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ence of the radial electric field, Er, is studied. It is shown that negative electric field

improves the confinement; in particular, a radially localized field can play the role

of a transport barrier for the ions escaping from the plasma when Er = 0. In con-

trast to this, positive electric field tends to deteriorate the ion confinement, unless

its magnitude is very large. Such a field accompanied by the plasma rotation with

the frequency around a certain magnitude, which we refer to as the resonance rota-

tion frequency, leads to quick particle loss. A possibility to use the plasma rotation

with the resonance frequency for the ash removal in a Helias reactor is considered.

The mentioned results are obtained analytically and numerically. The analytical

consideration was done on the basis of the derived bounce-averaged equations of the

particle motion. The numerical calculations were carried out for Wendelstein 7-X [G.

Grieger et al., J. Plasma Fusion Res. SERIES 1, 53 (1998)] and a Helias reactor [J.
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I. INTRODUCTION

There will be several sources of fast ions in the Wendelstein 7-X (W7-X) stellarator.1

They are the Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH),

and Negative-ion-based Neutral Beam Injection (NNBI) at the later stage of operation,

which will provide the plasma heating.2 In addition, it is planned to install an NBI injector

for the diagnostics.3 Some energetic ions will be produced due to fusion reactions, mainly

due to beam-plasma interaction. On the other hand, an important source of fast ions in

reactor plasmas, in particular, in a Helias reactor4 will be a thermonuclear reaction, which

will produce both circulating and trapped particles. In contrast to this, NBI in W7-X will

produce mainly circulating (marginally circulating) particles. Nevertheless, a considerable

amount of the trapped fast ions will be present in W-7X, at least, in regimes with the

temperature T > 2 keV and zeff > 1 (zeff is the effective charge number) because in these

regimes the energy of injected ions, Eb
<∼ 60 keV, is about the energy E∗ ∝ (Mi/Me)

1/3T

(Mi/e is the ion/electron mass) for which τ⊥ ∼ τs , where τ⊥ and τs are the characteristic

times of Coulomb pitch-angle scattering and slowing down, respectively. In addition, trapped

particles will be directly produced by the diagnostic NBI and ICRH. Thus, fast ions with

various energies and pitch-angles will be present in plasmas of both W7-X and a Helias

reactor.

The basic idea to provide good confinement of the trapped fast ions in the Wendelstein-

line stellarators is to achieve a sufficiently high β (the ratio of the plasma pressure to the

magnetic field pressure), β ∼ 5%.5 At high β the plasma diamagnetism “kills” unclosed

superbanana orbits by making contours of the longitudinal adiabatic invariant (J‖ =
∮

v‖dl)

closed and weakly deflecting from the magnetic flux surfaces. On the other hand, the radial

electric field, Er, also affects the particle confinement. However, in contrast to the plasma

diamagnetism, the electric field effects are important only for particles with the energy less

than a certain magnitude determined from the condition that the electric drift velocity is

about or more than the magnetic drift velocity. In addition, electric field effects depend on

the sign of the electric field.

Note that the radial electric field is always present in the plasma. A simple estimate based

on the assumption that eΦ ∼ T = 2− 10 keV (Φ is the scalar potential of the electric field)

leads to Er ∼ 4 − 20 kV/m in a plasma with the radius a = 0.5 m. In reality, the electric
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field can be even stronger. Its magnitude is determined by many factors, such as transport

properties of the bulk plasma, plasma parameters and their radial profiles, the confinement

of fast ions, etc. The electric field |Er| = 20 kV/m was generated during perpendicular NBI

in Wendelstein 7-AS.6 Neoclassical calculations predict Er
<∼ 18 kV/m in the plasma core

(the electron root) and |Er| <∼ 5 kV/m with Er < 0 (the ion root) at the periphery for a

particular case in Wendelstein 7-X. 7

The main purpose of this work is to study effects of the electric field on the confinement of

trapped fast ions in the Wendelstein-line stellarators, namely, in W7-X and a Helias reactor.

The structure of the work is as follows. In section II equations of the particle motion in

the general stellarator magnetic field in the presence of the equilibrium electric field are

derived; a code ORBIS solving the derived equations is described. In section III the bounce

averaged equations of the motion of the locally trapped particles are obtained and analyzed

qualitatively by keeping several Fourier harmonics, which dominate in the magnetic field

of the Wendelstein-line stellarators. In section IV the confinement of fast ions in W7-X is

studied numerically by the code ORBIS. In section V a possibility to use the radial electric

field for the ash removal in a Helias reactor is considered. At last, in section VI the obtained

results are summarized.

II. BASIC EQUATIONS. CODE ORBIS.

The motion of the particle guiding center in a steady-state magnetic field, B, and a

potential electric field, E = −∇Φ with Φ the scalar potential, is described by the following

equations:

ṙgc = v‖ + vD + vE, (1)

ρ̇‖ = (v‖ + vD + vE) · ∇ρ‖, (2)

where ṙgc = drgc/dt, ρ̇‖ = dρ‖/dt, rgc is the radius-vector of the particle guiding center,

ρ‖ = v‖/ωB, v‖ = v · b is the velocity along the magnetic field, b = B/B, B ≡ B(rgc),

v‖ = σ

√
2

M
[W − eΦ− µpB], W = E + eΦ,

dW

dt
= 0, (3)
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µp is the particle magnetic moment, E = Mv2/2 is the particle kinetic energy, e is the

particle charge, σ = v‖/|v‖|, vD and vE are the drift velocities given by

vD =
1

ωB

b×
(µp

M
∇B + v2

‖K
)

, vE = c
E×B

B2
, (4)

K = B−2(B∇⊥B + 4π∇⊥p) is the field line curvature, p is the plasma pressure, ωB is the

particle gyrofrequency.

