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Abstract

Transport relevant turbulent fluctuations of plasma potential Uplasma , density n0,

and electron temperature Te have been measured simultaneously in the Wendelstein

7-AS stellarator edge plasma by applying the sweeping technique to a poloidal array

of 15 cylindrical Langmuir probe tips.

Tip currents are measured with a temporal resolution of 20 ns. The voltage sweep

frequency is 1.4 MHz and the tip spacing is 2 mm. Saturation current Isat , floating

potential Ufloat , and Te could be determined with a bandwidth of 1.4 MHz in the

frequency and of 15 cm−1 in the wavenumber, while n0 and Uplasma were deduced

using a collisionless 1D model for both the presheath and the sheath.

The high bandwidth of the measurement was achieved by placing miniaturised

differential amplifiers close to the probe tips. Profiles of the plasma quantities and

their fluctuations were recorded in the scrape-off layer up to the last closed magnetic

surface (LCMS). Individual probe characterstics can be adequately described by an

exponential fit, but particular attention must be paid to the covariance of the fit

parameters. Hence, cross-correlation and smoothing techniques were utilised during

data evaluation.

Two-dimensional correlation functions have similar structure in all quantities,

revealing turbulent structures with a poloidal extent of 1 cm and a lifetime of 30µs.

Near the LCMS, Ufloat data additionally show counter-propagating structures, which

indicate the vicinity of the shear layer. The Fourier transform of cross-correlations

with the probe located near the LCMS reveals a broad-band uniform cross phase,

which is small between n0, Te , and Uplasma , and close to π/2 between either of the

pairs (Ufloat,Te) and (Ufloat,Isat). The latter confirms previous results from non-

swept probes. Broad-band small phases between n0 and Uplasma are also found in

numerical simulations of drift-wave turbulence.

Profiles of the convected and the conducted perpendicular heat transport are

calculated. Continuity of the energy transport is demonstrated, where near the

LCMS, heat conduction via temperature fluctuations contributes to a large fraction.

It is replaced by convection in the SOL. A significant change in the profile of the

radial particle transport is well correlated with an abrupt change of the connection

length.

A comparison with the confinement shows that the measured fluctuations carry

roughly 28% of the total energy transport. Based on an extrapolation of the tur-

bulence properties to experimentally unaccessible but transport relevant high fre-

quencies and wavenumbers, it is consistent to assume that the turbulence is fully

responsible for the perpendicular transport. An experimental verification requires

an increased bandwidth in wavenumber and frequency.
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Preface

This thesis is devoted to a very special aspect of plasma physics. A plasma is a

state of aggregation just as the solid, the liquid or the gaseous state. Any material,

any chemical element can be transferred into the plasma state. The reader who is

not familiar with advanced illumination techniques or modern technical methods for

the treatment of surfaces, this reader might think, that a plasma itself is already

something very special, because all things in our environment apparently consist of

either solids or liquids or gases. It is only during a thunder storm, when the air of

our atmosphere is getting in touch with a plasma in a natural way. For some fraction

of a second, lightning generates an electroconductive and intensely flashing plasma

channel. One may disregard, however, for a moment the Earth and its weather and

instead focus on the sky and the universe respectively. Scientists have come to the

conclusion, that plasma is the usual state of matter there. The sun, all visible stars,

the solar wind, interstellar nebulae, all these things completely consist of plasma.

From this point of view solids, liquids and gases are very special indeed. Now, if the

sun is plasma all over and if our life directly or indirectly depends on the sun, then

this should be a good reason to study the properties of plasma.

1





Chapter 1

Introduction

This is an experimental investigation of turbulence at the boundary of a high tem-

perature plasma by means of electric probes. The main focus will be on the turbulent

transport of particles and energy, which plays a crucial role for plasma confinement

in strong magnetic fields. So far, the mechanisms of the plasma turbulence are not

understood in detail, since the small scales involved make the measurement very

difficult. This work is one step, where the measuring tools have been further im-

proved, so that a part of the plasma turbulence yet unknown can now be resolved

experimentally. To make it more precise: The presented measuring method allows

highly resolved and simultaneous observation of plasma density, temperature and

electric potential. The experimental data of temperature fluctuations in particu-

lar have not been obtained before with similar spatial and temporal resolution. All

measurements were carried out at the Wendelstein 7-AS Stellarator (W7-AS), which

is located on the site of the Max-Planck Institute for Plasma Physics in Garching

near Munich. The W7-AS was developed for fusion research.

In the beginning those basics are introduced, which are necessary to understand

this work: The concept of magnetic confinement is outlined together with its ap-

plication in fusion research. Some attention is drawn to the turnover of particles

and energy inside a fusion machine and a spotlight is cast on the current theoretical

understanding of the underlying mechanisms. At this point the turbulence comes

into play. With the definition and the role of temperature fluctuations this chapter

shall close.

1.1 Magnetic confinement of plasma

Plasma does not live peacefully together with other states of aggregation. To protect

plasma facing components in the laboratory, one must utilise a method that sepa-

rates the plasma from both the atmosphere and solid bounds. The most convenient

way to achieve this is to set up a magnetic field with a particular geometry inside a

vacuum chamber. Since plasma consists of charged particles, i.e. electrons and ions,

a magnetic field will give rise to Lorentz forces on individual particles, provided that

3



1.1 Magnetic confinement of plasma

they have got a velocity component perpendicular to the lines of the magnetic field.

If the field is homogeneous with intensity B this yields the well-known gyro motion.

Frequency fc and gyration radius rL at given velocity v⊥ , charge q and mass m are

fc =
|q|B
2π m

, rL =
v⊥

2πfc
. (1.1)

Note that there are several gyro radii due to the different masses of electrons and

ions but also due to the velocity distribution at the temperature T . In a Maxwellian

feq = π− 3
2 v−3

th exp(−v2/v2
th) , v2 = v2

⊥ + v2
‖

with v2
⊥ = v2

x + v2
y and v‖ = vz parallel to the magnetic field, the latter component

is integrated 1 and yields the perpendicular distribution:

f⊥ = 2 v⊥ v
−2
th exp(−v2

⊥/v
2
th) .

The most probable, the average and the root mean square values of v⊥ are

v⊥, mp = 1√
2
vth ≈ 0.71 vth ,

v⊥ =
√

π
2
vth ≈ 0.89 vth ,

v⊥, rms = vth ,

vth =

√

2 kBT

m
, (1.2)

with kB equal to the Boltzmann constant.

1.1.1 Natural magnetic confinement

From equation (1.1) it is obvious that gyro radii become small if B is increased.

Thus, in a strong magnetic field, charged particles are pinned to a field line. Proper

confinement however must include the direction parallel to the field line, where the

particles still may move freely. There is an example in nature, where an inhomo-

geneity serves as a barrier. Consider the magnetic field line of a dipole as drawn in

figure 1.1: Approaching the dipole, the magnetic field strength increases. The center

of gyration of a particle starting in the equatorial plane with a finite v‖ will follow

the field line towards the pole and encounter a positive gradient of field strength.

If the gyro radius is small compared to the gradient scale length B/| gradB| , then

the magnetic moment µ = mv⊥/ 2B becomes invariant (see Chen [1974]), i.e. v⊥
increases with B . Conservation of the kinetic energy m

2
(v2

⊥ + v2
‖) causes v‖ to be

depleted when the charged particle runs or rather spirals into the gradient. At the

outmost point (v‖ = 0) the particle is reflected and the whole thing starts again in

opposite direction.

1
∫∫∫∞

−∞ . . . dvx dvy dvz must be replaced by 2π
∫∞

v‖=−∞

∫∞

v⊥=0
. . . v⊥ dv⊥ dv‖ ,

this type of definite integral can be found in appendix A.2.1

4



1.1 Magnetic confinement of plasma

Independent of this argumentation about v‖ one has to be aware that the simple

picture of a stationary gyration does not hold in an inhomogeneous field. A grad-B

drift comes up, which has the sign of the particle charge and is perpendicular to the

field direction and the gradient.

v∇B = ±1

2
v⊥ rL

B × gradB

B2
(1.3)

B is the field vector. The superposition of grad-B drift and gyration is valid, if rL is

small compared to the gradient scale length B/| gradB| , while the ratio of rL and

this scale length determines the magnitude of the drift relative to v⊥ . In figure 1.1

the opposite grad-B drifts for ions and electrons are indicated.

Figure 1.1: Natural magnetic confinement [Schumacher 1993]. Charged particles from

the solar wind that were scattered into the magnetosphere are trapped, i.e. confined in

the Earth’s magnetic dipole characteristic (RE= 6378 km). The particles form the Van

Allen radiation belts (Grimsehl et al. [1988]) up to R0 ≈ 4 RE . More far away, the dipole

characteristics are perturbed by the impact of the solar wind. In the magnetosphere, the

field vector points from the South to the North Pole.

1.1.2 Toroidal magnetic confinement

Although the described magnetic confinement in a dipole characteristic seems to

be complete, in the laboratory a different geometry is superior. It is the toroidal

configuration which doesn’t rely on a barrier in parallel direction but instead extends

the parallel dimension to infinity by a circular closure. Figure 1.2 may impart an

idea of the geometry: The magnetic surface has the shape of a torus, i.e. a doughnut

or a closed flexible tube. One magnetic field line does not leave the surface, it rather

5



1.1 Magnetic confinement of plasma

Figure 1.2: Toroidal geometry with rotational transform of field lines. The equatorial

plane is indicated in light blue. A field line (dark blue) starting at the equator departs in

poloidal direction with increasing toroidal angle. To the right a single cross section is drawn

together with the angle θ1 after 1 toroidal turn. The drawing is roughly corresponding to

ι ∼ 1/8 .

generates it by circulating with a slight helical twist. The latter is defined by the

quantity ι :

ι = lim
N→∞

∑ ΘN

2 πN
, (1.4)

where ΘN is the poloidal angle after N toroidal turns. In this context “poloidal”

means the direction along the small circumference as shown on the right hand side

of figure 1.2. Note that ι shouldn’t be an exact rational number, otherwise the field

line would close before the surface is densely covered.

Concerning the grad-B drift from equation (1.3) there is now a very favourable

property of ι in a toroidal configuration: Although the field strength is inhomoge-

neous, i.e. decreasing from the inside towards the outside of the torus, particle drifts

compensate on average. Consider an electron in figure 1.2, starting exactly on the

surface at the equatorial plane outside the torus. If it has a positive v‖ ≫ |v∇B| it

will follow the field line in toroidal and poloidal direction, meanwhile doing small

gyrations. The drift will point in negative z-direction, that is into the volume of the

surface, as long as the electron is above the equatorial plane. When the electron

eventually crosses the equatorial plane, entering the lower half space, the downward

drift now points out of the volume. Apart from a small intermediate drift excursion,

the original location on the surface is restored after one poloidal turn.

To summarise, particle trajectories will closely follow the magnetic surface, they

are confined to it. Since the argumentation holds for electrons and protons indepen-

dently, the plasma volume will not be vertically polarised by the charge dependent

grad-B drift. This is of particular importance because otherwise an E×B drift

would deteriorate the confinement:

vE×B =
1

B2
E × B . (1.5)

6



1.1 Magnetic confinement of plasma

Up to now only one surface was shown, but there is an arbitrary number of

them. Geometrically they are all nested around the torus axis which is the core

filament inside any surface’s volume. It may appear that the toroidal configuration is

axisymmetric, i.e. cross sections are invariant with respect to the toroidal direction.

Indeed this is the case for plasma confining machines of the tokamak type (see

Wesson [1997]), but the concept of nested magnetic surfaces can be generalised. In

the next section the non-axisymmetric stellarator is introduced.

1.1.3 Stellarators

A stellarator [Spitzer 1958] establishes a toroidal magnetic configuration that devel-

ops from an external coil system only, including rotational transform of field lines.

