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The heat diffusion across magnetic islands is studied numerically and compared with ana-

lytical results.  For a single island, the enhanced radial heat diffusivity, χr, due to the parallel 

transport along the field lines is increased over a region of about the island width w.  The 

maximum enhanced heat conductivity at the rational surface is proportional to w2(χ||χ⊥)1/2 for 

sufficiently high values of χ||/χ⊥, where χ||/χ⊥ is the ratio between the parallel and the perpen-

dicular heat diffusivity.  For low ratios of χ||/χ⊥, however, the maximum value of χr is propor-

tional to w4χ||.  In a locally stochastic magnetic field, χr is again proportional to w4χ|| for low 

χ||/χ⊥,  which is in agreement with the analytical results.  With increasing χ||/χ⊥, χr is domi-

nated first by the additive effect of individual islands and then by the field ergodicity.



2

I. Introduction 

Magnetic islands generally exist in laboratory and space plasmas, caused either by reso-

nant helical magnetic field perturbations (finite error fields) in fusion devices or by the tear-

ing mode type  instabilities, driven by an unfavorable plasma current density gradient [1-3], 

the perturbed bootstrap current [4-9], or the electron temperature gradient [10,11].  The exist-

ence of magnetic islands inside the plasma usually has a very significant effect on the plasma 

behavior.  In tokamak plasmas magnetic islands caused by the classical or the neoclassical 

tearing mode (NTM) have been found to lead to a degradation of plasma confinement or even 

to disruptions [2-8].   For high β plasmas the onset of a magnetic field perturbation with its 

corresponding rational surface being very close to another saturated island is often observed, 

and a strong interaction between them and the subsequent change in the plasma energy con-

finement are found [6,12].  Extensive studies have also been devoted to the transport across 

the stochastic field boundary in stellarators and in tokamaks as produced by an externally ap-

plied helical field [13,14].  The heat transport across magnetic islands and the stochastic mag-

netic field is thus of general interest in plasma physics.

The effect of a single magnetic island on the plasma energy confinement has been ana-

lyzed by assuming the ratio between the parallel and the perpendicular heat conductivity, 

χ||/χ⊥, to be infinite.  The resulting degradation of plasma energy confinement due to the fast 

parallel transport along the field lines is found to be determined by the island width, the mi-

nor radius of the rational surface and the local equilibrium plasma pressure gradient [15].  

The electron temperature perturbations due to a single island have also been studied in the 

limits of a sufficiently low or high value of χ||/χ⊥ for determining the transport threshold for 

the onset of the NTM [16].  When the plasma region is occupied by well-overlapping islands, 

the magnetic field becomes stochastic there.  For such a situation the enhanced radial 
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transport across the stochastic field has been extensively investigated and is considered to be 

one of the possible mechanisms for the anomalous heat transport of tokamak plasmas [17--

26].

It is well understood that both the parallel and the perpendicular transport are important in 

determining the heat diffusion across a single island or a stochastic field, no matter if the per-

pendicular transport is caused by plasma collisions or turbulence [16-20].  Despite the exist-

ing theories on the heat transport across stochastic fields, for a finite value of χ||/χ⊥ there is no 

straightforward analytical solution for the temperature perturbations even due to a single is-

land [16].  Since the plasma temperature changes by several orders of magnitude from the 

center to the edge in a tokamak, the parameter χ||/χ⊥ changes even more.  It is of great interest 

to study how the parameter χ||/χ⊥ affects the heat transport across islands and the related 

plasma energy confinement degradation.  In some experimental cases one finds a local sto-

chastic field region due to magnetic perturbations of different helicities with their correspond-

ing rational surfaces being close together [6,12].  To the author’s knowledge no  transport 

theory has been established for such a local stochastic field yet.  The understanding of the 

heat transport in such a case is however important for understanding both the corresponding 

change in the plasma energy confinement as well as its effect on plasma instabilities such as 

the NTMs [6,12].  The drift-tearing mode instability driven by the electron temperature gradi-

ent is found to be particularly sensitive to the perpendicular heat transport [11].

The numerical calculation of the heat transport across magnetic islands is usually quite 

challenging for a high ratio of χ||/χ⊥, which could be in the order of 1010 or even larger in the 

central region of large tokamak plasmas [16].  This large χ||/χ⊥ usually introduces an artificial 

perpendicular heat flux which could be even larger than the real one.  Recently a new numeri-

cal method was developed, which has been shown to suppress this artificial perpendicular 

heat flux [27].  In addition to the numerical problem, the parallel heat flux is also much more 
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complicated for a sufficiently high χ||/χ⊥.  It is of the classical form only in a narrow region 

around the rational surface or the island’s x-point [28].  Away from this region the heat flux 

is carried by free-streaming electrons and is non-local [29].  For such a case the "flux limit" 

form for χ|| was used before [e.g., 16, 30], but this is only a crude approximation [29].

In the present paper the complicated physics of the parallel heat flux mentioned above 

will not be addressed.  Our numerical results of the diffusive heat transport across magnetic 

islands are obtained by using a constant χ|| along the minor radius.  This assumption is the 

same as that of the existing theories, allowing an easy comparison with them [16-20].  For a 

single island, the enhanced radial heat diffusivity χr due to the parallel transport along the 

field lines is found to be increased over a radial width of about the island width w.  The maxi-

mum value at the rational surface is proportional to w2(χ||χ⊥)1/2 for a sufficiently high value of 

χ||/χ⊥.  For a low ratio of χ||/χ⊥, χr is proportional to w4χ||.  When two neighboring islands 

overlap, the local magnetic field becomes stochastic.  In this case, for low ratios of χ||/χ⊥, the 

radial heat transport is found to be dominated by the additive effect of individual islands.  

This is in agreement with the analytical result as shown in the Appendix. Only for sufficiently 

high ratios of  χ||/χ⊥, the radial heat transport is dominated by the ergodicity of the magnetic 

field.  

In the following Section II our model is described.  The numerical results and the com-

parison with analytical results are presented in Section III, and the discussion and summary 

are given in Section V.

II Model

In our model the large aspect-ratio tokamak approximation is utilized.  The magnetic field 

B  is expressed in the form B=B0tet+B0p(r)ep+B1, where B0t and B0p are the equilibrium 
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toroidal and poloidal magnetic field, respectively, and B1=∇ψ×et is the perturbed helical 

field.  B0t is assumed to be a constant.  ψ is expressed in terms of a Fourier decomposition,

ψ = ∑ψi(r)cos(miθ +n iφ)

i

,

 

 (1)

where mi and ni  are the poloidal and toroidal mode numbers of the ith component of B1, and 

θ and φ are the poloidal and toroidal angle, respectively.  The toroidal magnetic field pertur-

bation is usually much smaller than the poloidal one and is therefore neglected.