Noting that ∇v‖ = (eE − µp∇B)/Mv‖, it is easy to show that the terms proportional

to the electric field in the right-hand-side of Eq. (2) can be written as follows (we will label

them by the superscript “E”):

(
ρ̇‖

)E
= (ṙgc · ∇ρ‖)

E =
cE‖
B

+
4πcv‖
ωB|B|4E · [B×∇p]. (5)

We assume that Φ = Φ(r), where r is a the radial flux coordinate. Then it follows from

Eq. (5) that (ṙgc · ∇ρ‖)E = 0. This implies that the equation for ρ‖ in the presence of

the electric field can be written in the form coinciding with that in the absence of the

electric field in the considered case of Φ = Φ(r). Therefore, we will use this equation rather

than the equation for v‖ [which depends explicitly on the electric field because
(
v̇‖

)E
=

v‖vE · ∇⊥B/B 6= 0].

Below we use the flux coordinates r, ϑ, ϕ, where r is defined by ψ = B̄r2/2, with ψ the

toroidal magnetic flux, and B̄ the average magnetic field at the magnetic axis; ψ, ϑ and ϕ

being the Boozer coordinates. Then, assuming β ¿ 1 and Nιr2/R2
0 ¿ 1 (N is the number

of the field periods, ι is the rotational transform, R0 is the large radius of the torus) we can

write Eqs. (1), (2) in the following form:

ṙ = −vd

ε

1

B

∂B

∂ϑ
, (6)

ϑ̇ = v‖ιb
3 +

vd

ε

1

B

∂B

∂r
+ ΩE, (7)

ϕ̇ = v‖b
3, (8)

ρ̇‖ = −vd

B

(
∂B

∂ϕ
+ ι

∂B

∂ϑ

)
, (9)
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where v‖ = ρ‖ωB0B/B̄, ωB0 = eB̄/(Mc), ΩE = −cE1/(B̄r) is the frequency of the electric-

field-induced motion in the poloidal direction, ι = B2/B3, the superscripts and subscripts

“1, 2, 3” denote the contra-variant and co-variant vector components, respectively, ε = r/R0,

vd is the “tokamak” drift velocity given by

vd =
(v2 + v2

‖)

2ωB0R0

=

(
ρ2
‖ +

λE0B̄

Mω2
B0B

)
ωB0|B|2
R0|B̄|2

, (10)

λ = µpB̄/E0 is an initial pitch-angle parameter, E0 ≡ E(t = 0), b3 ≈ B/(B̄R0). Equations

(6)-(8) neglect the influence of small components of the magnetic field, B1 and B2, on the

particle drift motion. Note that λ is connected with the initial pitch angle, χ0 = v‖/v|t=0 as

follows: λ = (1− χ2
0)B̄/B(r0) with r0 ≡ r(t = 0).

Equations (6)-(10) were used to develop the code ORBIS (ORBits In Stellarators). The

normalized radial coordinate r̃ = r/a, with a the average plasma radius defined by ψa =

B̄a2/2, was introduced and the magnetic field strength was taken in the form

B =
∑

µ≥0, ν

B(µν)(r̃) cos(µϑ− νNϕ), (11)

where µ and ν are the poloidal and toroidal numbers of the magnetic field, respectively. The

code ORBIS solves the initial value problem. It uses equilibrium data as the input. The

output is, first, the particle orbits in Boozer coordinates and in real coordinates, and second,

the magnetic field along the particle orbits. Graphical presentation of the particle motion

in both the poloidal plasma cross-section and toroidal cross-section is possible. The ability

of ORBIS to visualize on the PC monitor the particle trajectory as a function of time is to

be used in the “virtual” (numerical) W7-X stellarator,8 which was an original motivation

for the development of this code.

In many cases, it is convenient to present the magnetic field as follows:

B = B̄

[
1 +

∑
µ≥0,ν

ε
(µν)
B (r) cos(µϑ− νNϕ)

]
, (12)

Then Eqs. (6)-(9) take the form:

ṙ =
vdR0

r

B̄

B

∑

µν 6=0

µε
(µν)
B sin(µϑ− νNϕ), (13)
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ϑ̇ = ι ωB0

ρ‖
R0

(
B

B̄

)2

+
vdR0

r

B̄

B

∑
µ≥0,ν

dε
(µν)
B

dr
cos(µϑ− νNϕ) + ΩE, (14)

ϕ̇ = ωB0

ρ‖
R0

(
B

B̄

)2

, (15)

ρ̇‖ = vd
B̄

B

∑

µν 6=0

(µι− νN)ε
(µν)
B sin(µϑ− νNϕ). (16)

To choose the initial ρ‖ the following equation can be used:

ρ‖(t = 0) =
σB̄

BωB0

√
2E
M

√
1− λB

B̄

∣∣∣∣∣
t=0

. (17)

III. BOUNCE-AVERAGED EQUATIONS AND THEIR ANALYSIS

The equations derived in the previous section can be solved only numerically. However,

in many cases analytical consideration and qualitative analysis are useful. Therefore, below

we derive equations describing average particle motion. This can be done due to the fact

that N À 1, whereas µ ≤ 1 and ν ≤ 1, which leads to two scales of the modulation of B

along the field lines, ∆ϕ ∼ π/N and ∆ϕ ∼ π, see Fig. 2.