The stellarator can’t be axisymmetric. To understand this it is sufficient to integrate

the curl of the magnetic field vector over the area SX of a cross section. According

to the curl theorem this is equal to the line integral along the closed circumference

∂SX . If there is a steady poloidal component of the magnetic field vector, then this

integral should yield a non-zero value.

∫∫

SX

rot B · dSX =

∮

∂SX

B · dx

Due to Maxwell’s law, however, integrating the curl of the magnetic field in one

cross section is equal to the total current enclosed by the circumference plus the

displacement current. Since the latter are both zero in a stationary vacuum magnetic

field, an axisymmetric configuration with rotational transform is a contradiction.

rot B = µ0 j + µ0ǫ0 ·
∂E

∂t

Stellarators establish a rotational transform by a rather complex three dimen-

sional structure. For the Wendelstein 7-AS machine this structure is displayed:

Part of the coil system in figure 1.3 and the largest of the nested vacuum magnetic

surfaces in figure 1.4.

To reduce the complexity when discussing plasma quantities in the 3D stellarator

configuration, magnetic surfaces are labeled ψ . This label is a scalar function that

depends in a complicated way on the cartesian coordinates of the laboratory system,

but it can also be written as the function of only one parameter ψ(reff), where reff
is related to the small radius r of an equivalent axisymmetric configuration (like in

figure 1.2). Mathematically, magnetic surfaces are defined by

ψ = const and B · gradψ = 0 ,

and the constraint is, that a curve which outlines the perimeter of one cross section

is mapped into itself after one toroidal turn. In doing so, each point on the curve

must be traced following the lines of the magnetic field.

7



1.1 Magnetic confinement of plasma

Figure 1.3: Coil system and plasma of the Wendelstein 7 Advanced Stellarator (W7-AS).

Actually there is a vacuum vessel in between the coils and the plasma surface. The vessel

wraps the plasma closely and is omitted in this drawing.

Figure 1.4: Largest closed magnetic surface (LCMS) inside the vacuum vessel of W7-AS.

The radius of the ring is R0 ≈ 2m (actually R0 is the radius of the magnetic axis, i.e. the

core filament inside the volume). The average radius of a cross section is ∼0.2m.

In a stationary plasma state, it is generally a good approximation to regard the

magnetic surfaces ψ as isosurfaces for plasma potential, density and temperature

and all derived quantities. The reason is the following: One field line with non-

rational rotational transform will reach any region of the surface. Particles move

freely in direction parallel to the field line and the mean free path is usually so large,

that it corresponds to several toroidal and poloidal turns. Thus, one particle en-

counters only particles that are confined close to the very same surface. The plasma

thermalises within one surface and a representation of the plasma as a function of

reff alone is adequate.

8



1.1 Magnetic confinement of plasma

The remaining task is to find a good mapping between the magnetic surface

label and the cartesian coordinate system of the laboratory, where all the machine

components and the measuring systems are aligned. Normally, ψ is identified with

the toroidal flux

ψ =

∫∫

SX

B · dSX

where SX is the area of a cross section of the surface. Obviously ψ is linear in the

field strength, and the ratio ψ/B has the dimension of an area. If an equivalent

axisymmetric system is regarded, then the field strength varies according to

B =
R0 B0

R0 + r cos θ
.

In this formula x2 + y2 = R2
0 defines the core filament or the torus axis inside a

magnetic surface (see figure 1.2 for the definition of x and y). R0 is also called the

“major radius”, whereas B0 is the field strength on axis (r = 0). Evaluating the

toroidal flux yields

ψ(r) = 2πR0B0

(

R0 −
√

R2
0 − r2

)

≈ r2π B0 ,

provided that r ≪ R0. For a large aspect ratio R0/reff the right hand side is a good

approximation. Transferring this result to the W7-AS stellarator, which has got an

aspect ratio of roughly 10, it becomes clear that the flux surface coordinate reff can

be identified with the radius r from figure 1.2 that produces a circular cross section

of the same area. Since in the W7-AS the cross section is a function of the toroidal

angle Φ (it varies periodically), reff is simply defined via the arithmetic mean of the

areas at two particular toroidal positions:

r2
eff π = 1

2

(

SX(0) + SX(π
5
)
)

. (1.6)

The positions are chosen to be the center and the edge of one field period.

Although there is no simple symmetry, a stellarator may consist of several peri-

ods. There are five in the case of the W7-AS. Within each period there is a specific

“stellarator symmetry”: The cross sections of the period boundaries and the cross

section in the center of one period are up-down symmetric, i.e. relative to the equa-

torial plane. Within one period there is a “flap” symmetry between the two halves.

One half period can be produced from the other by a rotation around that radial

axis, which is defined as the intersection line of the equatorial plane and the cross

section in the period center. Applying this knowledge to W7-AS, one half period

covers the toroidal angle from 0 . . . π/5 . Since there are five periods and ten half

periods, respectively, the toroidal closure is satisfied.

A general introduction into stellarator geometry and appropriate coordinate sys-

tems can be found in the comprehensive review by Boozer [2004].
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1.2 Fusion and energy confinement

So far the feedback of the plasma to the magnetic configuration was neglected.

If the number of particles is increased, the picture of individual plasma particles

moving in a vacuum magnetic field becomes invalid. Plasma pressure p = n0 kBT

builds up and, consequently, the plasma has to be described by a fluid model [Wobig

1997]. Given the ratio β between p and the pressure of the magnetic field pB = B2/µ0

is not negligible any more, then the magnetic field configuration is actually changed

by the plasma. Typically this becomes important if β >∼ 0.01 .

In the design phase before the construction of a stellarator, there are degrees of

freedom for the magnetic geometry, which allows one to do an optimisation. Thus,

the negative impact of an increasing plasma pressure can be reduced. For instance,

magnetohydrodynamic (MHD) instabilities can be avoided [Nührenberg and Zille

1986], and it is possible to minimise the so-called Shafranov shift of the nested

flux surfaces. From the engineering point of view the technical feasibility of the

stellarator coil system is also an important point. Further optimisation criteria,

such as the confinement of high energetic α particles, must be addressed, if finally

the stellarator is intended to be used as a fusion reactor. The reviews of Wagner

[1997] and Wagner and Wobig [2005] provide more details.

In the line of stellarators that have been put into operation up to now, the

W7-AS plays an important role. It demonstrated the feasibility of modular coils

and successfully tested the optimisation concept. Additionally, in the most recent

experimental campaigns it has pioneered the island divertor as an exhaust concept

[Grigull et al. 2001; Wagner et al. 2005].

1.2 Fusion and energy confinement

One strong motivation to exploit the physics of magnetic confinement is the option

to utilise nuclear fusion reactions for the generation of energy. Such process with

the most lightweight hydrogen isotope involved proceeds on the sun for billions of

years. From today’s point of view probably this reaction is technically viable:

D + T → He + n + ∆E .

The hydrogen isotopes Deuterium and Tritium form a Helium nucleus. One neutron

and an amount ∆E ≈ 17.6 MeV of energy are released. Safety issues must be

addressed in such a technology [Raeder et al. 1995]. A significant reaction rate is

only achieved if the Deuterium and Tritium nuclei have an average kinetic energy

O(10 keV) [Schumacher 1993]. This corresponds to a D-T plasma thermalised at

roughly 8 · 107 K . To maintain such a hot plasma and reliably keep it away from

the environment, the toroidal magnetic confinement seems to be most promising.

While machines of the tokamak type (see [Wesson 1997]) are highly developed

and close to the goal of producing net fusion power, yet the stellarator is the only

machine type that is inherently capable of steady state operation. At the same

time, since in a stellarator there is no externally driven plasma current, there are no
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1.3 Understanding of the energy transport

disruptions. This is the reason, why such large and sophisticated machines like the

W7-AS are built and operated.

For the nuclear reactions to yield more energy than is necessary to set up the

hot plasma, a threshold has to be exceeded. Given the thermal energy of Deuterium

and Tritium corresponds to 13 keV, the threshold reads

n0 · τE >∼ 2 · 1020 m−3s , (1.7)

where n0 is the plasma particle density and τE the so-called energy confinement

time. This time constant characterises the quality of heat insulation inside a plasma

machine. Microscopically, τE is determined by the processes that transport the

thermal energy across the lines of the magnetic field, from the hot plasma center

(i.e. the axis) to the boundary. The magnitude of τE is determined experimentally

from the ratio of the stationary kinetic energy content (in total) and the absorbed

heating power. The higher τE , the higher will be the temperature inside a plasma

machine with fixed heating power and plasma density.

Since the heating power balances the losses in stationary operation and since the

loss is to some extent connected to the temperature gradient and thus to the scale

length between the hot plasma center and the cold boundary, the size of the machine

plays a decisive role. Extrapolating the confinement properties experimentally ob-

served at present-day machines, the ITER project has been initiated. ITER is large

enough to overcome the threshold (formula 1.7), e.g. see the ITER Physics Basis

Editors and ITER Physics Expert Groups Chairs and Co-Chairs [1999]. But there

is a second task: If the mechanisms that determine τE , i.e. the heat loss of a hot

plasma in a magnetic confinement, are identified correctly, then the extrapolation

becomes much more substantiated.

1.3 Understanding of the energy transport

Classical and neoclassical transport

Consider a diffusive approach to characterise the radial thermal conduction in the

toroidal magnetic confinement of the W7-AS. The heat flow vector q is proportional

to the temperature gradient and the constant of proportionality λ is expressed as

the product of density n and heat diffusivity χ .

q = −λ gradT = −n kB χ gradT (1.8)

Under the assumption that flux surfaces are isosurfaces for the temperature, there is

a temperature gradient only in the direction of −er , where r is the coordinate along

the minor radius as defined in figure 1.2. The temperature gradient is perpendicular

to the lines of the magnetic field.

A very simple method to model the heat diffusivity is to interpret it as the ratio

between stepsize squared and collision time. Since particles are forced to cyclotron

11



1.3 Understanding of the energy transport

motion, the stepsize is assumed to be the gyration radius rL . In the terminology

of magnetic confinement the corresponding result is called the classical diffusion co-

efficent. Applying equations (1.1) and (1.2) with root mean square perpendicular

velocity, and using the self collision time (appendix A.1.2), the classical heat diffu-

sivities for protons and electrons in a typical W7-AS plasma are (T̂ = 1 keV, n =

1019 m−3, B = 2.5 T, the temperature is supplied in eV → T̂ = kBT/e):

χp, class ≈ 1.4 · 10−3 m2 s−1 , χe, class ≈ 3 · 10−5 m2 s−1 .

This is in strong contrast to the experimental values, which are of the order 1 m2 s−1

[Stroth et al. 1995].

The next logical step to improve the model is to include the correct geometry.

It has already been pointed out that the field strength in a toroidal magnetic con-

finement is inhomogeneous, and that this leads to drift excursions of the particles

relative to the magnetic surface. Thus, given a particle encounters another particle

during such an excursion, and given this excursion is larger than the gyro radius,

then the stepsize and the diffusivity are strongly enhanced. A model that includes

all these effects is called neoclassical. Galeev and Sagdeev [1979] treat the theory in

detail, and they also pay some attention to the peculiarities of stellarator geometry.

Note that the simple diffusion laws for the flows of particles, energy and electric

current have to be modified. In a toroidal plasma the full transport matrix has the

form (adapted from [Stroth 2005]):









Γr

qr / kBT

n jΦ / σ‖B









= −n









D D12 D13

D21 χ D23

D31 D32 σ

















(

L−1
n − 3

2
L−1

T − qEr / kBT
)

L−1
T

q EΦ / kBT









(1.9)

Ln =
n

gradn · er

, LT =
T

gradT · er

where Γr and qr are the collisional radial fluxes of particles and energy, respectively,

j is the current density, σ‖ = η−1 (see appendix A.1.3) the electric conductivity in

direction of the magnetic field lines, E is the electric field and q the particle charge.