The equilibrium safety factor q(r)=rB0t/(RB0p) is chosen to be the form

q(r) = q0e
r /Lq

(2)

to have a constant magnetic shear along the minor radius, where q0=0.2 and Lq=0.3a are cho-

sen to ensure q=3/2 and 4/3 surfaces to be inside the plasma (0≤r≤a, a: plasma minor radius), 

except when mentioned elsewhere.

. ψi(r) in Eq. (1) is taken as 

ψi(r) = ψi,0(r/a)2(1-r/a)2
(3)

to have a smooth change along the minor radius, being typical for the classical or neoclassical 

tearing modes [1,9]. 

The following electron energy transport equation  

3
2

ne

∂Te

∂t
= ne∇⋅(χ||∇||Te) +ne∇⋅(χ⊥∇⊥Te) + P(r),

 
 (4)

is solved, where Te is the electron temperature, ne is the electron density and P is the heat 

source. Here ne, χ|| and χ⊥ are assumed to be constant along the minor radius for simplicity, 

and the convective transport is neglected which is valid for slowly changing islands such as 

those due to an error field or NTMs [9,16].

The heat source P(r) in Eq. (4) is taken to be of the form 
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P(r) = P0[1-(
r
a

)c1]c2, (5)

where c1=2 and c2=16 are taken except when mentioned elsewhere. P0 is chosen to ensure 

Te0(r=0)=1, where Te0 is the equilibrium electron temperature obtained from Eq. (4) by taking 

B1=0 (without magnetic field perturbations).

The boundary conditions used here are Te(r=a)=Te0(r=a) and Te
′(r=0)=0, where the prime 

denotes d/dr. The normalization scheme is as followings: the length is normalized to a, the 

magnetic field to B0t, and Te to Te0(r=0). 

III. Modelling results

Equation (4) is solved numerically using the transport subroutines of the initial value code 

TM1 [9].  TM1 is a new version of our previous code TM for modelling the nonlinear evolu-

tion of NTMs and their stabilization by rf wave current drive [30].  In TM1 the new numeri-

cal scheme described in Ref. [27] is applied, and both the parallel and the perpendicular 

transport terms in Eq. (4) are fully implicit. 

In the following Part A the heat transport across a single island is studied, and in Part B a 

two island case is studied.  Since the magnetic field becomes stochastic when two islands of 

different helicity overlap, this allows us to investigate the heat transport across a local sto-

chastic field.  A comparison between the numerical and analytical results is given in Part C.

A.  Heat transport across a single island

An example for the change of the radial temperature profile due to a single m/n=3/2 is-

land is shown in Fig. 1, where the m/n=0/0 component of Te, T0/0, and the temperature profile 

along the line passing through the island’s o-point and x-point in the steady state are shown. 

The original equilibrium temperature Te0 is shown by the dotted curve.  The q=3/2 surface is 
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at r3/2=0.604a, the island width w3/2=0.0452a (ψ3/2,0=9×10-4aB0t), and χ||/χ⊥=1010 is taken.  It 

is seen that the local Te profile becomes flattened inside the island when viewing along the 

line passing through the island’s o-point due to the fast parallel transport at a large χ||/χ⊥.  

Along the line passing through the island’s x-point, Te has a finite radial gradient as expected.  

The radial gradient of T0/0 is same as that of Te0
 for r<r-, and T0/0 is the same as Te0 for r>r+ 

due to the conservation of the perpendicular heat flux, where r-=0.582a and r+=0.627a are the 

inner and outer edges of the island.  

Corresponding to Fig. 1, in Fig. 2 the radial profiles of the fundamental (m/n=3/2 compo-

nent) and higher harmonics (m/n=6/4, 9/6 and 12/8 components) of Te are shown.  Higher 

harmonic temperature perturbations localize in the island region, and their amplitudes de-

crease for a larger m or n, as expected from the infinite χ||/χ⊥ limit result [16].  For such a 

high value of  χ||/χ⊥  the temperature is a constant along the magnetic field line except in a 

thin layer around the island’s separatrix where the parallel heat flux does not vanish.

In Fig. 3 the radial profiles of the original equilibrium temperature Te0 (solid curve) and 

T0/0 in steady state are shown for χ||/χ⊥=1012, 1010, 108 and 106, with the other parameters be-

ing the same as in Fig. 1.  In all our results χ⊥ is kept unchanged.  It has been shown by ana-

lytical theory that, T0/0 is approximately the same as Te0 as long as the island width w is much 

smaller than the critical island width wc=a(χ⊥/χ||)1/4(εan/8Lq)-1/2, where Lq=q/q′ and ε=a/R 

[16].  For infinite ratio of χ||/χ⊥,  the Te profile becomes flattened inside the island, and the 

decrease of T0/0 for r<r- is ∆Te=Te0-T0/0≈Te0
′(r=rs)w/21/2 [15].  With our input parameters one 

finds wc=0.63×10-2a, 2.0×10-2a and 6.3×10-2a for χ||/χ⊥=1010, 108 and 106, respectively. Only 

for χ||/χ⊥=106, the island width is smaller than the critical island width (w3/2/wc=0.72), so that 

the difference between  Te0 and T0/0 is small.   A larger χ||/χ⊥ leads to a more flattening T0/0 
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profile across the island and therefore a smaller T0/0 for r<r-.  The T0/0 for χ||/χ⊥=1012 is very 

close to that for χ||/χ⊥=1010, indicating that the further change in Te is small for w3/2/wc>>1.  

It is seen from Fig. 3 that for describing the "large island " limit of NTM [16], χ||/χ⊥=1010 has 

to be taken in the numerical calculations [9].

 Corresponding to Fig. 3, the radial profiles of the m/n=3/2 component of Te, T3/2, are 

shown in Fig. 4 for χ||/χ⊥=1010, 108 and 106.  For low χ||/χ⊥, the magnitudes of T3/2 and T3/2′ 

are small in the island region due to w3/2<wc, corresponding to a small bootstrap current per-

turbation for the NTM [16].  A higher χ||/χ⊥, χ||/χ⊥=108, leads to larger local magnitudes of 

T3/2 and T3/2′.  For even larger χ||/χ⊥ (1010), the T3/2 profile becomes flattened near the rational 

surface, in agreement with the infinite χ||/χ⊥ limit result [16]. Away from the island these T3/2 

profiles become the same, since ∇||Te and high harmonics of Te vanish there.

Considering the conservation of the perpendicular heat flux, q⊥=-χ⊥T0
′=-χeT0/0

′, where χe 

is the effective radial heat diffusivity in the presence of the island, one can define an normal-

ized effective radial heat conductivity 

χ=χe/χ⊥≡Te0
′/T0/0

′.  (6)

The enhanced radial heat diffusivity due to the parallel transport across the island is then 

given by χr=χe-χ⊥=χ⊥(χ-1).  Corresponding to Fig. 3, in Fig. 5 radial profiles of χ are shown 

for χ||/χ⊥=1010, 108 and 106.  As expected from Fig. 3, χ≈1 for χ||/χ⊥=106, and a larger χ||/χ⊥ 

leads to a larger χ.  Along the minor radius χ has a width being about the same as the island 

width and a maximal value at the rational surface.