In many stellarators dominant harmonics of the magnetic field strength have the same

magnitude of ν 6= 0. In this case Eq. (12) is reduced to (cf. Ref.9)

B = B̄ {1 + ε0(r)− εt(r) cos ϑ + εH(r, ϑ) cos[Nϕ− ξ(r, ϑ)]} , (18)

where ε0 ≡ ε
(00)
B > 0 is the diamagnetic harmonic, εt ≡ −ε

(10)
B > 0 is associated with the

toroidicity (but εt 6= r/R0!),

εH =
a1

|a1|
√

a2
1 + b2

1, ξ = cos−1 a1

εH

= tg−1 b1

a1

, (19)

a1 =
∑

µ

ε(µν̂) cos µϑ, b1 =
∑

µ

ε(µν̂) sin µϑ, (20)

ν̂ is the toroidal number of dominant ν 6= 0 harmonics. In particular, ν̂ = 1, and the

harmonics with µ = 0, 1 mainly contribute in the Wendelstein-line stellarators, see Fig. 1,

which leads to
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εH =
√

ε2
m + ε2

h − 2εmεh cos ϑ, cos ξ =
εm − εh cos ϑ

εH

, (21)

where εm = ε(01) > 0 and εh = −ε(11) > 0 are the amplitudes of the mirror harmonic and

helical harmonic, respectively.

As we already mentioned, there are to scales of the modulation of B. Therefore, the

particle motion can be presented as a superposition of slow motion and fast motion. Then

Eqs. (13)-(16) can be averaged over the fast motion. Taking the magnetic field in the form

given by Eq. (18), we obtain the following bounce averaged equations for the locally trapped

particles:

〈ṙ〉 =
v̄d

ε

[
∂εH

∂ϑ

(
2E(κ)

K(κ)
− 1

)
− εt sin ϑ

]
, (22)

〈ϑ̇〉 =
v̄d

ε

[
−∂εH

∂r

(
2E(κ)

K(κ)
− 1

)
− ∂εt

∂r
cos ϑ +

∂ε0

∂r

]
+ ΩE, (23)

〈ϕ̇〉 =
1

N

∂ξ

∂ϑ
〈ϑ̇〉+

1

N

∂ξ

∂r
〈ṙ〉, (24)

where v̄d = vd(v‖ = 0), K = K(κ) and E = E(κ) are the complete elliptical integrals of the

first kind and second kind, respectively,

κ2 =
1

2
+

α− eΦ/(µpB̄)− ε0 + εt cos ϑ

2|εH | , α =
W

µpB̄
− 1, (25)

∂εH

∂r
=

εh − εm cos ϑ

εH

∂εh

∂r
+

εm − εh cos ϑ

εH

∂εm

∂r
, (26)

∂εH

∂ϑ
=

εmεh

εH

sin ϑ. (27)

Equations (22), (23) do not contain the toroidal coordinate and are sufficient to describe

the orbits in the (r, ϑ) plane. Equation (24) for 〈ϕ̇〉 is obtained in the assumption that

Nϕ− ξ = const, which is true when εt ¿ max(εm, εh).

Note that locally trapped particles oscillate around the points where the magnetic field

along the field line, B(s), has minima (in these points κ2 = 0 implies v‖ = 0). In particular,

in the case when the mirror harmonic of B exceeds other harmonics, B(s) has minima at

the outer circumference of the torus (ϑ = 0) at ϕ = (2n+1)π/N with n the integer. On the
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other hand, the maxima for ϑ = 0 are located at ϕ = 2nπ/N (where κ2 = 1 for v‖ = 0). In

this case the particles injected with small pitch angles at ϑ = 0, ϕ = 2nπ/N will be either

marginally locally trapped or locally passing.

Locally trapped particles and completely passing particles have κmax < 1 and κmin > 1,

respectively, where κmax/min is the maximum/minimum magnitude of κ(r, ϑ) on the particle

orbit [κ(r, ϑ) is not a constant of motion]. Particles crossing the separatrix in the phase space

between the regions of the locally trapped particles and locally passing ones (where κ = 1)

during their orbital motion are transitioning. Taking this into account and assuming that

the particle orbit width (∆r) is small, we obtain from the Eq. (25) the following conditions

for the pitch parameter, α, of various groups of the particles:

αmin < αloc < ε0 + εm − εh − εt, (28)

ε0 + εm − εh − εt < αtran < ε0 + εm + εh + εt, (29)

αpass > ε0 + εm + εh + εt, (30)

where αloc, αtran, and αpass are the pitch-angle parameters of the localized particles, tran-

sitioning particles, and passing particles, respectively, αmin is determined by the equation

κ(r, ϑ) = 0. In particular, αmin = ε0− εm + εh− εt for ϑ = 0 and αmin = ε0− εm− εh + εt for

ϑ = π. The electric potential, Φ, was taken zero in Eqs. (28)-(30), which is justified due to

the used assumption that ∆r is small. When eEr∆r/E >∼ εt, the electric field considerably

affects the conditions given by Eqs. (28)-(30).