The subscripts Φ and r denote the toroidal and the radial direction, respectively.

Note that all matrix elements have the unit of a diffusion coefficient.

When applied to experimental results from the W7-AS, the neoclassical theory

was successful in the plasma core [Maaßberg et al. 1993; Brakel 1997]. Profiles

of electron and ion temperatures and of the electron density were measured. Heat

diffusivity was deduced from the heating power and its localisation, using the profiles

and observing the correct geometry. At the same time the heat diffusivity was

modelled with neoclassical theory, again based on the measured profiles. In figure

1.5 the results of both approaches are compared for a W7-AS plasma which was

heated with 800 kW microwave power. The deposition of the heating is determined

by the location of the electron cyclotron resonance. In this case at reff = 0 , that
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1.3 Understanding of the energy transport

Figure 1.5: Neoclassical theory and experimental W7-AS results [Brakel 1997]. Top

row are measured profiles of temperature and density together with their fit functions.

All x-axes are reff . Bottom row contains the comparison of Er and of χe between the

neoclassical prediction (plotted with small crosses, on the left additionally with a solid

line indicating a transition) and experimentally obtained values (points with error bars on

the left, dash dot line on the right).

is on axis (R0 ≈ 2 m, cf. figure 1.4). The magnetic surfaces do not intersect

any component inside the vessel until reff ≈ 0.18 m . Neoclassical theory predicts

χe within a factor of 2 for reff ≤ 0.12 m . Outside this radius, i.e. towards the

plasma boundary the prediction is by far too small compared to the measured heat

diffusivity.

A separate topic is the radial electric field Er . There is good agreement between

the predicted and the measured one. Er adjusts itself to balance ion and electron

particle fluxes, since the plasma inherently remains quasi-neutral. This so-called

ambipolarity is compatible with different theoretical solutions in different regions

and, therefore, both the “electron-root” and the “ion-root” are plotted in figure 1.5.

For stability reasons, the “ion-root” should be obtained by the plasma from its onset

at reff = 0.07 m , which is correctly predicted by the theory. More details can be

found in [Brakel 1997].

To conclude, neoclassical theory is a powerful tool for modelling transport in

the stellarator core. But the core is coupled to the boundary and in the boundary

there is a lack of understanding. The search for a mechanism that could explain the

transport in the boundary leads to the next section.
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1.3 Understanding of the energy transport

Turbulent transport in a plasma

Unlike interactions between individual particles, turbulence is a collective phenome-

non. It is discussed in the fluid picture, the plasma is regarded as a two component

liquid with density and temperature. Basic ingredients of the turbulence are: insta-

bility, nonlinearity and dissipation on a small scale compared to the machine size.

Altogether a stationary state evolves with dynamical generation and decay of a set

of substructures and an enhanced flow of energy.

There must be a source of energy to generate the turbulence. This is the inho-

mogeneity of state inside a plasma machine: In the very center (reff=0) the plasma

has a high thermal energy and at the boundary this energy approaches the compara-

tively low thermal energy of the environment. Thus the plasma is not in equilibrium

in a strict thermodynamical sense. The pressure gradient is the energy source that

feeds the turbulence.

Generally, the turbulence at the boundary of fusion devices is electrostatic: the

movement of turbulent structures is strongly dominated by electric field induced

drifts [Liewer 1985]. Magnetic turbulence is prevented by both the comparatively

low pressure and the high collision frequency at the plasma edge. The detailed

interrelation can be found in [Schröder 2003]. Throughout this work, the effect of

magnetic turbulence is neglected.

In the literature plasma edge turbulence is often regarded as “micro-turbulence”,

because the structures, which are frequently denoted as “vortices” or “curls” or

“eddies” extend only a few centimeters in poloidal direction. Additionally their

average lifetime is usually less than 0.1 ms . One should not forget, however, that

the condition of a quasi-neutral plasma holds even in the turbulence. In other words,

electron and ion charge density may differ only slightly and the sizes of the turbulent

structures are still large compared to the Debye length, which is the characteristic

scale for charge separation in a plasma. Subsequently, a picture of the turbulence

shall be sketched, discussing the basic ingredients.

1.3.1 The drift wave picture

Consider a local disturbance p̃ of the plasma pressure in a strong magnetic field.

The species to react first are the electrons. Being by far more mobile than the ions,

they will flow away in parallel direction as indicated in figure 1.6, leaving behind the

disturbance positively charged. In this new situation the lines of the electric field

should be discussed. At first sight the electric field extends in parallel direction,

too, connecting the positive charge and the electron excesses on both ends of the

perturbation. But this structure is usually highly elongated so that one has to bear

in mind the toroidal closure of the geometry and the rotational transform. If the

elongation is comparable to the toroidal circumference, then the electron excesses

are likely to be more close to the positive charge, but now separated in poloidal

direction, that is perpendicular to the magnetic field lines. The electric field is
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1.3 Understanding of the energy transport

Figure 1.6: An arbitrary initial pressure perturbation in a magnetised plasma and the

dynamic reaction of the electrons. The proportions are not accurate. Experimentally it is

known that such a structure extends at least several 10 m in parallel direction and only

some cm perpendicular.

Figure 1.7: Sector of a cross section in a toroidal magnetised plasma with radial pressure

gradient (slim arrows). There is a pressure perturbation (large circle) at one magnetic sur-

face. Since some electrons escaped, it is positively charged. Due to the toroidal geometry

with rotational transform, the electron excesses (ellipses) on both ends of the perturba-

tion come to lie close to the positive charge. The resulting poloidal electric fields generate

opposite E×B drifts (broad arrows) in the pressure gradient. Thus a new positive pres-

sure perturbation is created in direction of the electron diamagnetic drift and a negative

opposite.

consequently perpendicular with field lines starting from the positive charge and

spreading in both poloidal directions. This condition gives rise to opposite radial

E×B drift motions on the opposite poloidal boundaries of the initial disturbance.

Figure 1.7 illustrates the situation.
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1.3 Understanding of the energy transport

At this point one should remember the background plasma with a strong pressure

gradient. The opposite E×B drifts will shuffle high pressure plasma into the low

pressure region on one side of the perturbation and vice versa on the other (see

figure 1.7). Since the E×B drift is in good approximation ambipolar, a new pressure

disturbance is generated, slightly shifted in poloidal direction. Again the electrons

will react first at this new position and the whole thing starts over.

In this way the initial pressure perturbation propagates poloidally in direction of

the electron diamagnetic drift (therefore it is called a drift wave), that is the direction

of the vector cross product between electron pressure gradient and magnetic field

ve, dia =
1

e n0B2
grad pe × B . (1.10)

Due to the low frequency of drift waves, ion inertia and thereby polarisation currents

have to be taken into account

vpol =
m

Z e B2

d

dt
E(⊥) . (1.11)

Note that the total or advective derivative of the electric field is defined for each

vector component as the partial derivative plus the change by convection

d

dt
→
(

∂

∂t
+ v · grad

)

. (1.12)

The contribution of the polarisation current is proportional to the particle (ion)

mass m and the inverse charge number Z−1. During the initial state of a pressure

perturbation electrons flow off in parallel direction and the change of the electric

field has got its maximum, therefore an ion-dominated polarisation current exists

perpendicular to the lines of the magnetic field. Following the equation of continuity

in a quasi-neutral plasma the perpendicular ion current balances the parallel electron

current.

Up to now the picture of a localised pressure perturbation in a toroidal closure

with rotational transform has been used. This situation applies well to closed mag-

netic surfaces inside the plasma boundary of a fusion machine. The localisation

implies already the superposition of different Fourier modes. Generally, drift waves

exist in any magnetic configuration with a gradient of the plasma pressure perpendi-

cular to the lines of the magnetic field. Sources and sinks for the transport relevant

(via E×B convection) electric fields are poloidally adjacent half periods of the wave

structure. Thus the picture is portable into the scrape-off layer of a fusion plasma,

where closed magnetic surfaces do not exist any more. Magnetic field lines are in-

tersected by so called limiters there. Due to this boundary condition, the electrons

escaping from an initial perturbation flow onto the limiter and from there possibly

into the poloidally adjacent regions. This has been analysed by Endler [1994]. To

summarise, drift waves are characterised by parallel electron motion and perpendi-

cular ion motion. Background plasma is convected by radial E×B drift arising from

fluctuating poloidal electric fields.
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1.3 Understanding of the energy transport

1.3.2 Instability of the drift wave

Electrons that react to a density perturbation try to establish a local Boltzmann

equilibrium where their energy is modified by an electrostatic potential. The inter-

relationship between density and potential difference is

ne = n0 exp( e U / kBTe ) , (1.13)

where n0 is the electron density of the unperturbed background, Te is the electron

temperature, and U = 0 denotes a potential equal to that of the background plasma.

Consequently the electrostatic field can be deduced by E = − gradU . Electrons are

frequently called “adiabatic” if equation (1.13) is fulfilled anywhere. Assuming small

amplitudes a first order expansion of the exponential function can be used. Thereby

the electron density perturbation is a linear function of the potential difference

ñe = (ne − n0) ≈ e n0 U

kBTe
.

The fluctuating density ñe may be re-written in Fourier space as an isothermal

fluctuating electron pressure p̃e with wave number k and angular frequency ω . If

there is a propagation into positive y direction the phase factor is exp(iky − iωt) .

Now a small phase shift α between the fluctuation of the electric potential U(k, ω)

and p̃e should be allowed, so that the slightly non-adiabatic relation between pres-

sure and potential is in Fourier space:

U(k, ω) =
1

e n0

p̃e(k, ω) (1 + iα) . (1.14)

A positive phase shift α > 0 corresponds to a phase lag of the potential against

the density, i.e. in direction of the propagation U is delayed relative to p̃e . The

reason is obvious: Inertia and the collisional friction at the ions both prevent the

electrons from an instantaneous adjustment to the Boltzmann distribution, thus the

formation of the electric potential is retarded.

In order to eliminate U , the equation of continuity with v = vE×B for the

E×B convection is employed. Multiplying this equation with kBTe and observing

div vE×B = 0 (will be discussed in section 1.4.2), this reads

∂

∂t
p = −vE×B · grad p . (1.15)

If the pressure gradient is in negative x direction and the magnetic field in positive

z direction, then in Fourier space this is equal to

(γ − iω) pe(k, ω) = −ik | grad pe |
B

U(k, ω) (1.16)

since the fluctuating E×B velocity is − ikB−1U(k, ω) ex . Substituting U from

equation (1.14) it is easy to see that the modified wave factor exp(γt+ iky − iωt)
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1.3 Understanding of the energy transport

is necessary, therefore ∂/∂t has already been replaced by γ− iω in equation (1.16).

The connection between the growth rate γ of the pressure perturbation and the

phase shift α becomes

γ =
k | grad pe |
e n0B

α .

It is also possible to verify the phase velocity from this approach. Both absolute

value and direction of the electron diamagnetic drift (equation 1.10) are reproduced

exactly
ω

k
= |ve, dia| =

| grad pe |
e n0B

.

But it should be noted that a drift wave’s own propagation is usually not observ-

able at the boundary of a fusion experiment. Additional radial electric fields from

the intrinsic ambipolar particle fluxes (e.g. see lower left of figure 1.5) superpose and

cause the background plasma to be convected poloidally. Both propagation direction

and speed of the drift wave structures are determined by this background movement

and the observable drift wave frequencies are spoiled. What remains untouched is

the phase shift between the perturbations of pressure and potential. With α > 0 the

displacement of the pressure or density structure relative to the associated potential

is always in electron diamagnetic direction.

