
3

2

(44)

and similarly for Eq.42. First the expectation value of
the scale parameter γ is of interest. It is obtained by

〈γ〉 =

∫

dγ dθ0 γP
(

γ, θ0|~δ, ~∆, ~θ, ~Θ, ~s, ~S, c, I
)

∫

dγ dθ0 P
(

γ, θ0|~δ, ~∆, ~θ, ~Θ, ~s, ~S, c, I
) (45)

and can be rewritten using Bayes’ theorem

P
(

γ, θ0|~δ, ~∆, ~θ, ~Θ, ~s, ~S, c, I
)

= (46)

P (γ, θ0, c|I)

P
(

~δ, ~∆|~θ, ~Θ, ~s, ~S, c, I
)P

(

~δ, ~∆|γ, θ0, ~θ, ~Θ, ~s, ~S, c, I
)

.

The last term in Eq.47 is the product of the two likeli-
hoods. Assuming the independence of the two data sets
~δ and ~∆

P
(

~δ, ~∆|γ, θ0, ~θ, ~Θ, ~s, ~S, c, I
)

= (47)

P
(

~δ|~θ,~s, θ0

)

P
(

~∆|~Θ, ~S, θ0, γ, c
)

.

The prior distributions of

P (γ, θ0, c|I) = P (γ|I)P (θ0|I)P (c|I) (48)

are taken to be flat, except for P (γ|I) where we can
assume an expectation value for the scale factor 〈γ〉 = 1.
Any other choice would imply a deliberately introduced

bias in the calibrations used to obtain data set ~∆. By
virtue of the principle of maximum entropy this results
in an exponential prior

P (γ|I) = exp (−γ) . (49)

The Bayes factor for the two models is given by the ratio
of the marginalized likelihoods

P
(

~δ, ~∆|Mk, ~θ, ~Θ, ~s, ~S, I
)

= (50)
∫

dγ dθ0 dc P
(

~δ, ~∆|Mk, γ, θ0, ~θ, ~Θ, ~s, ~S, c
)

P (γ, θ0, c|I)

when no model is preferred a priori. Computing the odds
ratio reveals that the model given in Eq.36 for the low
flux data

(

< 1020/m2s
)

and Eq. 39 for the high flux
data is to be preferred by a factor of 10 over the com-
bination of Eq.36 and Eq.40 for the data sets shown in
Fig. 8. This gives not any reason of deferring from the
statement of the experimentalists, that the calibration for

FIG. 8: Flux dependence of chemical erosion yield of graphite
under hydrogen irradiation. The data set δ is represented by
circles. Filled circles correspond to the subset for which the
fitting curve (solid line) is valid (E0 = 30eV,T=600K).Open
triangles and squares represent data from Ref.[45] and [46],
respectively, while the full symbols show the data sets after
multiplication with the corresponding scale factor (0.72 and
0.32). Error bars show the assigned experimental error. The
gray shaded area is the confidence range (from [43]).

the incident hydrogen flux is quite reliable and that the
correction factor should be applied to the eroded atom
flux only, rather than to the incident hydrogen flux and
eroded atom flux [43, 44]. Therefore the results depicted
in Fig.8 refer to the first model. The mean of the thresh-
old value is θ0 = 28.8 · 10−23m2s with scale factors of
γ = 0.72 and γ = 0.32 for the data from Ref.[45] and
[46], respectively.

V. APPLICATIONS III: MIXTURE

MODELLING

Mixture modelling is an ideal tool to solve the ubiqui-
tous problem of background and source separation. Ex-
amples are PIXE measurements [47] and Auger data [48]
but also x-ray images in high-energy astrophysics[49].
The basic idea is simple. The background is relatively
slowly varying compared to the signal. Therefore the
background is represented by a smooth function. Data
points that are significantly separated from the back-
ground are considered as outliers, as data points con-
taining background and signal contributions. Given an

observed data set ~d = {di} we can formulate two com-
plementary hypotheses

Bi : di = bi + ǫi (51)

Bi : di = bi + si + ǫi (52)
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Hypothesis Bi specifies that di consists only of back-
ground bi and noise ǫi and hypothesis Bi that an addi-
tional source contribution is present. For counting exper-
iments (and only positive signal contributions) the like-
lihood for the two distributions is given by the Poisson
distribution:

P (di|Bi, bi) =
bdi

i

di!
exp (−bi) , (53)