Let us take into account that εh and εt are approximately proportional to r. In addition,

let us neglect the terms proportional to ε′m in Eq. (26). One can see that the last term

in Eq. (26) is indeed small due to fulfilment of the inequality d ln εm/d ln r ¿ 1, whereas

the previous term is negligible when rεmdεm/dr ¿ ε2
h, which is the case at low β only (the

derivative of εm grows with β). In spite of this fact, our approximation leads to results which

are in a reasonable agreement with the numerical results obtained by the code ORBIS, as

will be shown below. In addition, this approximation will enable us to obtain a general

qualitative picture of the influence of the radial electric field on the confinement of fast ions.
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Making the mentioned simplifying assumptions, we can approximate Eqs. (22), (23) as

follows:

〈ṙ〉 = u sin ϑ, (31)

r〈ϑ̇〉 = u cos ϑ + w, (32)

where

u =
v̄d

ε

[
εmεh

εH

(
2E(κ)

K(κ)
− 1

)
− εt

]
, (33)

w =
v̄d

ε

[
rε′0 −

ε2
h

εH

(
2E(κ)

K(κ)
− 1

)]
+ vE, (34)

“prime” means the radial derivative, vE = rΩE, and, in general, u = u(r, ϑ), w = w(r, ϑ).

One can see that when

δ ≡
∣∣∣w
u

∣∣∣ ¿ 1, (35)

Eqs. (31), (32) yield x ≡ r cos ϑ ≈ const, which means that the particles are not confined.

In the contrary case, δ À 1, the particles are well confined, at least, when u and w weakly

depend on ϑ. It is sufficient to require δ À 1 only in the plasma periphery in order to

provide the particle confinement. It is clear that δ → ∞ for u → 0, i.e., when the radial

drift vanishes. In particular, in stellarators with εm À εh, the radial drift of the well trapped

particles is minimum when

εh = εt. (36)

Let us first assume that the radial electric field is absent and the plasma pressure is

negligible (ε′0 ≈ 0). Then

δ =

∣∣∣∣∣∣

ε2h
εH

(
2E(κ)
K(κ)

− 1
)

εmεh

εH

(
2E(κ)
K(κ)

− 1
)
− εt

∣∣∣∣∣∣
. (37)

It follows from Eq. (37) that δ ¿ 1 for the marginally trapped particles with κ ∼ 0.9.

However, because κ = κ(r, ϑ), κ changes during the orbital motion and, therefore, the par-

ticles with κ ∼ 0.9 are not necessarily lost. When the trapping parameter continues to grow
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after reaching the magnitude of 0.9, the orbit transformation into the locally passing state

may occur and the stochastic diffusion may take place.9 The behaviour of the well-trapped

particles (κ ¿ 1) and marginally trapped particles (κ → 1) depends on the relationships

between the harmonics of the magnetic field. In particular, for a configuration with the

dominant mirror harmonic [the high-mirror configuration, εm À max(εh, εt)] we obtain from

Eq. (37) that |δ| ∼ εh/εm ¿ 1, i.e., the particles are not confined. In the contrary case,

when the mirror harmonic is small, δ ∼ (εh/εt)|2E(κ)/K(κ) − 1|, δ > 1 for εh > εt unless

κ ∼ 0.9, in which case a particle moves along the superbanana orbit with the orbit width

∆r ∼ r
√

εt/εh.
10

Finite plasma pressure can provide the confinement of the localized particles in the high-

mirror configuration. For the well-localized particles (κ → 0) this will be the case when

rε′0/εh À 1 (then δ À 1). A milder condition is required for the confinement of particles

with finite κ. Taking εh ∝ εt ∝ ε, ε0 ∝ r2 we conclude that u ≈ const and δ ∝ r for the

well-localized particles. Then we obtain that the particle orbits described by Eqs. (31), (32)

are given by

x− x0 =
δ1

2a
(r2

0 − r2), (38)

with δ1 defined by δ = δ1r/a, (r0, ϑ0) is a point on the particle orbit. This yields the orbit

width ∆r/a = 2/δ1. Although Eq. (38) was obtained for Er = 0, it is also valid in the

presence of the electric field provided that Er ∝ r. Moreover, on a qualitative level, this

equation can be used for an arbitrary electric field [when Er is small, it can be neglected;

when Er is so large that δ À 1, Eq. (38) predicts the particle motion along the r = const

surfaces, which is true for any dependence of Er of r].

Now we proceed to analysis of effects of the electric field. First of all, we note that the

signs of the ε′0 term and the E-field term in Eq. (32) are the same when Er < 0. Therefore,

the negative radial electric field can provide the confinement of the trapped particles in

high-mirror configurations when β is not sufficiently large for the particle confinement at

Er = 0. The required magnitude of the electric field can be evaluated from the condition

|vE|/u À 1, which leads to

|Er(r∗)| À E(εh − εt)

er

∣∣∣∣
r=r∗

, (39)
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where r∗ is the radius where the electric field is maximum and εh 6= εt. The restriction εh 6= εt

is a consequence of the used approximation εH ≈ εm and the assumption κ = 0 made when

deriving Eq. (39). This approximation and neglecting finite κ result in u ∝ εh− εt, which is

wrong when εh = εt. In the case when eΦ ∼ T , Eq. (39) can be written as a condition for

the particle energy. We obtain:

E ¿ T

εh − εt

. (40)

Note that when the electric-field term dominates in Eq. (34), Eq. (40) represents a condition

of the particle confinement independently on the sign of the electric field.