1.3.3 Nonlinear behaviour and mode coupling

The nonlinearity has already been written down on the right hand side of equation

(1.15) but it has been omitted in equation (1.16). Both U(k, ω) and pe(k, ω) are

represented in Fourier space. As long as the amplitude of the perturbation is small,

the background pressure gradient is nearly unaffected. With growing amplitude,

however, grad pe will get a mode structure similar to that of pe . In this case

the feedback on pe via the left hand side of equation (1.15) is a product of two

fluctuating quantities, which turns into a convolution in Fourier space. Thus the

term | grad pe | U(k, ω) on the right hand side of equation (1.16) must be re-written

g ∗ U =

∞
∫

−∞

g(κ)U(k − κ) dκ (1.17)

where g denotes grad pe and g(κ) its Fourier spectrum. For simplicity only the

transform in space is carried out.

It is intuitive to understand mode coupling by studying the properties of the

convolution. Given there is a power spectrum of U with a few coherent waves and a

spectrum of g (alias grad pe) with corresponding waves and an additional component

for the background at k = 0, as illustrated in figure 1.8. The value of the convolution

at value k is the integral U times g of a wavenumber shifted by k . That way satellite
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1.3 Understanding of the energy transport

Figure 1.8: Initial power spectra of fluctuating electrostatic potential and density gra-

dient, utilised to demonstrate the formation of a turbulent spectrum. Exemplarily, the

linear instability is modelled with two discrete modes. The gradient additionally has got

a mean value.

Figure 1.9: Convolution of the two spectra from figure 1.8 as a result from nonlinear

wave coupling. A satellite line (b) is generated.

lines are generated in the new spectrum, whenever there is an overlap between any

of the primary lines (see figure 1.9).

If the mode coupling is continued with ever new satellite lines, it is probable

that a broadband range of modes comes up. In a fully turbulent (i.e. nonlinear)

situation, generally none of the initial spectral lines can be identified any more. The

spectrum is finally limited by dissipation processes at high k .

1.3.4 Dissipation and the turbulent spectrum

A universal form of turbulence spectra was proposed by the Russian mathematician

Kolmogorov (see Frisch [1995]). These two basic assumptions are important to
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Figure 1.10: General form of the spectrum of kinetic energy in turbulence.

understand the properties of the kinetic energy wavenumber spectrum: First, there

is a limited range of unstable mode numbers k . Usually this applies to low k (large

structures). Second, at high k there is dissipation. All kinds of friction forces are

proportional to the velocity of a particle or a fluid element. Velocity is the time

derivative of the wave amplitude and thus clearly connected to ω and k respectively.

If the instability region and the dissipation region are separated in k , then there is

a so-called inertial range in between with a characteristic spectral decay proportional

to k−5/3 . At the limit k → 0 the spectral power must be limited due to the finite

system size. At high k the dissipation leads to an exponential decay much stronger

than in the inertial range. Qualitatively this spectrum is drawn in figure 1.10.

Now the general form of a turbulence spectrum should be compared with a fully

developed spectrum of drift waves in a magnetised plasma. First one should distin-

guish the different scales: On one hand there is the scale of the wave propagation

or wave drift. This is the perpendicular scale which is usually small. On the other

hand there is the scale in parallel direction which is large due to the high mobility

of the electrons. The first (perpendicular) scale is relevant for the radial transport,

since it determines the fluctuating poloidal electric fields. Therefore in the follow-

ing all energy spectra are interpreted as a function of k which should be identical

with the perpendicular wavenumber k⊥ . For convenience, the distinction between

the poloidal and the exact perpendicular projected (with respect to the lines of the

magnetic field) direction is often neglected. The approximation is tolerable if the

angle between the lines of the magnetic field and the toroidal direction is small.

Dissipation is taking place along the path of the electrons that is parallel to the

magnetic field lines. Reacting to the pressure perturbations, the electrons suffer from

friction. Their propagation speed or the amount of friction power, however, depends

on the dynamics of the wave and this again is dominated by the perpendicular

wavenumber k (see also chapter 4 of Scott [2000]). Altogether there is an appropriate

dissipation mechanism supporting the development of a spectrum similar to the one

in figure 1.10 at high k .

In the low k region drift wave dispersion indeed provides the scale where the

spectral power starts to degrade as shown right from the maximum in figure 1.10.
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But an isolated inertial range with a clear Kolmogorov like decay would require a

clear spectral separation from the dissipation regime. This is not always the case in

the boundary of a fusion plasma and therefore one should not be too surprised, if

the spectrum and particularly the spectral decay with k differs from the ideal one.

1.3.5 The dispersion scale

The dispersion of drift waves is obtained when the equation of continuity is written

in a more accurate way than (1.15) for the ions. In next order the polarisation drift

velocity (1.11) must be included, so that the equation reads

∂

∂t
ni = −vE×B · gradni − div(nivpol) .

It is sufficient to apply this extension to the example from section 1.3.2. Observing

n0 = Z ni the dispersion relation becomes

ω =
| grad pe |
e n0B

k

(

1 +
mikBTe

Z2e2B2
k2

)−1

= |ve, dia|
k

1 + ρs
2k2

. (1.18)

The dispersion scale ρs depends on the characteristic combination of ion mass and

electron temperature, since both ion polarisation current and the ability of electrons

to establish a Boltzmann distribution play a role.

ρs =

√
mi kBTe

Z eB
. (1.19)

Additionally, kρs = 1 is a rough measure to localise the maximum in the turbulent

spectrum, i.e. where the spectral power rolls over and starts to decay. This has

already been demonstated in the early numerical simulations of drift-wave turbulence

by Hasegawa and Wakatani [1983].

1.3.6 Brief history of theoretical modelling

Hasegawa and Mima [1978] derived equations to handle fluctuations in a magne-

tised plasma. They pointed out that there is nonlinear mode coupling due to the

convective derivation of ion polarisation drifts. Wakatani and Hasegawa [1984] nu-

merically solved model equations on a perpendicular 2D grid for tokamak plasma

relevant parameter values and found a saturated turbulent state. The qualitative

dependency of the energy spectrum on the wavenumber obtained by these authors

has been verified both by measurements and by later more detailed simulations. The

spectrum is characterised by a flat low wavenumber part, similar to white noise, a

rollover at the specific wavenumber k = ρs
−1 and a strong decay with increasing

wavenumber. Furthermore power spectra of both k perpendicular to the magnetic

field are similar. This means there is not only a turbulent mode structure in poloidal

but also in radial direction, i.e. parallel to the density gradient.
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When the location of the shoulder in the energy spectra was compared with

measurements, however, the experiments reported a decay that started well below

ρs
−1 . Including additional dissipation effects, i.e. electron dynamics with friction

in the dimension parallel to the magnetic field, Terry and Diamond [1984, 1985]

analytically showed, that the width of the kinetic energy spectrum is reduced and

that the decay should follow a k−17/6 power law for medium wavenumbers. Further

processes which transfer energy from short to long wavelengths and thus shrink

the spectral width have been worked out by Similon and Diamond [1984]. A good

overview of these early attempts is the review by Liewer [1985].

The details of the evolution till today shall be skipped here, but it was accom-

panied by significant progress in computer technology and thus allowed the efficient

implementation of more and more detailed models. In the recent years advanced nu-

merical studies have been carried out, including toroidal geometry in 3D. Exemplary

the fluid model by Scott [1997] and the gyro-kinetic treatment by Jenko [1998] are

mentioned. A detailed study in full stellarator geometry was done by Kendl et al.

[2003]. The latter also supply two important pieces of information: First, there is a

universal form in the turbulent energy spectra of both stellarator and more simple

tokamak configurations. The shoulder of spectral power is always located between

0.1 ρs
−1 and 0.2 ρs

−1. Second, the time averaged turbulent particle fluxes down the

density gradient display only marginal variation in parallel direction. This means

that a local measurement of the turbulent flow should be representative for the flux

tube and in this way for the magnetic surface.

1.4 Transport equations

There are several ways to deduce the equation for the energy transport. Very con-

cisely it is possible by utilising the first law of thermodynamics in differential nota-

tion
3

2
n kB

d

dt
T = − p div v − div q . (1.20)

As defined in equation (1.12) d/dt is the advective derivative. On the left hand side

is the change of thermal energy and on the right hand side the work released by the

pressure forces and the divergence of the heat flow q . The equation must be set

up for electrons and ions separately and the sum of both yields the total transport

of energy. Indeed an additional term H is lacking and will be introduced in the

following. This term refers to the existence of an external source or sink of energy.

Its origin is either a heating source HE , which was electron cyclotron resonance

heating (ECRH) in the experiments under investigation, or it is a sink connected to

a non-zero particle source. For example, if the latter stems from the ionisation of cold

neutral particles with source strength Sn , then there is need for the total ionisation

work Wion per neutral particle, and the resulting electrons and ions must be brought

to the thermal energy. Since ionisation is achieved by collisions predominantly and
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1.4 Transport equations

the complementary recombination process somewhere at the plasma edge is usually

radiative, Wion cannot be recovered. Altogether the H term to be inserted on the

right hand side of equation (1.20) reads

H = HE +Hion +Hn = HE − WionSn − kB(Ti + ZTe)Sn .

Energy transfers between electrons and ions and vice versa need not be evaluated

since they will cancel in the sum equation. General plasma radiation is also not

accounted for and must be subtracted from the heating term HE. This is a valid

approximation because the plasma is transparent for electromagnetic radiation over

a wide range of wavelengths (except for the narrow-band electron and ion cyclotron

resonances of course).

In parallel to the energy there is the equation of continuity for the particles:

∂

∂t
n + div(nv) = Sn , (1.21)

where Sn is the particle source due to the impact ionisation of neutrals. Equation

(1.21), too, must be evaluated for both electrons and ions. Source strengths are

inherently balanced according to Se, n = ZSi, n .

If the formula (1.21) is multiplied with the thermal energy kBTe and kBTi ,

respectively, then both may be added to the equation of the total energy transport.

Now the partial derivatives on the left hand side combine to the partial derivative of

the thermal energy density and both v · grad terms from the advective derivatives

combine with div(nv) to a single divergence. On the right hand side Hn cancels

the introduced products of particle source times thermal energy. Observing ne =

n0 = Zni the total transport of energy becomes

∂

∂t

(

3

2
n0 kB

(

Te +
Ti

Z

))

+ div

(

3

2
n0 kB

(

Te +
Ti

Z

)

v

)

+ div(q)

= −(pi + pe) div v + HE − Wion Sn . (1.22)

This formula can be found in the comprehensive review by Braginskii [1965]. In

principle, the electron and ion pressures pe and pi in the first term on the right hand

side of equation (1.22) can be expressed by density and the temperatures. When

only the radial transport by E×B drifts is evaluated, however, the multiplication

factor div v(⊥) is nearly zero (to be explained in section 1.4.2) and thus the whole

term can be neglected.

The advantages of the formulation (1.22) become clear when the equation is

averaged in time and integrated over the plasma volume. In a stationary situation

the partial derivative on the left hand side will vanish and the divergence can be

transformed according to the divergence theorem. On the right hand side the volume

integral of the external heating HE is just the readily available total power that is

absorbed by the plasma.
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1.4 Transport equations

An alternative way to derive the formula (1.22) is to start with the Boltzmann

transport or kinetic equation (e.g. see Golant et al. [1980]) for the velocity dis-

tribution. Assuming a Maxwellian with superimposed drift v and integrating over

velocity space yields the particle continuity, the momentum conservation and the

energy equation by evaluating successive velocity moments of the distribution func-

tion. Finally electric field and some inertia terms are eliminated from the v2 = v ·v
moment by making use of the lower order moments. The conduction q is only

achieved if the actual velocity distribution deviates from a Maxwellian. The source

and sink terms Sn and H are to model the right hand side collision term in the

Boltzmann equation. It turns out that equation (1.22) is a good approximation to

the full treatment, at least as long as v2 is small compared to the thermal velo-

city (1.2). If v is dominated by the turbulent E×B velocity then this condition is

fulfilled for the typical plasma conditions found in toroidal magnetic confinement

devices.