P (di|Bi, bi) =
(bi + si)

di

di!
exp (− (bi + si)) , (54)

Since we do not know the signal intensities we marginal-
ize over all possibilities. The average signal intensity s0

of the data set can be used as a reasonable expectation
value of the prior distribution of the signal [50]

P (si|s0) =
exp (−si/s0)

s0
. (55)

Then the marginal Poisson likelihood for the hypothesis
Bi is given by

P
(

di|Bi, bi, s0

)

= (56)

exp
(

bi

s0

)

s0

(

1 + 1
s0

)(di+1)

Γ
[

(di + 1) , bi

(

1 + 1
s0

)]

Γ (di + 1)

The two different likelihoods for the propositions Bi and
Bi are combined in the likelihood for the mixture model

P
(

~d|b, s0, β
)

= (57)
∏

i

[

βP (di|Bi, bi) + (1 − β)P
(

di|Bi, bi, s0

)]

where β is the probability that a data point contains no
signal contribution. β = 0.5 is a noncommittal but un-
realistic value, stating that each datum is equally likely
to contain signal contribution or not. So far we have not
specified which basic functions are suited for the back-
ground model. An obvious choice in one dimension is to
use cubic splines. In [48] the background is represented
by a cubic spline together with a smoothness prior for
the background

P (b|µ, I) =
1

Z
exp

(

−µ

∫

|b′′|2 dx

)

. (58)

and applied to an Auger spectrum obtained with a four-
grid low-energy electron-diffraction (LEED) optics in the
retarding field mode. Such spectra constitute the super-
position of the energy derivative of the sum of the Auger
electron energy distribution, the signal, and the much
larger secondary electron energy distribution, the back-
ground. The latter is known to be rapidly varying in the
low-energy region, as seen in Fig.9a. The peaks at 47
eV come from an M2,3VV Auger transition. While the

FIG. 9: An MVV Auger spectrum for iron. The estimated
background shown is obtained for the transformed spectrum
shown in (b). A logarithmic transformation of the Auger
spectrum reduces the curvature of the background. The esti-
mated background is shown as solid line. The eight support
points of the spline are indicated by filled circles. (c) The sig-
nal obtained by subtracting the data and the background. A
secondary peak is present at an energy of 86 eV, 39 eV above
the M2,3VV Auger transition, substantiated by the autocor-
relation of the signal vs. energy difference (see inset)(from
[48]).

background may be smooth, it varies quite rapidly at low
energies. The variation of the data can be reduced by a
logarithmic transformation of the signal y′ = log (a − y).
The estimated background is given in Fig.9b as solid line
together with the transformed data. After plotting the
difference between original spectrum and its estimated
background shown in Fig.9c, a possible secondary peak is
observed at (47+39) eV which is further substantiated by
the autocorrelation of the background subtracted spec-
trum. The peak at 86 eV with an amplitude of about
2% of the main signal corresponds to the M1VV Auger
transition for iron. In this case a proper background sub-
traction reveals the presence of less apparent signals in
the Auger spectrum.

VI. CONCLUSION AND OUTLOOK

We have demonstrated that Bayesian Probability The-
ory is a powerful tool for inference from physical data. It
allows the extraction of the most convincing conclusions
implied by given data and any prior knowledge of the cir-
cumstances in a systematic way. This has been noticed
in observational branches as in biometrics and astron-
omy where the data sets cannot be augmented at will
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and have to be exploited as far as possible. Fortunately
also in other branches of physics the situation expressed
in [51]: We use fantastic telescopes, best physical models

and the best computers. The weak link in this chain is

interpreting our data using 100-year-old-mathematics is
slowly improving.
But Bayesian Probability theory is not a magic black
box guaranteed to compensate for badly designed exper-
iments. Information absent in the data can not be re-
vealed by any kind of data analysis. But how to find an
optimal experimental setup? Here we enter one of the ac-
tive areas of research which are beyond the scope of the

article but should not go unmentioned: Bayesian experi-

mental design is an increasingly important topic which is
feasible due to the advent of modern computers [52]. An-
other area attracting more and more interest is integrated

data analysis, the combined evaluation of information of
different sources (eg. the variaty of diagnostics of a fusion
experiment [53]) on a much larger scale than today. This
is at the very heart of the Bayesian Probability theory
because not only all kinds of different prior information
can easily be incorporated but also the implicit interde-
pendencies of the diagnostics are exploited resulting in
superior (uncertainty) estimates.
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