Below we show that the presence of the electric field in the narrow ring region, ∆E,

can be sufficient to prevent the escape of the particles from the plasma. In other words, a

radially localized negative electric field can play the role of a barrier for the fast ions. Such

an electric field usually arises in turbulent plasmas with transport barriers and/or when the

ion root of the neoclassical transport dominates in a part of the plasma cross section.

In order to provide the particle confinement, the width of the region where the electric

field is localized, ∆E, must exceed (∆r)E, where (∆r)E is the particle radial deflection in

the electric-field region. Let us assume that an electric barrier is localized at the plasma

periphery and a particle enter the barrier from the core region, so that a part of the orbit

in the (r, ϑ)-plane is located beyond the electric barrier. Then the particle radial deflection

inside the barrier is less than ∆r. Taking (∆r)E ∼ ∆r/2 with ∆r = 2a/δ1 and assuming

δE ∼ δ we can write the condition ∆E > (∆r)E as

e|Er(r∗)|∆E > E(εh − εt)|r=r∗ . (41)

where εh 6= εt. One can say that Eq. (41) represents a condition of the electric transport

barrier for the trapped energetic ions.

In contrast to the negative electric field, the positive electric field competes with the finite

pressure and can compensate the positive influence of high β on the confinement of trapped

particles in the high-mirror configuration. This takes place at a certain magnitude of the

electric field,

Er ∼ B̄
v̄d

c
R0ε

′
0. (42)
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When Er ∼ Φ/r ∼ T/(er), the energy of particles which are not confined because of

the electric field compensating the effects of plasma diamagnetism can be evaluated as

E ∼ T/(rε′0).

According to Eq. (38), the worst confinement takes place when δ = 0. Then particles

move along the orbits x = const, which implies that ∆r = ∞. Therefore, it is reasonable

to introduce a resonance electric field, Eres
r , defined by the condition δ = 0. For the well-

trapped particles we have:

Eres
r ≈ B̄

v̄d

cε

[
rε′0 −

ε2
h

εH

]
. (43)

Because Er does not depend on ϑ, this equation can be satisfied when either εm À εh or

εm ¿ εh. When the second term in Eq. (43) exceeds the first one, the negative (rather

than positive) electric field deteriorates the particle confinement. However, in this case the

trapped energetic ions are not confined in systems with the dominant εm even in the absence

of the electric field. Note that when ε0 = 0, εm = 0, Eq. (43) leads to the resonance radial

electric field Eres
r ∼ −εhE/(er) < 0 obtained in Ref.11.

When the mirror harmonic dominates in the magnetic field and the radial dependence

of the diamagnetic component of the magnetic field can be approximated as ε0 ∝ r2, the

electric field given by Eq. (43) is proportional to r. This implies that this field leads to a

rigid rotation of the plasma with the frequency

Ωres
E (r) = −ωB

ρ2ε0

r2

(
1− ε2

h

2ε0εm

)
= const, (44)

where ρ = v/ωB. The width of the resonance can be evaluated by taking into account

that particles are not confined when δ is small. Taking δ < δ∗ with δ∗ > 2 at the plasma

periphery, we evaluate the rotation frequency range for which the particles are not confined

as follows:

Ωmin < |ΩE| < Ωmax, (45)

where

Ωmax/min = ωB
ρ2

r2

[
ε0 − ε2

h

2εm

± δ∗
2

(εh − εt)

]
, (46)
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with εh 6= εt. If we require ΩE(r) = const, we obtain δ∗ = δ∗1r/a, where δ∗1 can be considered

as an adjustable parameter. Note that the relative width of the resonance does not depend

on the particle energy:

∆ΩE

Ωres
E

=
δ∗(εh − εt)

ε0 − ε2h
2εm

, (47)

where ∆ΩE = Ωmax − Ωmin.

Equations (44)-(46) are written for particles with a given energy. In another case, when

plasma rotation frequency is considered as a given quantity, these equations determine the

resonance energy, Eres, and the resonance width, ∆E , given by

Eres = − MωBΩEr2

2
(
ε0 − ε2h

2εm

) , (48)

∆E
Eres

=
δ∗1(εh − εt)

(
ε0 − ε2h

2εm

)
r
a(

ε0 − ε2h
2εm

)2

− δ2
∗1
4

(εh − εt)2

, (49)

where ∆E = Emax − Emin, Emax/min is the maximum/minimum energy of particles affected

by the resonance. It follows from Eqs. (47), (49) that the resonance width is proportional

to εh − εt. However, it is not vanishing for εh → εt, in which case finite κ and the difference

between εH and εm become important. The resonance width is not symmetric with respect

to the resonance magnitude: Emax − Eres > |Emin − Eres|. This is seen from the equations

Emax/min

Eres
=

ε0 − ε2h
2εm

ε0 − ε2h
2εm

∓ 0.5δ∗1(εh − εt)
r
a

. (50)

Equation (50) predicts Emax = ∞ for (ε0 − 0.5ε2
h/εm) = 0.5δ∗1(εh − εt)r/a. This means that

finite κ and the difference between εH and εm must be taken into account in this case in

order to obtain the correct magnitude of Emax.