1.4.1 The role of temperature fluctuations

It is customary to denote the product nv as the particle flux Γ . The continuity

equation (1.21) therefore connects a change of density with the divergence of the

particle flux and the particle source. In an analogous manner the energy flux from

the first divergence term of equation (1.22) is referred to as Q and consists of the

thermal energy times the particle flux

Q =
3

2
kB

(

Te +
Ti

Z

)

Γ . (1.23)

This way energy is transported together with particles and Q is called the convective

energy flux. The heat flux q is complementary: It is an energy flux with Γq = 0 at

the same time. Thus q is termed conductive.

Since equation (1.22) is to be applied to a strongly magnetised and turbulent

plasma, the dynamic evolution of the quantities n, T and v shall be examined. Most

notably the radial direction, i.e. the direction perpendicular to the magnetic field

lines and antiparallel to the plasma pressure, is of interest in the transport analysis

of a magnetic confinement. Given the plasma is quiescent and collisionless, density

and temperature are constant on magnetic surfaces and shall be written n̄ and T̄ .

The Lorentz force inhibits any perpendicular exchange, consequently both radial

velocity and radial heat flux are zero on average,

< v⊥ >tS = lim
tS→∞

1

2tS

∫ tS

−tS

v⊥ dt = v̄ = 0 , (1.24)

< q⊥ >tS = 0 .

Now the turbulence comes into play: Following the drift wave picture as it was

introduced in section 1.3.1, the only transport mechanism with a radial component
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1.4 Transport equations

is ambipolar E×B convection, so that v · er = ṽE×B · er = ṽr .

The temporal average of this radial velocity vanishes, because the generating electric

field is a fluctuation. Radial convection in a background gradient of density and

temperature immediately leads to fluctuations of n and T as well:

n = n̄ + ñ , with < n >tS = n̄ ,

T = T̄ + T̃ , with < T >tS = T̄ .

The averaged products of ṽr with n or T can yield non-zero values, since these

three quantities not necessarily fluctuate in phase. An example for a phase-shifting

process has already been presented in the context of drift wave instability (section

1.3.2). Hence the averaged turbulent radial fluxes of particles and energy are:

Γ̄r = < nṽr >tS = < ñṽr >tS (1.25)

Q̄r =
3

2
kB < nT ṽr >tS =

3

2
kB

(

T̄ < ñṽr >tS + < T̃ (n̄+ ñ) ṽr >tS

)

=
3

2
kBT̄ Γ̄r +

3

2
n̄ kB < T̃ ∗ṽr >tS , (1.26)

where T̃ ∗ =
(

1 +
ñ

n̄

)

T̃ .

The turbulent energy flux Q̄r is split into a part following the particle flux and a

second part proportional to the quantity T̃ ∗, which is proportional to the fluctu-

ations of temperature. Note, however, that T̃ ∗ is not a true fluctuation, since its

time average possibly contains a non-zero cross-term between the density and the

temperature fluctuation. The physical meaning of T̃ ∗ is, that it describes pressure

fluctuations which are not caused by density fluctuations

p̃ = T̄ ñ + n̄ T̃ ∗ .

This formalism has also been used by Liewer et al. [1986].

If the terms convective and conductive are strictly reinterpreted as the parts of

the energy flux connected and not connected, respectively, with a particle flux, then

it is self-evident to redefine them in the turbulence:

Γ∗ = 〈 ñ0 ṽE×B 〉tS (1.27)

Q∗ =
3

2
kB

(

T̄e + Z−1T̄i

)

Γ∗ (1.28)

q∗ =
3

2
kBn̄0 〈

(

T̃e
∗

+ Z−1T̃i
∗)

ṽE×B 〉tS (1.29)

where T̃e,i
∗

=
(

1 +
ñ0

n̄0

)

T̃e,i and n0 = ne = Zni , < ñ0 >tS = 0 .

This formulation is also favoured by Ross [1992].
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1.4 Transport equations

1.4.2 Flux measurement at the plasma edge

In this section the continuity equation for the energy (1.22) ought to be refined in

order to make it applicable to the interpretation of measurement results. A few

words should be spent on div ṽE×B in advance. The divergence of the turbulent

drift velocity scales with the inverse major radius of the plasma R−1
0 (see chapter

14 in Scott [2000]), i.e. the curvature of magnetic field lines. There is indeed an

alternative formulation of the continuity equation for the energy with a factor 5/2 in

the first divergence term and v·grad p replacing −p div v . The grad p term, however,

scales with the inverse of the small plasma radius. Observing that a stellarator has

a large aspect ratio, the correction by v · grad p to the 5/2 formulation would be

much larger than the correction by p div v in the used form (1.22). The divergence

of the turbulent radial velocity is neglected in good approximation. This point was

not discussed in the early derivation by Liewer et al. [1986] and it has been the

object of some dispute [Düchs 1989; Ross 1989].

Now the remaining terms should be averaged in time, so that the partial deriva-

tive ∂/∂t vanishes in a stationary plasma. Finally the equation is integrated over

the toroidal volume from the center until the radial position reff . For this the plasma

will be divided into three different zones:

• Core. The plasma heating power is localised here. There are no parti-

cle sources and the exchange of particles is neglected (v ∼ 0). Transport is

neoclassic.

• Edge. Transport in this region is dominated by E×B turbulence. At the

same time recycling neutrals are ionised here, thus there is a net (plasma)

particle source Sn . Since the magnetic surfaces are intact, only the radial

transport has to be taken into account, whereupon div ṽE×B = 0 . The energy

sink is connected with the ionisation of neutrals −Wion Sn .

• Scrape-Off Layer (SOL). Radial transport is again caused by turbulent

E×B convection. The particle source Sn is diminished and replaced by an

effective source Seff which includes the plasma loss to the limiters in parallel

direction. A similar loss term Heff is applied to the energy equation, where

possibly non-zero contributions div q‖ and div v‖ occur.

The three zones are drawn schematically in figure 1.11. Altogether it can be con-

cluded that a measurement of the turbulent flux profile allows one to determine the

effective source profiles.

div( Γ∗
r er ) = Seff = Sn −

{

0 , edge

div Γ‖ , SOL

div( (Q∗
r + q∗r) er ) = Heff = HE − Wion Sn −

−
{

0 , edge

div(Q‖ + q‖) − (pi + pe) div v‖ , SOL
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1.4 Transport equations

Figure 1.11: Modelled arrangement of zones with different transport behaviour, visu-

alised in the cross section of a magnetically confined plasma. Turbulence dominates the

radial transport in both the edge and the scrape-off layer (SOL). The particle and energy

source terms are modified in the SOL due to parallel losses.

The divergence must be written in an appropriate coordinate system div ≈ 1
r
+ ∂

∂r
.

Higher order corrections to this formula scale with the inverse of the major radius and

are neglected with respect to the large aspect ratio of a stellarator. The divergence

is the one of a cylindrical coordinate system.

If the measurement is located at the separatrix (reff =rsep), then the total particle

rate inside closed magnetic surfaces is obtained from the divergence theorem

∫∫∫

r < rsep

Sn dV = A(rsep) Γ∗
r(rsep) , (1.30)

where A(reff) is the area of the magnetic surface with effective radius reff . For the

energy this is similar:

∫∫∫

r < rsep

(HE − WionSn) dV = A(rsep) (Q∗
r(rsep) + q∗r (rsep)) . (1.31)

The volume integral over HE on the left hand side is just the total heating power and

the second addend is evaluated using (1.30). Finally, by comparing the measured flux

through the separatrix to the plasma heating power in section 5.3 the question shall

be answered, whether electrostatic E×B turbulence is able to explain the energy

loss of a magnetised plasma.
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Chapter 2

Experimental approach to

turbulent transport

This chapter is titled an experimental approach although it contains also the theory

that is needed to acquire and cope with fluctuation data. First some mathematical

basics are introduced, then it is attempted to do a forecast of the expected fluctuation

properties and finally the measuring method is selected.

2.1 Characterisation of turbulent fluctuations

Any statement about a quantity that undergoes turbulent fluctuations can barely be

deduced from a single measurement, instead one must take into account spatial and

temporal evolutions. Experimentally this is resolved by sampling, i.e. the fluctuating

quantity A must be repeatedly measured at several locations. One should keep in

mind, that the measurement result is provided on a discrete grid and that this is

only an image of the underlying continuum.

A(t, y) → Ah i , h index of time sample,

i channel index

t = h · dt
y = i · dy

In this formulation the grid is regular, if dt and dy are constant and if h and i

are integer numbers. The resolution that is defined by dt and dy must be fine

enough with respect to the temporal and spatial scales of the variations in A .

It is also essential to use a reasonable number of grid points, so that statistically

significant amounts of data are available. The data can be reduced afterwards by

the application of appropriate statistical methods, which are to be introduced in the

following sections.
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2.1 Characterisation of turbulent fluctuations

2.1.1 Probability density functions and derived quantities

If a fluctuating quantity is sampled, then the obtained values will differ for each

measurement and the range of values can be described by a distribution function.

The cumulative distribution function (CDF), also called the probability distribution

function, returns for each value the probability that a single measurement will yield

this particular or a lower value. If a limited number of samples is available, then an

approximation [Theimer 1997] of the CDF is defined by

F (A) =
1

M N

M
∑

h=1

N
∑

i=1

H(A−Ah i ) ,

where H(x)

{

0 , if x < 0

1 , elsewhere
(Heaviside unit step) .

Starting from the CDF, the probability density function 1 (PDF) f is calculated by

taking the first derivative

f(A) =
d

dA
F (A) , where

∫ ∞

−∞
f(A) dA = 1 (normalisation condition) .

Practically F and f are evaluated on a discrete grid in A, so that finite difference

calculations can be applied. Often f is displayed in a histogram style. There are

commercial packages available for the computer, e.g. IDL, developed by RSI [1997].

The expectation value <A> is the mean value and can be deduced from f :

<A>=

∫ ∞

−∞
Af(A) dA ≈ 1

M

M
∑

h=1

Ah . (2.1)

Here the spatial index i has been left out for simplicity. Note that the discrete

approximation on the right hand side of equation (2.1), the so-called sample mean,

usually converges rapidly towards < A > with increasing M . A complementary

formulation has also been used in the introduction, equation (1.24), section 1.4.1.

Once the mean value is determined, successive moments of the PDF can be

evaluated. The expectation value of the rth moment is

mr(A) =

∫ ∞

−∞
(A− <A> )r f(A) dA , r ≥ 2 .

Of particular interest is the variance m2 . When using measurements on a discrete

and finite grid, an unbiased estimate for m2 is only available via

m2(A) ≈ 1

M − 1

M
∑

h=1

(A− <A> )2 . (2.2)

The form with M instead of M − 1 in the denominator is called sample variance.

1 sometimes simply called the probability or density function
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2.1 Characterisation of turbulent fluctuations

A PDF supplies information about the spread of a fluctuating quantity but it cannot

provide the relevant scales, since the chronology of the samples is not accounted for

in the calculation. This gap can be bridged by the correlation function.

2.1.2 The correlation function

The correlation as a function of the lag is the covariance of two quantities, where the

grid of the second one is shifted by the value of the lag. A discrete approximation

to the correlation XAB between two quantities A and B is in the time domain

XAB(∆t) =
1

M

M
∑

h=1

(Ah − <A> )(Bh+∆t/dt − <B> ) ,

where ∆t/dt := k must be an integer number. Thus XAB is available on a discrete

grid with spacing dt . The subtle distinction between unbiased and biased estimate

has been dropped, which is a reasonable approximation whenever M is a large

number. A more detailed background can be found in [Theimer 1997].