The parameter χr/χ⊥=(χ-1) measures the normalized (to χ⊥) enhanced radial heat diffusiv-

ity due to the parallel transport. In Fig. 6 the maximal value of log(χ-1) at the rational surface 

(see Fig. 5), log(χ-1)max, is shown as a function of log(χ||/χ⊥) for the 3/2 island by the solid 
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curve, with other parameters being the same as those of Fig. 1.  The condition w3/2=wc,3/2 

leads to log(χ||/χ⊥)c=6.6, where wc,3/2 is the critical island width of the 3/2 island.  It is seen 

that, (χ-1)max is proportional to χ||/χ⊥ for χ||/χ⊥<(χ||/χ⊥)c, since in this case only the quasi--

linear correction of T0/0 is important when w<wc, as shown by the analysis in the Appendix.  

For χ||/χ⊥>>(χ||/χ⊥)c,  however, (χ-1)max is proportional to (χ||/χ⊥)1/2.  Between these two lim-

its there is a transition region around ~10(χ||/χ⊥)c or w3/2≈1.8wc,3/2.  The doted curve with 

empty circles in Fig. 6 shows log(χ-1)max for a m/n=4/3 island, which is quite similar to that 

of the 3/2 island. The 4/3 island width w4/3=0.0450a, being approximately the same as w3/2, 

but its critical island width wc,4/3 is smaller due to its higher toroidal mode number.  The con-

dition w4/3=wc,4/3 leads to log(χ||/χ⊥)c=6.2.  The larger value of log(χ-1)max for the 4/3 island is 

due to its smaller wc,4/3. 

In Fig. 7 numerical results of log(χ-1)max versus log(w/wc)2 for the 3/2 island is shown by 

the solid curve with circles, and the dotted curve shows the analytical result given by Eq. 

(A12) in the Appendix.  Here in (w/wc)2 only the island width w changes, χ||/χ⊥=1010 and 

other parameters are the same as those of Fig. 1.  It is seen that (χ-1)max is proportional to w4 

for w/wc<1 but to w2 for w/wc>3.  The transition region between these two slopes is around 

w/wc≈1.8.  When w/wc<1, the numerical result is the same as the analytical one given by Eq. 

(A12).  When w/wc>>1, the parallel heat transport is along a thin layer around the island’s 

separatrix.  The radial layer width is wc
2/w at the helical angle being the same as island’s o--

point [16], where Te
′≈Te0

′.  Due to the island’s geometry, the layer width expands to wc along 

the minor radius and to ∆ζ~(4wc/w) along the helical angle around island’s x-point.  There-

fore, the Te
′ at the x-point Tex

′~(wc/w)Te0
′.  Since Te

′ is zero well inside the island for 

w/wc>>1, T0/0
′, the averaged Te

′ along the helical angle, is proportional to 
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Tex
′∆ζ/π~(wc/w)2Te0

′.  This explains why (χ-1)max is proportional to (χ||/χ⊥)1/2 and w2 in the 

limit (w/wc)2>>1, as shown in Figs. 6 and 7. 

The degradation of the plasma energy confinement due to an island can be described by 

the parameter ∆β=(β0-β), where β=2πRne∫2πrT0/0dr is the total plasma thermal energy in the 

presence of the island,  and β0=2πRne∫2πrTe0dr is that without the island.  In Fig. 8 ∆β/β0 is 

shown as a function of log(χ||/χ⊥) for  the 3/2 island by the solid curve, with other parameters 

being the same as those for Fig. 1. It is seen that ∆β significantly increases with log(χ||/χ⊥) 

from log(χ||/χ⊥)c=6.6 up to 10 (corresponding w/wc=1 to 7.2). For  χ||/χ⊥>1010, ∆β essentially 

saturates.  When w/wc>>1, Te only slightly changes around the island separatrix, and ∆β is 

mainly determined by the ∆Te for r<r- as seen from Fig. 3. Therefore, there is no significant 

increase of ∆β with χ||/χ⊥ for χ||/χ⊥>1010.  Using the analytical formula for the χ||/χ⊥=∞ limit 

[15], ∆β/β0=0.041 is obtained, in agreement with the numerical result.  The ∆β/β0 due to the 

4/3 island is also shown in Fig. 8 by the dotted curve.  The q=4/3 surface is at r4/3=0.569a 

with r4/3<r3/2, and all the other parameters are the same as mentioned for Fig. 6.  For small 

χ||/χ⊥, the ∆β/β0 due to the 4/3 island is larger than that due to the 3/2 island, since the tem-

perature flattening inside the 4/3 island occurs at a smaller χ||/χ⊥ due to its smaller wc.  For 

large χ||/χ⊥, the ∆β/β0 due to the 3/2 island is larger because r3/2>r4/3 and  w>>wc [15].  

B.  Heat transport across two islands and stochastic field

In this part the heat transport across two islands, the m/n=3/2 and 4/3 islands, is studied.  

The corresponding rational surfaces are at r3/2=0.604a and r4/3=0.569a, respectively.  When 

these two islands are large enough to overlap, the local magnetic field becomes stochastic, al-

lowing us to study the heat transport across a local stochastic field.



11

In Fig. 9 an example of the local magnetic surface on the r-θ plan at φ=0 is shown for 

ψ0≡ψi,0/aB0t=ψ3/2,0/aB0t=ψ4/3,0/aB0t=10-4.  In this case the m/n=3/2 and 4/3 islands are not 

large enough to overlap.  Nevertheless, an additional secondary m/n=7/5 island exists due to 

the coupling between the 3/2 and the 4/3 magnetic field perturbations.

Corresponding to Fig. 9, the local temperature contour is shown in Fig. 10 for χ||/χ⊥=1012.  

In addition to m/n=3/2 and 4/3 islands, there is also a m/n=7/5 island in the temperature con-

tour in agreement with Fig. 9.  In this case P(r)=P0(r/a)8[1-(r/a)2]8 is taken to deposit more 

power density in the island region for viewing the 7/5 island more clearly. The small 7/5 is-

land can be seen in the temperature contour only for χ||/χ⊥>1010, indicating that a small sec-

ondary island is important in the transport only for a sufficiently large χ||/χ⊥.

With increasing perturbation amplitude ψ0, more secondary islands are seen and the mag-

netic surface first becomes stochastic around the island’s separatrix.  For sufficiently large 

ψ0, the local magnetic field becomes stochastic.  Fig. 11 shows such an example for 

ψ0=9×10-4, leading to w3/2=0.0452a, w4/3=0.0450a and (w3/2+w4/3)/(2|r3/2-r4/3|)=1.29, where 

w3/2 and w4/3 are calculated by the conventional single island formula [2].

Corresponding to Fig. 11, in Fig. 12 the local radial profiles of Te0 (dot-dashed curve) and 

the T0/0 for χ||/χ⊥=1010, 108 and 106 are shown.  For low χ||/χ⊥, T0/0 is close to Te0 similar to a 

single island.  A large χ||/χ⊥ leads to a flattening T0/0 profile across the island region. 