Note that the basic equations derived in this section [Eqs. (22), (23)] can also be obtained

proceeding from the longitudinal invariant of the particle motion,

J‖ =

∮
v‖dl =

16R0

N

√
µpB̄εH

M

[
(E(κ)− (1− κ2)K(κ)

]
= const. (51)

The averaged orbits of locally passing particles can be described by the invariant
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Jpass = ψp − 4B3

πωB0

v‖
|v‖|

√
εHµpB̄

M
κE(κ−1) = const. (52)

IV. ORBITS OF FAST IONS IN W7-X

A number of simplifying assumptions were used in the analysis made in the previous

section. Therefore, direct numerical calculations of the particle orbits in realistic equilibria

are required in order to see whether the conclusions drawn are true. This will be done below,

where we study the fast ion behaviour in Wendelstein 7-X by means of the code ORBIS.

Wendelstein 7-X will operate in various regimes with different magnetic configurations. We

restrict ourselves to consideration of only two of them, the standard magnetic configuration

with the central beta β0 = 6.8% and the high-mirror configuration with the same β0. As

follows from Fig. 1, the main difference between these configurations is that the mirror

harmonic in the high-mirror case is larger by a factor of 3 in the core region and 2 at the

periphery. In both configurations the mirror harmonic dominates in the plasma core, but

εm
<∼ εh at the plasma periphery in the standard configuration. The rotational transform in

both cases is close to unity: ι0 ≈ 0.86, ιa <∼ 1.

We found numerically that the particles that are well trapped in the local magnetic

wells escape from the plasma with Er = 0 in the mentioned configurations of W7-X (this

agrees with our consideration above: the parameter δ1 ≈ 1.2 for κ ¿ 1 in the high-mirror

configuration with β0 = 6.8%, which is not sufficient to provide the confinement of well-

trapped particles). Therefore, it is worth to consider a possibility to confine these particles by

adding an electric field. According to Sec. III, the negative electric field is most appropriate

for this purpose because then the electric-field-induced precession and the precession caused

by plasma diamagnetism have the same directions. We assume that the electric field is

localized around a certain radius, r∗, i.e., that there is an electric barrier. To select the

magnitude of the electric field we use Eqs. (39), (41), which we write in a form convenient

for the practical use as follows:

Er(r∗) À EkeV

rm

(εh − εt) |r∗
(

kV

m

)
, (53)
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Er(r∗) >
EkeV

∆E,m

(εh − εt)|r∗
(

kV

m

)
, (54)

where EkeV is the particle energy in keV, ∆E,m is a characteristic width of the electric trans-

port barrier in metres, rm is r in metres, and εh and εt in the considered W7-X configurations

can be approximated as

εh = 0.08
r

a
, εt = 0.05

r

a
. (55)

Let us consider 20-keV protons (partly thermalized NBI particles or ICRH accelerated

ions) in a plasma with the electric field characterized by r∗/a = 0.9 and ∆E = 0.1 m.

Then Eq. (54) yields Er(r∗) > 5.4 kV/m, which also satisfies Eq. (53). Using this result,

we calculated the particle orbits for various Er(r∗) exceeding 5.4 kV/m in the assumption

that Er(r) = E∗exp[−(r − r∗)2/∆2
E]. We found that E∗ = 5.8 kV/m is sufficient to pro-

vide the particle confinement in the high mirror configuration, see Fig. 3. In the standard

configuration, the confinement was achieved with a somewhat higher electric field, E∗ = 7

kV/m.

Below we investigate a detrimental influence of the positive electric field on the parti-

cle confinement. We consider again the high mirror configuration but with an artificially

decreased helical harmonic to satisfy Eq. (36). We found that due to this change of the mag-

netic configuration, the confinement of the well trapped particles in the plasma core is im-

proved. We made calculations for the 50 keV particles taking ΩE = 0 and ΩE(r) = const < 0.

It turned out that the particles, which are confined at ΩE = 0, escape from the plasma when

ΩE satisfies Eq. (44), i.e. Ωres
E = 5766 s−1 (we used εm = 0.1, εh(a) = εt(a) = ε0(a) = 0.05,

a = 50 cm, ρ = 1.24 cm, ωB = 2.5 × 108 s−1). In addition, we found that particles escape

from the plasma when ΩE lies in a certain range depending on particle characteristics. In

particular, particles with χ0 = −0.25 ϕ0 = 170◦ (the subscript “0” means that a quantity is

taken at t = 0, χ = v‖/v is the pitch angle) and r0/a = 0.5 escape from the plasma when

3000 s−1 < |ΩE| < 8200 s−1, whereas a particle with the same pitch angle but r0/a = 0.3

escapes from the plasma when ∆ΩE/Ωres = 0.67 and 3400 s−1 < |ΩE| < 7300 s−1, see Fig. 4.

In order to test Eq. (46) we considered a configuration with εh satisfying Eq. (55) but

with an artificially increased diamagnetic harmonic, ε0 = 0.127r2/a2 (δ1 = 6.3 for κ ¿ 1

and Er = 0). In this modified configuration the well-localized particles are confined. We
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found that a particle with r0/a = 0.3, χ0 = 0 escapes from the plasma when 1.86× 103 s1 <

|ΩE| < 2.1×104 s1, see Fig. 5. Noting that Ωres
E = 1.4×104 s−1, we obtain ∆ΩE/Ωres = 1.4.