It is crucial that the sequence of individual samples is retained within each quan-

tity. Note also that a convention has to be made about the treatment of the interval

edges: For k 6= 0 the index range of B must not be exceeded. One possibility is

to continuously shrink the sample range (1 . . .M) with increasing |k| until all in-

dices are within the available interval. Another possibility is to assume periodicity

and to refill the overtraversed indices sequentially from the opposite end of the in-

terval. This could speed up the computing time, because FFT 2 algorithms can

be employed. The method is only a good approximation, however, if the correla-

tion scales, i.e. the absolute value of ∆t where the correlation value has dropped

significantly, is small compared to the interval length M · dt .

Now the correlation is to be extended into the spatial dimension. In various

applications there are only a few spatial grid points, which are frequently called

channels. Given a correlation length of the same order as the baseline that is spanned

by the channels, the periodic continuation should be avoided. In the temporal

dimension, however, the correlation time is easily exceeded by taking a large number

of samples, so that the technique to use a temporal periodic continuation B∗ of the

signal B is a reasonable approximation. Hence, the spatio-temporal correlation

function becomes

XAB(∆t,∆y) → XAB, k j

=
1

N − |j|

min(N, N−j)
∑

i= max(1, 1−j)

1

M

M
∑

h=1

(Ah i − <A> )(B∗
(h+k) (i+j) − <B> )

∆t = k · dt , ∆y = j · dy , where j ∈ {(−N + 1) . . . (N − 1)} . (2.3)

2 Fast Fourier Transform
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2.1 Characterisation of turbulent fluctuations

The first sum in equation (2.3), i.e. the sum over i, averages channel pairs with equal

distance |j|. This procedure is justified, if the value of the correlation depends only

on relative distances in space, in other words the region under investigation must

be homogeneous. If in the measurement of plasma turbulence the driving mecha-

nisms, i.e. the background gradients of density and temperature, are homogeneous

along the probe array, and if the tips are carefully aligned within one magnetic sur-

face, then this is a valid assumption. Averaging equivalent channel pairs effectively

decreases noise.

Normalisation of the autocorrelation

The correlation function has been introduced using two different quantities. If both

are identical, i.e. B = A then XAA(∆t, 0) becomes a scaled autocorrelation function.

At the point where the time lag is zero, the correlation value XAA(0, 0) is equal to

the sample variance. This is easily demonstrated by comparing equations (2.2) and

(2.3), where for large M the distinction between M − 1 and M is neglected.

It is common to define the autocorrelation as XAA, k 0 normalised to the sample

variance. In order to achieve this, any element is divided by XAA, 0 0 ≈ m2(A). From

this it follows that autocorrelation functions have got a central maximum with unity

value. Towards large |∆t| the envelope usually decays to zero. In the intermediate

region negative values are possible, but they cannot go below −1 .

One concluding remark about the visualisation of two-dimensional correlation func-

tions: Throughout this work, contour plots are used. This technique is exemplified

in appendix B.2.

2.1.3 Spectral analysis

In data analysis there are properties which can be investigated very conveniently in

the spectral domain. The comparison between experimentally obtained and model-

led fluctuation data, for instance, is preferably done in the wavenumber and fre-

quency space. Since the correlation function has already been discussed, an impor-

tant theorem should be introduced: The Cross-Correlation theorem and its special

case for the autocorrelation, the so-called Wiener-Khinchin theorem. According to

the former, the cross spectrum of two quantities A and B is equal to the Fourier

transform of the cross-correlation [Weisstein 2005a]

CAB(f, k) = F̄ [A(t, y)] F [B(t, y)] = F [XAB(∆t,∆y) ]

=

∞
∫∫

−∞

XAB(∆t,∆y) e−i (k∆y−2π f∆t) d(∆y) d(∆t) . (2.4)
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2.1 Characterisation of turbulent fluctuations

Note that the spectrum F of a real signal is complex and hermitian :

F(−f,−k) = F̄(f, k) ,

where F̄ is the complex conjugate. The backward transform is simply

XAB(∆t,∆y) =

∞
∫∫

−∞

CAB(f, k) e i (k∆y−2πf∆t) dk

2π
df . (2.5)

The transformation (2.4), however, can only be approximated whenever it is applied

to experimental data. Neither the infinite area in ∆t and ∆y , nor the continuum

are accessible. Instead, fluctuating quantities are sampled and their time and space

traces are truncated. After calculating XAB with the help of equation (2.3), the

discrete Fourier transform (see appendix A.2.2) can take over the transformation.

But one must keep in mind two restrictions: aliasing and spectral leakage.

2.1.3.1 Insufficient sampling - aliasing

Data that contain fluctuations within a given bandwidth from 0 to fmax and kmax

respectively, must be sampled at least with the Nyquist rates. In terms of grid

spacing, this condition reads

dt ≤ 1

2fmax
, dy ≤ π

kmax
.

If there is spectral power above fmax or kmax , then it will be mapped into the lower

frequency (wavenumber) branch by the discrete transform. This effect is called

aliasing. Existing power at low frequencies could not be distinguished thereof.

Aliasing must be suppressed before the acquisition. Since spectra of turbulent

fluctuations usually decay towards high frequencies and wavenumbers, this can be

achieved by refining the grid resolution. During data analysis one has a slight control

of the success, if a monotonic and in the majority of cases even exponential spectral

decay can be veryfied.

2.1.3.2 Truncation - spectral leakage

In a mathematical sense, truncation is corresponding to a multiplication of the

infinite series with a rectangular window function. In Fourier space this is equivalent

to the convolution of the true spectrum with the transform of the window function.

Since the transform of any finite window function possesses so-called lobes on both

sides of a central maximum, the spectral power of a truncated series, evaluated at

a given frequency, will be composed from a broad spectral range. High power at

low frequencies may leak through the lobes of the window’s transform into distant

spectral regions.
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2.1 Characterisation of turbulent fluctuations

Truncation cannot be avoided, but the window function can be optimised in order

to reduce the side-lobe level and thus minimise the spectral leakage. Generally a

multiplication with the Hanning window wH is a good choice [Brigham 1988]. In

two dimensions the function reads

wH(∆t,∆y) =
1

2
+

1

2
cos

(

π

√

( ∆t

∆tH

)2

+
( ∆y

∆yH

)2
)

, (2.6)

if
(

∆t
∆tH

)2
+
(

∆y
∆yH

)2 ≤ 1 , elsewhere wH(∆t,∆y) = 0 .

Note that using the Hanning window in combination with the correlation function is

slightly different from the standard case, where wH is applied to a series of samples.

The correlation contains an amplitude product, therefore less power is attenuated by

the window function. Only long range correlations are damped, that could otherwise

generate power at high frequencies whenever the baseline in either direction of the

∆t − ∆y domain is not an integer multiple of the correlation period. This can

be understood by the property of the discrete Fourier transform to generate the

spectrum of a dataset’s periodic continuation.

Convenient widths for the window function ∆tH and ∆yH can be selected follow-

ing these guidelines: If there is only a small number of channels N , then the largest

available extent is to be used in spatial direction. Fine structures or steep slopes in

the spectrum may nevertheless be smeared out, but the significance of these effects

can only be estimated individually. Often it is worthwhile to test the resolvableness

by a numerical sampling of a modelled and well-defined spectrum with N spatial

grid points. In the temporal domain, where there is often an excess of samples

available, a reasonable resolution of the order of several 100 bins should be chosen.

Cast into formulas, the guidelines are

∆tH ≈ 100 · dt , ∆yH = N · dy .

Normally the temporal correlation can be evaluated with some M ∼ 10000 samples.

Hence, the application of a smaller Hanning window to the correlation function

has actually the effect of smoothing the frequency spectrum: The real spectrum

is folded with a broadened spectrum of the window function. Of course there are

applications, where such procedure must be avoided, because fine structures of the

spectrum would be smeared out, but in the investigation of turbulence with its

inherently broad spectra, smoothing is rather an advantage for the visualisation.

2.1.3.3 Cross spectrum and the cross phase

The cross spectrum is obtained by transforming the cross-correlation XAB, which has

been shown in equation (2.4). There is also the valid picture to regard any transform

F as a superposition of waves, see equations (2.4) and (2.5). Consequently, the

complex spectrum contains amplitude and phase information. While for individual
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signals the phases at different frequencies or wavenumbers depend on the absolute

phase of the point, where the measurement started, this is different for the cross

spectrum: The operation F̄ [A]F [B] introduces for any frequency and wavenumber

the difference of the absolute phases and the product of the amplitudes. The phase

difference is called cross phase. If the cross spectrum is smoothed by a windowing

technique as described in section 2.1.3.2, then the power will cancel out in spectral

regions with random distributed phase differences and it will accumulate where the

phase difference is stable.

To summarise, the cross spectrum between two quantities A and B can supply

twofold information: First the spectral localisation of coherent power and second

the spectrum of phase shift.

2.2 Experimental scales and resolution

Fluctuations have been measured in various plasma devices. In order to predict

properties like the bandwidth in frequency and wavenumber space, one may review

the measurements that have been carried out in similar machines. This has been

done by Liewer [1985]:

• At the plasma edge, most of the spectral energy is in the region k⊥ρs≤ 0.15,

which has been verified in the tokamaks Alcator A, PRETEXT, Caltech and

TEXT. The symbol ρs denotes the dispersion scale and has been defined in

equation (1.19).

• With respect to the localisation of fluctuation power in the frequency domain,

there is the range 10 kHz-1 MHz in the Caltech tokamak and the range 10 kHz-

500 kHz in the PRETEXT tokamak, where in both cases the power dominates

in the region between 10 kHz and 50 kHz.

Liewers conclusions could be confirmed in the W7-AS by separate measurements of

the fluctuations of floating potential [Bleuel et al. 2002], density [Bruchhausen 2002;

Holzhauer et al. 1996] and electron temperature [Bäumel 2002; Sattler et al. 1994].

With W7-AS edge electron temperatures of around 30 eV, a main magnetic field

strength around 2.5 T, and hydrogen ions, the dispersion scale is ρs = 2.2 · 10−4 m.

Hence, the wavenumber perpendicular to the magnetic field k⊥ at the estimated

limit and the maximum grid size for adequate sampling are

kmax = 6.7 cm−1 , dymax = 4.7 mm .

Bandwidth in frequency and corresponding time grid at the Nyquist limit are

fmax = 1 MHz , dtmax = 0.5µs .

If absolute fluctuation amplitudes must be determined, only a few measuring sys-

tems are available. For instance beam emission spectroscopy [McCormick and AS-

DEX Team 1985; Zoletnik et al. 1998] for density fluctuations and Heavy Ion Beam
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2.2 Experimental scales and resolution

Probes [Hallock et al. 1987] for density and potential fluctuations. A simultane-

ous measurement of potential, density and temperature in a magnetically confined

plasma with the required resolution dt and dy, however, is yet only possible by

Langmuir probes. Consequently, they are the measuring system that will be applied

in the following experimental investigation.

The theory of Langmuir probes, which are also called electric probes, in plasmas

is complex and will be outlined in the following sections. The main point concerning

resolution should be anticipated: Spatial resolution is basically determined by the

probe’s extent. That could easily be made small enough to meet the requirement: a

tip diameter of 0.9 mm is common. In order to measure wavenumbers perpendicular

to the magnetic field, an aligned 15 tip array with tip spacing dy = 2 mm is utilised.

For the temporal resolution the argumentation is not so obvious. Actually, one

electric characteristic is necessary in order to acquire one set of plasma quantities

including density, electron temperature and electric potential. One electric charac-

teristic can be provided by the current response to one sweep of the voltage. Since

any period of a harmonic voltage contains two sweeps (the up and the down sweep),

the rate of measured plasma quantities is two times the rate of the applied perio-

dic voltage. With a design frequency of fsweep = 1 MHz the time grid of plasma

quantities is dt = 0.5µs .