 Corresponding to Fig. 12, in Fig. 13 radial profiles of log(χ-1) are shown for χ||/χ⊥=1010, 

109 and 108.  For  χ||/χ⊥=108, χ has only two peaks around the q=3/2 and 4/3 surfaces, and its 

magnitude is approximately the same as that of a single island as shown in Fig. 5.  For 

χ||/χ⊥=1010 additional peaks of χ due to the ergodicity are apparent.  Comparing with Fig. 5 it 
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is found that, χ is about 5 times larger than that due to a single island with χ||/χ⊥=1010, indi-

cating that the ergodicity leads to fast radial transport for large  χ||/χ⊥.  

In Fig. 14 the radial profiles of Te0 and the T0/0 for ψ0=2×10-4, 5×10-4 and 9×10-4 are 

shown with χ||/χ⊥=1010.  For ψ0=2×10-4, T0/0
′ is approximately the same as Te0

′ between the 

two island, indicating that the local confinement is not destroyed, although there are second-

ary islands similar to that shown in Fig. 9.  With the increase of the island width, the two is-

lands overlap, and the local T0/0
′ decreases.  When plotting the magnetic surface with 

ψ0=5×10-4,  it is found to be stochastic in the region r=0.58a - 0.59a similar to Fig. 11.  How-

ever,  T0/0
′ is larger there than that at the two rational surfaces.  

To study the difference in energy confinement between the cases with and without ergod-

icity, in Fig. 15 ∆β/β0 is shown as a function of log(χ||/χ⊥) by the solid curve for ψ0=9×10-4.  

The corresponding magnetic surface is shown in Fig. 11.  The dotted curved shows the 

∆β1/β0=(∆β3/2+∆β4/3)/β0, where ∆β3/2 (∆β4/3) is the ∆β due to a single m/n=3/2 (4/3) island, as 

shown in Fig. 8.  The difference between ∆β and ∆β1 therefore measures the additional deg-

radation in the energy confinement due to the ergodicity of the magnetic field.  It is seen that 

∆β≈∆β1 for χ||/χ⊥<3×107, corresponding to w3/2<1.7w3/2,c.  This means that for a sufficiently 

low χ||/χ⊥, the ergodicity does not affect the energy confinement, and the heat transport rec-

ognizes the individual island structure rather than the ergodicity.  For χ||/χ⊥>3×107, ∆β be-

comes larger than ∆β1, showing the additional degradation of the confinement due to ergodic-

ity.  However, such an additional degradation is not significant with χ||/χ⊥ up to 1011, which is 

of the same order of magnitude as that for the central region plasma of large tokamaks [16].  

The small difference between ∆β and ∆β1 is due to the fact that, ∆β is mainly determined by 
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the ∆Te for r<r- of the inner island, the 4/3 island in the present case, and ∆Te changes little 

for sufficiently large χ||/χ⊥ similar to that of a single island as seen from Fig. 3. 

In Fig. 16 log(χ-1) versus log(χ||/χ⊥) is shown for ψ0=9×10-4 by the solid curve.  The 

value of χ is taken at r=0.587a where it has a local minimum value (see Fig. 13).  One finds 

(χ-1)∝χ||/χ⊥ in the low χ||/χ⊥ limit in agreement with Eq. (A14) in the Apendix.  For 

χ||/χ⊥>3×108 (w3/2>3.2wc,3/2), (χ-1) again approximately scales as χ||/χ⊥.  Between these two 

limits there is a transition region around χ||/χ⊥=3×107 (w3/2=1.7wc,3/2).  In this region (χ-1) in-

creases less than linear with χ||/χ⊥, similar to the case of a single island with w~wc.  The dot-

ted curve in Fig. 16 shows log(χ3/2+χ4/3−2), where χ3/2 (χ4/3) is the χ obtained with a single 

3/2 (4/3) island at the same radial location.  The solid curve is approximately the same as the 

dotted one for χ||/χ⊥<3×107, as predicted by Eq. (A14) that the heat transport is determined by 

the additive effects of the individual islands for w<wc.  When plotting the radial profiles for 

the case w<<wc, log(χ-1) is found to be the same as log(χ3/2+χ4/3−2) everywhere across the 

island region.  For sufficiently large χ||/χ⊥, the solid curve is larger than the dotted one, indi-

cating the role of the stochastic field.

With an even larger magnetic field perturbation amplitude, ψ0=3.6×10-3, the local mag-

netic surface becomes fully ergodic, and the results are found to be similar to those shown in 

Fig. 16.  In addition to the case of overlapping the m/n=3/2 and 4/3 islands discussed above, 

studies have also been carried out for the m/n=30/20 and 30/21 islands.  In this case the local 

magnetic field is more stochastic due to a shorter distance between the two rational surfaces, 

but results similar to those shown in Figs. 15 and 16 have been found. 

It is seen from the results above that, similar to the single island case, the parameter w/wc 

also characterizes the heat diffusion across a local stochastic field.  For w<<wc, the heat 
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transport is determined by the additive effects of the individual islands, and χr∝χ|| is found as 

predicted by the analytical result Eq. (A14).  Around w=1.7wc there is a transition region 

where the additive effect of individual islands is still important, and χr only slowly increases 

with χ||.  For sufficiently large w/wc, w/wc>3, χr nearly scales with χ||, but the heat diffusion is 

dominated by the ergodicity of the magnetic field.  

C. Comparison with analytical theories

There have been extensive theoretical studies on the heat transport across the stochastic 

field due to the spacial diffusion of the magnetic field lines [17-24].  In the collisionless re-

gime where the electron mean free path λe is longer than the Kolmogorov length 

Lk≈[Ls
2/(k⊥

2DM)]1/3 [17,20], the enhanced radial heat conductivity is shown by Rechester and 

Rosenbluth to be [17]

χr = DMχ||/λe = DMvTe,  (7)

where vTe is the electron thermal velocity,

DM = L0∑(
bk,r

B0t
)2δ(mk /q − nk)

k

,  (8)

L0≈πR, bk,r is the radial magnetic field perturbation of the kth component, k⊥ is the perpen-

dicular wave vector of the perturbations, Ls=Rq2/rq′, and the summation is over k to include 

contributions from all components.  Stix has got the same results as Eq. (7) [18].  In the col-

lisional regime λe<Lk, 

χr = DMχ|| /Lcδ,  (9)
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where Lcδ=Lcln[(r/mLc)(χ||/χ⊥)1/2], Lc=πR/ln(π∆/2), ∆=(w1+w2)/(2|r1-r2|), w1 and w2 are the 

widths of two neighboring islands, and r1 and r2 are the minor radius of the corresponding ra-

tional surfaces [17].  