On the other hand, Eq. (46) predicts ∆ΩE/Ωres
E = 0.3δ1 which agrees with the numerical

results when δ∗1 = 4.7. Note that this frequency range is much wider than that in the case

of εh = εt and corresponds to 2.4 kV/m < Er(a) < 27 kV/m.

The calculations above are relevant to well-localized particles. Now consider another

group of trapped particles, the transitioning particles. They have larger pitch angles and,

therefore, are more easily produced by NBI in W7-X. When these particles are in the locally

passing state, they oscillate along ϕ with the amplitude ∆ϕ, which exceeds the ripple period,

2π/N . Therefore, they have closed orbits in the (r, ϑ)-plane, like orbits of trapped particles

in tokamaks, even at β = 0. For this reason, the electric field does not deteriorate their

confinement. However, after transformation into the locally trapped state, these particles can

escape from the plasma in the presence of the resonance electric field. Figure 6 demonstrates

this for the high-mirror configuration and standard configuration.

It is of interest to see effects of the electric field by using the longitudinal invariant given by

Eq. (51). With this purpose we calculate the contours of J‖ = const for the deeply trapped

particles and moderately trapped particles in the W7-X high-mirror configuration. The

results are shown in Fig. 7. It follows from Fig. 7(a) that a considerable fraction of particles

is not confined. Adding a negative inhomogeneous electric field localized at r∗ = 0.9a makes

J-contours in the vicinity of r∗ closed, which implies that particles are confined (Fig. 7(b)).

Moderately trapped particles are confined in the absence of the electric field (Fig. 7(c)),

whereas the presence of the positive electric field accompanied by the plasma rotation with

the frequency about Ωres
E deteriorates the confinement (Fig. 7(d)).

V. ASH REMOVAL BY A POSITIVE ELECTRIC FIELD IN A HELIAS

REACTOR

The existence of the resonance electric field is not necessarily harmful. One can expect

that this field may contribute to the removal of the ash (thermalized or partly thermalized

α-particles) in a fusion reactor. This may be the case when the electric field satisfies certain

requirements. Because the difference between the thermalized alphas and bulk plasma ions is

small from the point of view of sensitivity of their confinement to the radial electric field, we
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have to choose the electric field that removes only partly thermalized alphas. The magnitude

of the required electric field can be evaluated by means of Eq. (48) with the particle energy

in the range T ¿ E ¿ 3.5 MeV. In addition, the resonance must be sufficiently narrow in

order to avoid a deterioration of the confinement of α-particles in the MeV range and the

bulk plasma ions.

We consider a five-period Helias reactor4 with B̄ = 5 T, a = 2 m. We take into account

only dominant Fourier harmonics of the magnetic field using the following approximation:

ε0 = 0.08r2/a2, εm = 0.1 + 0.02r2/a2, εh = 0.08r/a, and εt = 0.043r/a. Then we obtain

from Eq. (48) that ΩE ≈ −240 s−1 for Eres = 100 keV. The minimum energy of the particles

lost because of the resonance electric field can be evaluated as Emin ∼ 50 keV for δ∗1 ∼ 3,

which follows from Eq. (50). One can think that the mentioned equation overestimates Emax

because its denominator approaches zero for δ∗1 >∼ 3. Thus, direct numerical calculations

are required. The results obtained by the code ORBIS for the localized particles, which

start with various energies at a point on the r = 0.3a flux surface, are shown in Fig. 8. We

observe that particles with the energies 60 <∼ E <∼ 170 keV are lost, whereas particles with

E >∼ 200 keV and E <∼ 50 keV are confined.

Figure 8 demonstrates a possibility to satisfy the condition T ¿ E ¿ 3.5 MeV for the

lost alphas. However, the calculations carried out are not sufficient to conclude how many

partly thermalized alphas can be removed from the reactor by the electric field. In addition,

Fig. 8 was obtained in the assumption that ΩE(r) = const, i.e., Er ∝ r. Calculations based

on a more realistic radial profile of the electric field are required to conclude whether the

electric field can really help to solve the problem of ash removal. On the other hand, we have

to note that the effect of removal of the fast ions by the resonance electric field is relatively

weakly dependent on the radial profile of this field because the resonance is rather wide.

VI. SUMMARY AND CONCLUSIONS

The code ORBIS (ORBits In Stellarators) for the investigation of the particle orbital

motion in stellarators is developed. The code solves equations of the particle guiding center

motion in the stellarator magnetic field in Boozer coordinates in the presence of the radial

electric field. To show the orbits of the confined particles and lost particles clearly, their

motion since the birth moment is visualized.
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Bounce-averaged equations of the particle guiding center motion are derived and used for

a qualitative analysis of the influence of the electric field on the orbits of trapped particles

in systems with a dominant or considerable mirror harmonic of the magnetic field, which is

the case in the Wendelstein-line stellarators.

The results obtained by means of an analysis of the bounce-averaged equations and

numerical study of the particle orbits by the code ORBIS in Wendelstein 7-X and a Helias

reactor can be summarized as follows.

(i) The presence of the negative electric field tends to improve the trapped ion confine-

ment. The particles are confined by the electric field when their energy does not exceed a

certain magnitude. An electric field localized in a ring region can play the role of a transport

barrier for the energetic ions.