The sweeping technique in the context of fluctuation measurements has been

proposed earlier: Chen [1965] discussed the use of a pulsed voltage, which is applied

to a Langmuir probe. On the toroidal gas discharge ZETA, Robinson and Rusbridge

[1969] deduced plasma correlations from fluctuation levels that were measured with

varying probe bias. Recent fast swept Langmuir probe measurements on fusion

devices are reviewed in table 2.1.

measurement fsweep # comment

reported by [MHz] tips

Liewer et al. [1986] 0.25 1 Caltech tokamak

Balb́ın et al. [1992] 0.3 1 TJ-1 tokamak

Giannone et al. [1994] 1 3 W7-AS

Pfeiffer et al. [1998] 2 4 W7-AS, fsweep = 3 MHz tested

Boedo et al. [1999] 0.4 1 TEXTOR tokamak,

harmonics technique

Meier et al. [2001] 0.25 2 TEXT-U tokamak,

time domain triple-probe method

Table 2.1: Fast swept Langmuir probe measurements on fusion devices. Due to technical

improvements, the sweep frequency could gradually be increased. Note that the methods

of Boedo and Meier are related approaches.
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2.3 Local variations of the turbulence

2.3 Local variations of the turbulence

The Langmuir probe measurement will be local. Therefore a comment should be

made on the question, whether there are toroidal and poloidal variations of the

transport within one magnetic surface, or more general, whether the turbulence

itself depends on the actual magnetic geometry. The topic has been addressed by

several groups who work on the numerical simulation of plasma edge turbulence.

It is found, e.g. by [Scott 1997], that the radial transport depends strongly on

the level of the magnetic shear ŝ, which specifies the variation of the rotational

transform ι (equation 1.4) with the minor radius r :

ŝ = −r
ι 
∂ι 
∂r

. (2.7)

Since in a stellarator the inclination of magnetic field lines undergoes a local varia-

tion, ι must be replaced by the corresponding local quantity in equation (2.7) and

thus ŝ becomes also a local quantity. This effect was studied in detail by Kendl and

Scott [2003]. They find the transport being nearly independent of localised peak val-

ues in |ŝ| while keeping the averaged |ŝ| constant along the extent of the simulation

volume. Additionally, Kendl et al. [2003] studied the properties of the turbulence

in a flux tube of the W7-X stellarator magnetic configuration. Their results display

∼ 15% variation of the fluctuation amplitude along the line of the magnetic field

within one field period. It will be assumed that the local variations in the W7-AS

configuration are of the same order.

Until now the interchange instability, which is frequently called “ballooning” in

the context of toroidal magnetic confinement, has been omitted. This mechanism

would indeed introduce a strong inhomogeneity depending on the actual curvature

of the magnetic field lines and, additionally, it would leave a different fingerprint

in the cross phases of turbulent fluctuations. Lechte et al. [2002] did systematic

simulations for the accessible parameter range of the TJ-K torsatron. They state

that the signatures of ballooning, which they call MHD turbulence, are negligible

compared to those from drift-wave turbulence. One point of their parameter space,

namely ν̂ = 1, β̂ = 0.7 comes close to the properties of the W7-AS edge plasma.

But one has to keep in mind that the ratio between ρs and the machine size is large

in the TJ-K, which is not the case in W7-AS. The dimensionless parameters are

ν̂ =
Ln

tc, e

√

mi

kBTe

and β̂ =
µ0 n0 kB Te

B2

(

R0

ι Ln

)2

,

where Ln is the gradient length of the electron density and tc, e the electron self-

collision time. Using typical values from the boundary of the W7-AS, the parameters

are
Ln = 2 cm , tc, e = 0.8µs , ν̂ SOL ≈ 0.5 , β̂ SOL ≈ 0.5 .

This result is taken as an indication, that the ballooning is of minor importance

when discussing the W7-AS measurements.
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2.4 Measuring with Langmuir probes

If the detailed simulations by Zeiler et al. [1998] are considered then the picture

is slightly different. The authors predict the main transport mechanism to be con-

trolled by the parameters αd and ǫn , which deviate from the above ν̂ and β̂. In the

W7-AS SOL, the parameters are αd ≈ 0.4 and ǫn = 0.02 . According to Zeiler, this

is closer to the area of resistive ballooning than to drift-wave turbulence, which the

authors call “nonlinear instability”. So far, the simulations have been carried out in

the magnetic geometry of a tokamak only.

To summarise, poloidal and toroidal variations of plasma turbulence and trans-

port were found in numerical simulations. The most detailed results in stellarator

geometry [Kendl et al. 2003] predict small local deviations from the average of the

order 15% . One should keep in mind, however, that this conclusion applies for the

magnetic coordinates and does not affect the argumentation about flux expansion

and the transport measured in the laboratory system. The latter will be discussed

in section 3.1.1.

2.4 Measuring with Langmuir probes

Any Langmuir probe measurement is an invasive measurement. The probe must be

immersed into the plasma, which results in a perturbation of the local equilibrium.

Since plasma particles will recombine at the comparatively cold probe surface, the

Langmuir probe acts as a particle sink. In order to work out the effect of this distur-

bance and infer the unperturbed plasma quantities from the measured characteristic,

a detailed modelling must be exploited.

2.4.1 The plasma sheath

Macroscopically a plasma is quasi-neutral and positive and negative charges are

balanced. The electrostatic potential within the bulk is defined by Uplasma . If a

different electrostatic potential is introduced at some position, for instance with a

biased probe, then it is screened from the bulk by the plasma itself. The extent of

the screening, called the space charge or the sheath, is characterised by the Debye

length [Chen 1974], which is a function of plasma density n0 and temperature T

λD =

√

ǫ0 kBT

e2n0
. (2.8)

Given that the temperature in the W7-AS edge plasma is equivalent to 30 eV, and

the plasma electron density is n0 = 5 · 1018 m−3, then λD ≈ 18µm . Typical probe

dimensions are O(1 mm), clearly larger than λD. This situation is called thin sheath

[Chung et al. 1975].

The screening is obtained more precisely by solving the electrostatic Maxwell

equation. Electrons with density n0 and temperature Te and several ion species k

are distinguished. The ions have an independent ion temperature Ti , bulk densities
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2.4 Measuring with Langmuir probes

n0,k and charge numbers Zk . Due to quasi-neutrality, the total electron charge equals

the total ion charge in the unperturbed bulk.

τ =
Te

Ti

, n0 =
∑

k

Zk n0,k .

Since E = − gradU the Maxwell equation reads

ǫ0 div gradU = e (ne −
∑

Zknk) , (2.9)

where U= Uplasma is the zero-point of the potential scale. Assuming equilibrium

within one species, the electrostatic potential energy can be included in the distri-

bution function. This yields Maxwell-Boltzmann relations

ne = n0 exp( e U / kB Te ) , nk = n0,k exp(−eZk U / kB Ti ) .

If the potential energy is small compared to the kinetic energy, then it is sufficient

to replace the exponential functions by first order Taylor series expansions. The

approximated densities ne and nk are put into equation (2.9). Using quasi-neutrality

the zero order terms cancel each other out. The remaining second order differential

equation reveals the shielding length

λS =

√

ǫ0 kBTe

e2n0(1 + τZeff )
, with Zeff =

1

n0

∑

k

Z2
k n0,k . (2.10)

Any spherically symmetric electrostatic potential U0 at sphere radius r0 has got a

modified Coulomb potential of finite range in a plasma

U(r) = Uplasma + U0
r0
r

exp

(

− r

λS

)

where r is the distance from the center of the sphere.

2.4.2 Interconnection between sheath and bulk plasma

Depending on the application the spatial evolution of electrostatic potential and

charged particle densities near a sheath must be refined. Probes used for measuring

fluctuations in a magnetised plasma are usually biased negative with respect to the

bulk potential. Thus, the probe will repel electrons and collect ions. Close to the

probe a monotonic increment of the electric field strength is expected. It has been

shown by Bohm [1949] that a monotonic potential drop towards the probe is only

possible, if the ions enter the sheath with a minimum critical velocity vi, crit :

mi v
2
i, crit

2Z
= − e Ucrit ≥ 1

2
kB Te , (2.11)
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2.4 Measuring with Langmuir probes

where Ucrit(< 0) is the electrostatic potential difference between the so-called sheath

edge, which is the boundary between sheath and plasma, and the unperturbed

plasma potential. Equation (2.11) is called Bohm’s criterion. It was deduced for

monoenergetic ions and it can be extended to a mixture of different ion species

[Riemann 1991].

For an arbitrary distribution function fi of single charged ions, evaluated at the

sheath edge, a kinetic Bohm criterion was deduced by Harrison and Thompson [1959]

and extended for a multicomponent plasma by Riemann [1995]. The generalised

equations have this form:

∫ ∞

−∞
dvi

fi(vi)

v2
i

≤ mi

kB Z Te

,

which is adapted from [Bissel and Johnson 1989] for arbitrary Z. Obviously, the

precise shape of fi is important, since a singularity may appear for small vi . Note

also that vi is the component of the ion velocity parallel to the gradient of the

electrostatic potential.

There is this serious consequence of the Bohm criterion: The picture of a shielded

potential with a decay length λS, as defined in equation (2.10), is only valid when

the local potential is already below Ucrit :

Ucrit = Uplasma − g · kBTe

2 e
.

Here g is a correction factor of the order O(1) that is attributed to the precise shape

of the ion distribution function at the sheath edge. An additional interface, the

presheath, is necessary to connect the sheath edge and the bulk plasma. Its extent is

usually much larger than λS . The presheath will be discussed in section 2.4.4 after

taking into account the effects of a magnetic field.

2.4.3 Basic considerations in a magnetic field

The magnetic field forces the particles to move on helical trajectories, whereupon

the extent of the helix radius, i.e. the gyro radius, is the characteristic length scale.

In the boundary plasma of the W7-AS with an average temperature of 30 eV, an

unperturbed electron density of n0 = 5 ·1018 m−3 and a local magnetic field strength

of 2.3 T the average gyro radii of electrons and hydrogen ions can be calculated from

the equations (1.1) and (1.2) and amount to

r̄L, e = 7µm , r̄L, i = 0.3 mm .

There are three other scales which are important in probe theory: the mean free

path, the probe radius and the Debye length. The latter has already been introduced,

and for the W7-AS edge plasma with λD ≈ 18µm it is more than two times larger

than the electron gyro radius, however small compared to all other lengths.
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2.4 Measuring with Langmuir probes

Probe size and mean free path

The ratio of the mean free path to the probe dimension is called the Knudsen number.

If this number is large, then the electric probe is a so-called classical Langmuir probe

[Chung et al. 1975]. The radius of a cylindrical probe rp at the W7-AS and the mean

free path λmfp are

rp = 0.45 mm , λmfp = 2.9 m ,

where λmfp is the product of the average thermal velocity
√

8 kBT / πm and the

self-collision time tc from appendix A.1.2, both evaluated in the W7-AS edge plasma.

Note that λmfp is equal for electrons and ions, since the particle mass cancels out.

Altogether the W7-AS edge plasma can be regarded as collisionless.

Effective collection area

Before the modifications to the probe current by the magnetic field are evaluated, the

necessary assumptions are summarised: Keeping in mind that the probe is operated

with strong negative bias relative to the plasma potential, it is regarded as a perfect

absorber for all attracted ions, since they will recombine on the comparatively cold

probe surface. Due to the small Debye length with respect to the ion gyro radius,

the influence of the sheath on the ion current is neglected in good approximation.