Using a fluid approach, Kadomsev and Pogutse calculated the heat transport in several re-

gimes [19], but in no regime was the result the same as the collisional result of Rechester and 

Rosenbluth [17].  Later Krommes et al showed that the collisional regime consists of three 

sub-regimes [20].  With the decreasing of Lλ, they are 

(a) Rechester-Rosenbluth regime: 

χRR
r = DMχ||/Lk,  (10)

being valid for τ||<τk<τ⊥, where τ||=L0
2/χ||, τk=Lk

2/χ|| and τ⊥=1/(k⊥
2χ⊥).  Eq. (10) differs from 

Eq. (9) by a factor Lcδ/Lk.

(b) Kadomsev-Pogutse regime: 

χKP
r = DM(χ||χ⊥)1/2k⊥,  (11)

being valid for τ||<τ⊥<τk.

(c) Fluid regime: 

χF
r = DMχ||/L0,  (12)

being valid for τ⊥<τ||<τk.

The validities of various regimes depend on electron collisionality and the level of the 

stochastic magnetic field fluctuations [20,25,26].  The original theory of Krommes et al  is 

even more complicated [20].  

Since the fluid equation, Eq. (4), is utilized in our model, it is of interest to have a com-

parison between our numerical results and the analytical ones in the collisional regime, Eqs. 

(9)-(12).  As shown in the Appendix, when each individual island width, wk, is smaller than 

its corresponding critical island width, wc,k, the enhanced radial heat diffusivity is given by 
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Eq. (A14) rather than Eq. (12), the Fluid regime result.  In this case only these magnetic field 

perturbations with their rational surfaces being sufficiently close to the observation point r 

have a significant contribution to χr, and the heat diffusion is essentially determined by the 

additive effects of these individual islands satisfying (r-rs,k)/wc,k<2.  The valid regime of Eq. 

(A14), wk/wc,k<<1, is also much wider than that of Eq. (12).  It is seen from Fig. 16 that, χr is 

proportional to χ|| for low values of χ||/χ⊥ and is determined by the additive effects of these 

individual islands up to w3/2/wc,3/2<1.7, as predicted by Eq. (A14).  

In the transition region around w3/2~wc,3/2, (χ-1) slowly increases with χ||/χ⊥ as shown by  

Fig. 16.  It is clear that this is due to wk~wc,k so that the single island effect is still important.  

The Kadomsev-Pogutse regime given by Eq. (11) is not found from numerical results.  In 

fact, only for a single island with w>>wc one finds χr,max~(χ||χ⊥)1/2 (see  Fig. 6).  

For sufficiently large χ||/χ⊥, (χ-1) given by Fig. 16 approximately scales with χ||/χ⊥, sug-

gesting a behavior predicted by Eq. (10).  

 For a detail comparison with Eqs. (9)-(12), in Fig. 17 κ≡a<χr>/[χ||L0∑(bk,r/B0t)2] versus 

log(χ||/χ⊥) is shown for ψ0=1×10-4, 6×10-4, 9×10-4, 2.1×10-3, and 3.0×10-3, with other param-

eters being the same as those for Fig. 16.  Here <χr>=∫χrdr/(rb-ra) is the radial averaged χr 

from ra=0.58a to rb=0.59a where the magnetic field is stochastic (see Fig. 11).  It is seen from 

Fig. 17 that, for low χ||/χ⊥, κ is the same for different ψ0, as predicted by Eq. (A14) in the 

limit zk=0.  In this limit κ=0.048 is obtained from Eq. (A14) in agreement with the numerical 

results.  For high χ||/χ⊥, the value of κ oscillates for ψ0<2×10-3 but approaches a nearly steady 

value for lager ψ0.  This differs from the prediction of Eq. (10) that κ~1/Lk~DM
1/3~ψ0

2/3.  Us-

ing Eq. (10), one finds κ=9.28×10-3 for ψ0=3×10-3.  
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By increasing the magnetic shear by 3 times to Lq=0.1a, in Fig. 18 κ versus log(χ||/χ⊥) is 

shown for ψ0=3.0×10-3, 4.5×10-3 and  6.0×10-3.  In this case r3/2=0.595a, r4/3=0.583a and the 

other parameters are the same as that for Fig. 17.  It is seen that κ approaches a steady value 

for low χ||/χ⊥ and a nearly steady value for high χ||/χ⊥ and ψ0, similar to those of Fig. 17.  The 

dotted curve on Fig. 18 is the result with a smaller magnetic shear, Lq=0.3a, and ψ0=3.0×10-3, 

shown here for comparison.  κ becomes smaller for a larger magnetic shear, differing from 

the prediction of Eq. (10) that  κ~1/Lk~Ls
-2/3.  The dashed curve on Fig. 18 shows the result of 

Eq. (9) for ψ0=6.0×10-3 and Lq=0.1a, which is different from the numerical results.

Numerical calculations have also been carried out by using magnetic perturbations with 

four Fourier components, m/n=30/19, 30/20, 30/21, and 30/22, and five components, 

m/n=3/2, 4/3, 7/5, 10/7, and 11/8.  In these cases the local field is more stochastic due to 

shorter distance between rational surfaces, and similar results to Figs. 17 and 18 are found.  

An example of four island case is shown in Fig. 19.  In this case the rational surfaces are at 

r30/19=0.620a, r30/20=0.604a, r30/21=0.595a, and r30/22=0.576a, and the radial average is taken 

from r=0.59a to 0.61a where the magnetic field is stochastic.  κ is shown for ψ0=9.0×10-4, 

1.2×10-3, 1.8×10-3 and  2.1×10-3. It is seen that κ approaches a steady value for low χ||/χ⊥ and 

a nearly steady value for high χ||/χ⊥ and ψ0, similar to those of Fig. 17.  The dotted curve on 

Fig. 19 is the result with only the 3/2 and 4/3 island and ψ0=2.1×10-3, shown here for com-

parison.  The κ for the four island case is smaller due to higher mode numbers and therefore 

smaller critical island widths.

It is seen from Figs. 16-19 that, the quasi-linear result presented in the Appendix is con-

firmed by  numerical results, while the  Kadomsev-Pogutse regime is not seen.  As for the 

Rechester-Rosenbluth regime given by Eq. (10), the scaling χr
RR~χ|| is found for a sufficiently 



18

large χ||/χ⊥ from numerical results, but the scaling with the magnetic shear and the perturba-

tion amplitude is different.

IV. Discussion and summary 

It is clear from above results that,  w/wc is a key parameter in determining the heat trans-

port across a single island.  The heat diffusion consists of three regimes: (a) the quasi-linear 

regime w/wc<1, (b) the transitional regime w~wc and (c) the "large island" regime w>>wc. 

The energy confinement degradation significantly increases with w/wc from w/wc=1 to 7.2.  

For w/wc>7.2, the degradation is determined by w, Te0
′(r=rs) and rs as found in the infinite 

χ||/χ⊥ limit [15].  As for the radial gradient of the fundamental harmonic, it takes its maximal 

value in the island region in the middle range of w/wc, and the "large island" limit of NTM 

discussed in Ref. [16] is for w/wc>7.2.  