(ii) The positive electric field deteriorates the confinement of trapped ions, unless the

magnitude of the electric field is very large. A detrimental influence of the positive electric

field is especially strong when it leads to a rigid plasma rotation with the frequency that

satisfies a certain condition, which we refer to as a resonance condition. The resonance

rotation frequency, Ωres
E , is a function of the particle energy, E . When ΩE = Ωres

E , well-

trapped particles with a certain energy escape from the plasma. The resonance can be

rather wide, i.e., the range of rotation frequencies, ∆ΩE around Ωres
E for which particles

with the given energy are not confined can be large. When this is the case, the effect of the

E-field induced loss of the fast ions is robust, i.e., the effect exists for Ωres
E which arbitrary

varies with radius around Ωres
E in a certain range ∆Ωres

E .

On the other hand, plasma rotation associated with the positive electric field can lead to

the loss of well-trapped particles with the energies in a certain range, ∆E .

(iii) The confinement of the transitioning particles is also affected by the radial electric

field. Because of this, a theory of stochastic diffusion (i.e. the collisionless diffusion of

transitioning particles9, which is presumably responsible for the main channel of loss of

fast ions in the Wendelstein-line stellarators) should be generalized to include effects of the

electric field.

(iv) A positive electric field satisfying the resonance condition for ions with the energy in

the range T ¿ E ¿3.5 MeV will remove partly thermalized trapped α-particles (ash) from

the plasma in the Helias reactor. As a result, a loss cone in the alpha velocity distribution

will be formed in the resonance region. Owing to this, in addition to trapped particles,
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partly slowed down circulating alphas can be removed. This will be the case when Eres <∼
(Mi/Me)

1/3T , because then the Coulomb pitch-angle scattering will be comparable to slowing

down. In addition, plasma instabilities driven by the velocity anisotropy of alphas can arise

and contribute to the ash removal. Thus, there is a hope that the radial electric field will

help to solve the problem of ash removal in the Helias reactor. Further investigation is

required in order to make a more definite conclusion. A key question is whether transport

processes in fusion plasmas will generate and sustain the required electric field. Another

important question is whether the considered mechanism is effective, i.e., whether it will

provide the removal of most partly thermalized α-particles.
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FIG. 1: Main Fourier harmonics, ε
(µν)
B , of the magnetic field in W7-X with β(0) = 6.8%: solid lines

correspond to the high-mirror configuration, dashed lines correspond to the standard configuration.
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FIG. 2: The magnetic field strength along the field line going through the point r = a/2, ϑ = 0,

ϕ = 0 in the W7-X standard configuration. The maximum at ϕ = 0 is rather small, therefore,

small-pitch-angles particles produced by NBI or IRCH at this angle are transitioning.
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FIG. 3: Motion of a localized 20-keV proton in the poloidal cross section of the W7-X high-mirror

configuration with Er = 0 (lost particle) and in the presence of the negative electric barrier,

E(r) = −E∗e−(r−r∗)2/∆2
E with E∗ = 5.8 kV/m, r∗/a = 0.9, ∆E = 0.1 m. The starting point is

r0/a = 0.5, ϑ0 = 0, ϕ0 = 170 ◦, where χ0 = 0.1. The particle quickly escape from the plasma with

Er=0, but it is confined in the presence of the electric barrier.
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FIG. 4: Motion of a localized 50-keV proton in the poloidal cross-section of W7-X high-mirror

configuration with the decreased helical harmonic εh (εh → εh − 0.03r2/a2) in the absence of

electric field and for different ΩE : a, r0/a = 0.5; b, r0/a = 0.3. At the starting point ϑ0 = 0,

ϕ0 = 170 ◦, and χ0 = −0.25. The electric field leads to the particle loss.
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FIG. 5: Motion of a localized 50-keV proton in the poloidal cross-section of W7-X high-mirror

configuration with high-β at Er = 0 (curve 1) and in the presence of the resonance electric field

(Er > 0) determined by ΩE = −1.86 × 103 s−1 (curve 2), ΩE = −1.3 × 104 s−1 (curve 3), and

ΩE = −2.1× 104 s−1 (curve 4). At the starting point r0/a = 0.3, ϑ0 = 0, ϕ0 = 41 ◦, and χ0 = 0.
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FIG. 6: Motion of locally passing 20-keV protons in the poloidal cross-section of W7-X in the

presence the resonance electric field determined by ΩE = −4 × 103 s−1, ϑ0 = 0, ϕ0 = 170 ◦:

a, high-mirror configuration, r0/a = 0.5, χ0 = −0.35; b, standard configuration r0/a = 0.75,

χ0 = −0.25. The particle is lost after it is transformed into a localized particle. The considered

particles are confined in the absence of the electric field.
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FIG. 7: Contours of J‖ = const of the E = 50-keV protons in W7-X: a, deeply trapped particles

with α = −0.05 at Er = 0; b, the same particles in the presence of the electric transport barrier,

E(r) = −E∗e−(r−r∗)2/∆2
E with E∗ = 5.8 kV/m, r∗/a = 0.9, ∆E = 0.1 m; c, moderately trapped

particles with α = 0 at Er = 0; d, the same particles that in the case “c” but when |ΩE | =

8× 10−3 s−1, Er > 0. The calculations are based on Eq. (51).
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FIG. 8: Motion of partly thermalized α-particles in a five-period Helias reactor with ΩE =

−240 s−1. All the considered particles start at the point r0/a = 0.3, ϑ0 = 0, ϕ0 = 36 ◦, where they

have the pitch angle χ0 ≡ v‖/v = 0.2.