For the local stochastic magnetic field due to the overlap of two neighboring islands, the 

parameter w/wc is also found to be important in characterizing the transport.  In different to 

the Ref. [20], we find that the heat diffusion consists of three regimes: 

(a) The quasi-linear regime w/wc<1 as shown by Eq. (A14).  In this regime the transport is 

determined by the additive effect of individual islands.

(b) The transitional regime w~wc, where χr slowly increases with χ||.

(c) The regime w>>wc, where χr approximately scales with χ||.  

Our numerical results together with the analysis in the Appendix indicate that, the Fluid 

regime should be replaced by the quasi-linear results Eq. (A14).  The Kadomsev-Pogutse re-

gime is not found from the numerical results as expected from Eq. (A14).   It is seen from our 

results that, the effect of w/wc not considered in previous analytical theories is important in 

determining the transport for w/wc≤1 and leads to the difference between our numerical 
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results and Eqs. (9), (11) and (12).  Recent studies have shown that, the magnetic field shear 

plays an important in the spacial diffusion of the field lines, and the excursions of field lines 

significantly differ from Brownian motions [24]. 

It should be mentioned that, there is a difference between our numerical model and that of 

previously analytical theories [17-20].  Our model is a local stochastic field due to the overlap 

of two or several islands, while in Ref. [20] a infinite stochastic field is assumed.  It is not 

clear whether such a difference could lead to the difference in the scaling of χr with the mag-

netic shear and the perturbation amplitude, although χr~χ|| is obtained from the numerical re-

sults for a sufficiently large perturbation amplitude and χ||/χ⊥.  Future calculations using a 

non-local stochastic field and including more Fourier components of magnetic perturbations 

will be helpful for a further comparison with Eq. (10).

Eq. (A14) have an important implication on the  heat diffusion across a stochastic field 

where χ||/χ⊥ is not high enough. For the  tokamak edge parameters Te=100ev, ne=1019m-3, 

Lq=q/q′=a, R/a=3, n=2, and an anomalous perpendicular heat diffusivity, χ⊥=0.5m2/s, one 

finds χ||/χ⊥=1.7×108 and wc=0.03a by using the classical parallel electron heat conductivity 

χ||c=3.16vTeλe.  This means that for smaller islands (w<0.03a) the field ergodicity plays no 

role, and the heat diffusion is determined by the additive effect of individual islands.  Only 

for sufficiently large islands or high Te, the ergodicity dominates the radial transport.  

The validity of Eq. (4) and the constant χ|| assumption in our calculations should be dis-

cussed.  It was shown by the analytical theory that, the classical heat conductivity χ||c is valid 

for k||λe<1.  While for k||λe>1, χ||≈vTe/k||, where k||=B0·k/|B0| and k is the wave vector of the is-

land [28].  In the lowest order k||=n|r-rs|/(LqR), where rs is the minor radius of the rational sur-

face.  With the parameters mentioned above, k||λe>1 leads to |r-rs|>0.24a.  For an island with 

its width w<0.24a, across the island region χ|| is still by χ||c.  Since Te is essentially a constant 
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in the island region, the assumption of a constant χ|| is reasonable.  In the outer region away 

from the island one has k||λe>1 and χ||≈vTe/k||.  In this region, however, the use of χ||≈vTe/k|| or 

χ||c will lead to the same result:  the temperature along the field lines becomes a constant due 

to the fast parallel transport, since both forms of χ|| are large enough to lead to χ||/χ⊥>>1 (see 

Fig. 4 and Appendix).  Therefore, for the above case, being relevant to the tokamak edge 

plasmas such as those in the dynamic ergodic divertor and the edge stochastic field [31,32], 

the use of χ||c leads to the correct results both in the island and in the outer region.

For a higher electron temperature and density, Te=1kev, ne=5×1019m-3, and the other pa-

rameters being the same as mentioned above, one finds χ||c/χ⊥=1.1×1010, and k||λe>1 leads to 

|r-rs|/a>0.012. Since the region k||λe<1 is very narrow for a high Te case, a modified form of 

χ||, χ||=χ||c[1+(3.16λek||)2]1/2 was used before [30], which reduces to χ||c in the limit k||λe<<1 

and to vTe/k|| in the opposite limit.  However, as mentioned in the Introduction, χ||=vTe/k|| is 

only a crude approximation for the  k||λe<<1 limit [29].  Future calculations with a more exact 

model for the parallel heat flux is necessary for high ratio of χ||/χ⊥.

In our work only the electron heat transport is studied.  For the ion heat transport across 

magnetic islands, the results are expected to be similar.  Since the parallel ion heat transport 

are (mi/me)1/2 times slower than the electron’s, the corresponding wc is (mi/me)1/8 times larger, 

leading to a factor about 3 for a deuterium plasma.  Therefore, a larger island width is re-

quired to affect the ion temperature profile.

The heat transport is studied here with given perturbed magnetic fields.  Spontaneous 

growing islands are often observed in tokamak experiments [3,12,33,34]. Theoretically, the 

micro-tearing mode could lead to small islands [10].  It has been shown recently that the 

drift-tearing mode with high mode numbers can be driven unstable by the electron 
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temperature gradient due to the perpendicular heat transport [11].  Further investigation on 

the nonlinear mode saturation is necessary for calculating their effect on the transport.   

In summary,  it is found in the present paper that:

(1) The heat transport across a single island is determined the parameter w/wc.  The normal-

ized enhanced radial heat diffusivity due to the island, χr/χ⊥,  has a radial width being about 

the island width and a maximal value at the rational surface being proportional to (w/wc)2 for 

w/wc>3. While for w/wc<1, χr/χ⊥∝(w/wc)4.  Between these two limits there is a transition re-

gion around w/wc=1.8.  The energy confinement degradation significantly increases with 

w/wc from w/wc=1 to 7.2.

(2) The heat transport across a local stochastic magnetic field due to the overlap of two or 

several neighboring islands is also characterized by w/wc.  For w<wc, the heat transport is de-

termined by the additive effects of the individual islands as predicted by Eq. (A14).  Around 

w=1.7wc there is a transition region where χr slowly increases with χ||, and the additive ef-

fects of the individual islands is still important.  For sufficiently large w/wc, w/wc>3, χr ap-

proximately scales with χ||.  

(3) The Fluid regime should be replaced by the quasi-linear results given by Eq. (A14), and 

the Kadomsev-Pogutse regime is not found from the numerical results.  As for the Rechester-

Rosenbluth regime, the scaling χr~χ|| is obtained from the numerical results for w>>wc, but 

the scaling of χr with the magnetic shear and the perturbation amplitude is different for a lo-

cal stochastic field.
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Appendix

In this appendix χr is analyzed in the limit that χ||/χ⊥>>1 but w/wc<<1.  Assuming ne, χ|| 

and χ⊥ to be constant, in steady state Eq. (4) becomes  

χ||∇⋅(∇||Te) + χ⊥∇⋅(∇⊥Te) + P(r)/ne = 0. 
 (A1)

When there is only one Fourier component of magnetic perturbations, B1=∇ψ1×et with 

ψ1(r,θ,φ)=ψ1(r)cos(iξ), (A2)

Te can be expressed in terms of Fourier series,

Te=T0/0(r,t) + ∑[Tk(r,t)exp(ikξ)+c.c.]/2, (A3)

where ξ=mθ+nφ being the helical angle, and the summation is over k from k=1 to infinity.  

If the island width w is much smaller than the critical island width wc, one can define a 

small expansion parameter δ=w/wc.  Taking the operator 
�

 dζcosζ/π with the integration from 

ζ=0 to 2π, it is found from Eqs. (A1)-(A3) that in the lowest order in δ

χ| |(- k2
||T1 +ik||b1rT

′
0/B0t) + χ⊥∇⋅(∇⊥T1) = 0, (A4)

where k||=k1·B0/|B0|, and k1 is the wave vectors of B1.  In Eq. (A4) the terms containing Tk 

with k≥2 are neglected since they are smaller by at least an order δ2.

For χ||/χ⊥>>1 and away from the rational surface, Eq. (A4) is dominated by the first two 

terms, and the outer region solution T1 is simply determined by

T1 = iT’
0/0b1r/ (k||B0t). (A5)

In the inner region near the rational surface rs with |r-rs|<<rs, T1 has a large radial deriva-

tive since T1∼1/(r-rs) as r approaches rs, as seen from Eq. (A5), so that T1′>>mT1/r and Eq. 

(A4) is simplified to

(χ⊥/χ||)T"
1-k2

|| T1 = -ik||T
′
e0b1r/B0t. (A6)
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The balancing between the two terms on the right hand side of Eq. (A6) leads to the criti-

cal width wc.   Eq. (A6) can be written into the form

d2f

dz2 − z2f = z, (A7)

where z=23/2(r-rs1)/wc, T1=-2-5/2(w2/wc)Ts′f(z), and Ts′=Te0′(rs).  The solution of Eq. (A7) is

f(z) = -
z
2∫1

dµ
0

(1 −µ2)− 1 /4exp( −zµ2/2). (A8)

For z>>1, f(z)=-1/z, and T1 matches to the outer region solution given by Eq. (A5).  While 

for z<<1, f(z)≈-1.20z, and

T1 = 0.3(w /wc)
2T’

s(r-rs), (A9)

in agreement with Ref. [16].  It can be shown from Eqs. (A1)-(A3) that Tk with k≥2 are δ2(k-1) 

times smaller than T1.

Similar to the procedure for obtaining Eq. (A6), by taking the operator 
�

 dζ/π with the in-

tegration from ζ=0 to 2π and keeping the terms in the lowest order,  the equation for T0/0 is 

found from Eqs. (A1)-(A3) to be

0.5χ||b1r[ik||T1 + b1rT
′
0/B0t]′ + χ⊥(T0/0 − T0)" = 0, (A10)

The neglected terms in Eq. (A10) are at least δ2 times smaller.  Substituting T1 into Eq. 

(A10), one finds δT=T0/0-Te0 to be 

δT(z) = -
w4

8w4
c

T’
sg(z),

(A11)

where g(z)=[1+zf(z)].  The profiles of f(z) and g(z) are shown in Fig. 20.  g(z) approaches 

zero for z>2.

The parameter χr=χ⊥(χ-1)=χ⊥(Te0′/T0/0′-1) measures the enhanced radial heat diffusivity 

due to the parallel transport across the island.  From Eq. (A11) is found that
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χr(r) = χ⊥
w4

8w4
c

g(z) = χ||

b2
1r(rs)
2B2

0 t

g(z).
 

 (A12)

Eq. (A12) gives the enhanced radial transport due to a single island in the limit w/wc<<1, 

which agrees with the numerical result as shown in Fig. 7.

When there are magnetic perturbations of different helicities, and each individual island 

width wk calculated from the conventional single island formula is smaller than its cor-

responding critical island width wc,k, then in the lowest order Tk is found to be determined by 

an equation like Eq. (A6), and one obtains Tk=-2-5/2(Wk
2/Wc,k)Ts′f(zk), where zk=23/2(r--

rs,k)/Wc,k and rs,k is the minor radius of the rational surface of the kth component.  A similar 

analysis to Eqs. (A7)-(A12) leads to the quasi-linear result

δT(z) = -∑ w4
k

8w4
c,k

T′
0(r)gk(zk) (A13)

and

χr(r) = ∑χ⊥

w4
k

8w4
c,k

gk(zk) = ∑χ||

b2
r,k

2B2
0t

gk(zk),
 

 (A14)

where the subscript k corresponds to the kth component of magnetic perturbations, the sum-

mation is over k for including contribution from all components.  Eq. (A14) agrees with the 

numerical results as shown in Figs. 16-19 for wk<wc,k.

Eq. (A14) reduces to Eq. (12) in the limit zk=0 except for a factor 2δ(mk/q-nk).  The func-

tion gk(zk) in Eq. (A14), however,  indicates the role of Wc,k.  Since gk(zk) approaches zero as 

zk>2, only these magnetic field perturbations with their rational surfaces being sufficiently 

close to the observation location r have a significant contribution to χr, and χr is ap-

proximately determined by the additive effects of these individual islands satisfying zk<2.  

This is different from Eqs. (9)-(12) in which the DM includes the contribution from all reso-

nant magnetic perturbations.  
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The valid regime of Eq. (A14) is also very different from that of Eq. (12).  To be self--

consistent Eq. (A14) requires ∑Λkgk(zk)<2, where Λk=(χ||/χ⊥)(br,k/B0t)2.  While Eq. (12) is 

valid for τ⊥<τ||<τk, leading to ∑Λk<A1 and ∑(br,k/B0t)2<A2, where  A1=(k⊥L0)2∑(br,k/B0t)2 and 

A2=[RqLq/(mL0
2)]2.  For typical tokamak parameters R/a=3, q=2, m=5, Lq=a, rs=0.8a, and 

∑br,k/B0t=10-4, one finds A1=5.5×10-6 and A2=1.8×10-4.  Eq. (A14) is valid for a much higher 

χ||/χ⊥ than Eq. (12) since A1~10-6 is very small.  The condition ∑(br,k/B0t)2<A2 is usually sat-

isfied for the magnetic perturbations in tokamak plasmas [2-8].

The Kadomsev-Pogutse regime, Eq. (11), is valid for τ||<τ⊥<τk, corresponding to 

A1<∑Λk<A3, where A3=[(∑br,k/B0t)(Rq2Lq
2m)/(πr3)]2/3.  For the above parameters one finds 

A3=0.013.  Therefore, the valid regime of Eq. (A14) covers the Kadomsev-Pogutse regime, 

indicating that Eqs. (11) and (12) are problematic. The Rechester-Rosenbluth regime, Eq. 

(10), is valid for τk<τ⊥ (in addition to τ||<τk), leading to ∑Λk>A3.  It is seen that the valid re-

gime of Eq. (A14) could well extend into the Rechester-Rosenbluth regime, especially for the 

case with smaller perturbation amplitudes in a large magnetic shear region.
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Caption

Fig. 1 Radial profiles of Te0 (dotted curve), T0/0 and the Te along the line passing through 

the island’s o-point and x-point with w3/2=0.0452a, r3/2=0.604a and χ||/χ⊥=1010.  T0/0
′ is same 

as Te0
′ for r<r-, and T0/0 is the same as Te0 for r>r+.  

Fig. 2 Corresponding to Fig. 1, radial profiles of the m/n=3/2, 6/4, 9/6, and 12/8 compo-

nents of Te.  High harmonic temperature perturbations are localized in the island region, and 

their amplitudes decrease for a larger m (n).

Fig. 3 Radial profiles of Te0 (solid) and the T0/0 for χ||/χ⊥=1012, 1010, 108 and 106.  For a 

low χ||/χ⊥, T0/0 is close to Te0.  A larger χ||/χ⊥ leads to a more flattening local T0/0 profile.

Fig. 4 Corresponding to Fig. 3, radial profiles of T3/2 for χ||/χ⊥=1010, 108 and 106.  For 

χ||/χ⊥=106, T3/2 and T3/2
′ are small in the island region.   A larger χ||/χ⊥ (=108) leads to a larger 

T3/2 and T3/2
′.  For χ||/χ⊥=1010, T3/2 profile becomes flattening near the rational surface.

Fig. 5 Corresponding to Fig. 3, radial profiles of χ for χ||/χ⊥=1010, 108 and 106.  χ has a 

maximal value at r3/2 and a width about the island width.  A larger χ||/χ⊥ leads to a larger χ.

Fig. 6 Log(χ-1)max versus log(χ||/χ⊥) for the 3/2 island (solid) and the 4/3 island (dotted).  

w3/2=wc,3/2 leads to log(χ||/χ⊥)c=6.6.  (χ-1)max∝χ||/χ⊥ for χ||/χ⊥<(χ||/χ⊥)c but (χ-1)max∝(χ||/χ⊥)1/2 

in the opposite limit.  There is a transition region around 10(χ||/χ⊥)c or w3/2=1.8wc,3/2.  

Fig. 7 Numerical results of Log(χ-1)max versus log(w/wc)2 for a 3/2 island with 

χ||/χ⊥=1010 (solid).  Here in (w/wc)2 only the island width w veries.  (χ-1)max∝w4 for w/wc<<1 

but (χ-1)max∝w2 for w/wc>>1.  The transition region between these two limits is around 

w/wc=1.8. The doted curve shows the analytical results of Eq. (A12). 

Fig. 8 ∆β/β0 versus log(χ||/χ⊥) for the 3/2 island with w3/2=0.0452a (solid). ∆β increases 

with log(χ||/χ⊥) from (χ||/χ⊥)c=3.8×106 up to 1010 (w3/2/wc=7.2).  For χ||/χ⊥>1010, ∆β saturates. 
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The ∆β/β0 due to a 4/3 island (dotted) is larger for low χ||/χ⊥ due to its smaller wc.  For high 

χ||/χ⊥, the ∆β/β0 due to  the 3/2 island is larger because r3/2>r4/3 and w3/2>>wc.

Fig. 9 The magnetic surface on the r-θ plan at φ=0 for ψ0=10-4.   An secondary m/n=7/5 

island exists in addition to the 3/2 and 4/3 islands.

Fig. 10 Corresponding to Fig. 9, the temperature contour for χ||/χ⊥=1012.  There is an 

m/n=7/5 island in the temperature contour in agreement with Fig. 9.  

Fig. 11 Same as Fig. 9 but for ψ0=9×10-4.  The local field becomes stochastic.

Fig. 12 Corresponding to Fig. 11, radial profiles of Te0 (dot-dashed) and the T0/0 for 

χ||/χ⊥=1010, 108 and 106.  A larger χ||/χ⊥ leads to a more flattening local T0/0 profile.

Fig. 13 Corresponding to Fig. 12, radial profiles of log(χ-1).  For χ||/χ⊥=108, χ only peaks 

around the q=3/2 and 4/3 surfaces.  For χ||/χ⊥=1010, additional peaks appear due to the ergod-

icity, and χ is about 5 times larger than that for a single island.  

Fig. 14 Radial profiles of Te0 and the T0/0 for ψ0=2×10-4, 5×10-4 and 9×10-4 with 

χ||/χ⊥=1010.  With the increase of the island width, the local T0/0
′ decreases.  

Fig. 15 ∆β/β0 (solid) and ∆β1/β0=(∆β3/2+∆β4/3)β0 (dotted) versus log(χ||/χ⊥) with 

ψ0=9×10-4.  For low χ||/χ⊥, ∆β=∆β1 as predicted by Eq. (A13).  For high χ||/χ⊥, ∆β>∆β1, 

showing the enhanced transport due to ergodicity.

Fig. 16 log(χ-1) at r=0.587a versus log(χ||/χ⊥) for ψ0=9×10-4 (solid).  For low or high 

χ||/χ⊥, (χ-1)∝χ||/χ⊥.  There is a transition region around χ||/χ⊥=3×107 (w3/2=1.7wc,3/2).  The 

dotted curve shows log(χ3/2+χ4/3−2), where χ3/2 (χ4/3) is the χ for a single 3/2 (4/3) island.  

The two curves are the same for χ||/χ⊥<3×107 as predicted by Eq. (A14).
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Fig. 17 κ versus log(χ||/χ⊥) for ψ0=1×10-4, 6×10-4, 9×10-4, , 2.1×10-3, and 3.0×10-3.  κ is 

the same with different ψ0 for low χ||/χ⊥ as predicted by Eq. (A14).  For high χ||/χ⊥, κ oscil-

lates for ψ0<2×10-3 but approaches a nearly steady value for larger ψ0. 

Fig. 18 κ versus log(χ||/χ⊥) for ψ0=3.0×10-3, 4.5×10-3 and 6.0×10-3, with Lq=0.1a, 

r3/2=0.595a and r4/3=0.583a. Other parameters are the same as those for Fig. 17.  The dotted 

curve is the result with Lq=0.3a and ψ0=3.0×10-3.  κ becomes smaller for a larger magnetic 

shear.  The dashed curve is obtained from Eq. (9) for ψ0=6.0×10-3.

Fig. 19 κ versus log(χ||/χ⊥) with ψ0=9.0×10-4, 1.2×10-3, 1.8×10-3, and  2.1×10-3 and 

m/n=30/19, 30/20, 30/21, and 30/22.  The dotted curve is the result for only the 3/2 and 4/3 

island and ψ0=2.1×10-3.  κ is smaller for the 4 island case due to the smaller wc.

Fig. 20 f(z) and g(z) versus z.  g(z) approaches zero for z>2.
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