In general, the electric current of a biased probe is reduced in a magnetic field.

Particles can move freely only parallel to the field lines, so that the collection area

is defined by the projection of the probe to the plane perpendicular to B . For

instance, the effective area for electrons (r̄L, e ≪ rp) of a cylindrical probe with its

axis perpendicular to the field, is

A⊥ = 4 rp lp ,

where 2 rp is the probe diameter, lp is the cylinder length and the additional factor

2 comes from the two opposite exposed sides.

If the average gyro radius is not small compared to the probe dimensions, as

it is the case for the ions, then the effective collection area is slightly modified.

For cylindrical probes the transition from large to small gyro radii and its effect

on the collection of charged particles were numerically studied by Laframboise and

Rubinstein [1976]. They calculate currents in the adiabatic limit r̄L ≪ Lϕ , where

Lϕ is the characteristic scale length of the probe potential. This adiabatic limit is

fulfilled for the electrons. For the ions in the presheath it is approximately valid

from the bulk up to the sheath edge. Results for the effective collection area A⊥ eff ,

normalised to the case without magnetic field, are shown in table 2.2. The ratio

decreases from 1 to 2/π with increasing ratio rp/r̄L , i.e. with increasing magnetic

field strength B . Towards small r̄L it converges to the function ( 1 + r̄L/rp ) · 2/π .
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rp / r̄L 0 0.1 0.2 0.5 1 2 5 10 ∞

A⊥ eff / 2π rp lp 1 0.978 0.958 0.914 0.863 0.801 0.727 0.692 2/π

Table 2.2: Current collection of a cylinder with radius rp and length lp (≫ rp) for various

magnetic field strengths ( r̄L ∼ B−1). The alignment of the cylinder axis is perpendicular

to the magnetic field vector. Taken from Laframboise and Rubinstein [1976].

2.4.4 Model for the presheath

In section 2.4.2 it was pointed out, that the presheath is necessary in order to

create a link between the sheath edge and the bulk plasma. Emmert et al. [1980]

proposed a kinetic model that assumes a particle source in the presheath and solved

the equations for the evolution of the plasma potential Φ analytically. This model

includes warm ions, neglects collisions and evaluates the dimension parallel toB only.

The characteristic of the potential is shown in figure 2.1. Of particular importance

is the fact, that regions of arbitrary length can be inserted into the characteristic at

any x, if they contain neither source nor a change of the potential. Thus the origin

(x = 0) represents the unperturbed bulk plasma.

The distribution function of the particle source is chosen in a way, that the ion

distribution function is Maxwellian for the case of zero gradient of the electrostatic

potential in the plasma. According to Bissel and Johnson [1989], Emmert’s ion

source is

S(x, vx) ∼ vx(x) exp

(

− vx(x)2

v2
th

)

, (2.12)

vx(x) =

√

2

m
(E‖ − ZeΦ(x)) ,

(2.13)

and replenishes those particles that are lost to the wall or probe. E‖ is the kinetic

energy of the ions parallel to the lines of the magnetic field, before they are born in

the presheath. Electrons are assumed to follow a Maxwell-Boltzmann distribution.

When applied to a probe measurement, these assumptions comply with a situation,

where the perpendicular transport, e.g. by turbulent fluctuations, balances the wall

loss by continuously refilling the velocity space.

The Bohm criterion is fulfilled in the Emmert model [Bissel 1987]. There is,

however, one pecularity in the choice of the source function: The faster ions are

refilled more rapidly. In the limit of high ion temperatures, i.e. τ = Te / Ti → 0 ,

this would lead to an ion outflow of twice the Maxwellian flow into one half space

[Lipschultz et al. 1986]. This case, however, is not considered to be a serious re-

striction for the probe data evaluation, since Te ∼ Ti in the boundary of W7-AS.
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Figure 2.1: Shape of the potential Φ in a plasma bounded by floating walls at x = ±L

according to the collisionless model by Emmert et al. [1980] with a uniform source along x.

Following Emmert, several equations characterise the physics in the presheath.

Firstly, the balance of ion and electron current for a floating wall or probe,

Z

∫

x

dx

∫

vx

dvx S(x, vx) =
1

4
n0 (1 − γe)

√

8 kBTe

πme
exp

(

eΦW

kBTe

)

. (2.14)

Here Z is the ion charge, γe is the coefficient for the emission of secondary electrons

(see below), n0 is the unperturbed electron density at x = 0, and ΦW is the floating

potential.

Secondly, the normalised overall voltage drop ψ within the presheath up to the

sheath edge is defined by a transcendental equation,

2√
πτZ

D̂(
√

ψ) exp(−ψτZ ) = 1 − erf
(
√

ψτZ
)

. (2.15)

In this formula D̂(y) = exp(−y2)
∫ y

0
exp(t2) dt is the Dawson integral (see Rybicki

[1989] for the computation), the symbol erf(y) denotes the error function, τ is the

ratio of electron temperature versus ion temperature, and ψ = − eΦ1 / kBTe , where

Φ1 is the potential at the sheath edge with respect to the potential of the unperturbed

plasma. A particular important fact is, that the total presheath potential drop does

not depend on spatial variations in the particle source S(x, vx) .

Finally, the ionic charge flux as a function of the density n0(x = 0) and the

floating potential ΦW = −(Uplasma − Ufloat) can be evaluated:

ji, sat = e n0

√
8 D̂(

√
ψ) (1 + 1

τZ
)

π

√

Z kBTe

mi

, (2.16)

ΦW = − kBTe

e
ln

(

(1 − γe)

4 D̂(
√
ψ) (1 + 1

τZ
)

√

πmi

Z me

)

. (2.17)
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The coefficient for the emission of secondary electrons γe should be commented.

This coefficient enters the evaluation of the correct plasma potential Uplasma from

the measured Ufloat via equation (2.17). Secondary electron emission depends on

the material of the probe tip, additionally on the condition of the surface and on

the angle of incidence of the incoming, i.e. primary electrons. For fusion related

materials a detailed study was done by Pedgley et al. [1992]. If the wall or probe is

made of pure graphite, and if the primary electrons have an energy corresponding to

a plasma temperature of 30 eV, Pedgley et al supply a value γe = 0.4 at normal inci-

dence. The number increases considerably with the amount of implanted hydrogen

ions and with the angle. Since implantation cannot be excluded during operation

in a hydrogen plasma and since the angle of incidence varies over the surface of a

perpendicular cylindrical probe, the values 0.4, 0.5 and 0.6 will be used for data

evaluation and the impact on the results is to be discussed.

The detailed Emmert model and its subtle but indeed strictly arithmetic depen-

dencies are often neglected in favour of the more convenient probe evaluation fol-

lowing Stangeby [1986]. If the ion temperature is comparable to the electron tem-

perature, as it is the case in the boundary of a fusion experiment, then the model by

Stangeby displays significant deviations. A quantitative comparison is carried out

in appendix B.1. In the following, Emmert will be used for probe data evaluation,

and Stangeby, whenever only the order of a quantity’s magnitude is to be estimated.

2.4.5 Length of the presheath

To round off the treatment of the presheath, its spatial extent along the lines of the

magnetic field should be estimated. The resulting length is frequently called collec-

tion length L . Basically the parallel particle flux absorbed by the probe is balanced

by a perpendicular transport into the presheath. If the mechanism underlying the

perpendicular transport is a diffusion, then the collection length can be estimated

with

L = fgeo

cs d
2
p

Deff
⊥

[Stangeby 1986] , (2.18)

where cs is the sound velocity (appendix B.1), dp is a characteristic length of the

probe, Deff
⊥ is an effective diffusion coefficient, and fgeo a geometrical factor. For

a quadratic probe with side length dp Stangeby supplies fgeo = 1/8 . Note that it

is a simplification to use Deff
⊥ . Probably the perpendicular transport is caused by

turbulence, i.e. anomalous and thus not diffusive at all.

Using numerical values of a hydrogen plasma at the boundary of the W7-AS

(T = 30 eV) the sound velocity is 8 · 104 m s−1, the diffusion coefficient is of the

order 1 m2 s−1, and with a probe diameter of 1 mm the collection length becomes

L = 8 cm (fgeo = 1) .

This means even the transit time of the ions at cs is only 1µs, smaller than typical

lifetimes of the fluctuations.
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Since the probe tips cannot be inserted into the plasma without a solid mounting,

called the probe head in the following, it has been proposed [Stangeby 1986] to use

the diameter of the probe head instead of the tip, in order to define the scale length

of the plasma disturbance. The probe head at the W7-AS has a diameter of 5 cm,

which would enlarge the collection length up to the order of 100 m depending on

fgeo . This exceeds typical connection lengths in the scrape-off layer and would,

therefore, basically change the properties of the transport in the edge plasma.

What is neglected in this estimation of the perturbation length is the poloidal

convection of the plasma due to the background radial electric field. The convection

continuously shuffles unperturbed plasma into the presheath and thus contributes to

the replenishment of the probe shadow. Particularly farther away from the probe,

where the density gradients from the surroundings into the presheath are flat, con-

vection becomes important. Considering a cylindrical probe (length lp , radius rp),

aligned perpendicular to the magnetic field, and a background poloidal flow with a

realistic velocity of vθ ≈ 103 m s−1, the balance of poloidal and absorbed flow yields

for one side

2 rp lp ·
n0

2
cs = L lp n0 vθ → L =

cs
vθ

rp .

Although this is a very strict simplification, for it disregards the processes that could

change the direction of the poloidal flow towards the probe and thus introduce a

flux divergence, it nevertheless suggests, that the presheath length grows only linear

with the probe head radius rp . Using numerical values from the W7-AS, the result

for the disturbance length of the probe head is Lhead = 2 m, clearly shorter than

typical connection lengths, which are of the order O(10 m).

The conclusions concerning the presheath and the disturbance length of a probe

in the W7-AS edge plasma are: The effect of the probe tip is negligible, since its pre-

sheath length is small compared to the connection legth. Tip presheath transit times

of any particle species are small compared to the lifetime of fluctuations. In a sit-

uation with purely diffusive replenishment of the presheath, the disturbance by the

probe head can be significant and may establish a radial transport, which is not sim-

ply related to the unperturbed case [LaBombard 2002]. The corresponding models,

however, neglect the experimentally observed poloidal convection. That can reduce

the calculated disturbance length to values below the connection length. Hence the

fluctuation induced transport measured by the probe should still be dominated by

the unperturbed region beyond the presheath. Particularly the measurement of the

electron temperature is affected least, because the highly mobile electrons cover dis-

tances much longer than the presheath length. A proper kinetic modelling must be

two-dimensional and include both the parallel and the perpendicular direction. This

is, however, beyond the scope of this thesis.
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2.5 Fluctuation measurements with probes

Summing up the results of the previous sections, the current voltage characteristic

of an electric probe in a magnetised plasma, based on the given assumptions, obeys

I(U) = − Isat

(

1 − exp

(

e

kBTe
(U − Ufloat)

) )

, |U − Ufloat | <∼ kBTe / e .

(2.19)

In this formula, the ion current

Isat = A⊥ eff · ji, sat

is constant, since the probe is kept at large negative voltages with respect to the

plasma potential, i.e. below or close to the floating potential Ufloat . This means

that variations of U are compensated by the Debye sheath alone. Changes of the

measured current I with the probe voltage U are only an effect of the electrons,

being repelled to a greater or lesser extent. The derivative at U = Ufloat is simply

dI

dU

∣

∣

∣

∣

U=Ufloat

=
e Isat

kBTe
. (2.20)

Hence, the small signal impedance of a Langmuir probe at floating potential is

kBTe / e Isat. From a recorded I−U characteristic, the unperturbed electron density

n0 can be calculated by using Isat and Te , and the plasma potential Uplasma by using

Ufloat and Te . Thereby an assumption on the ion temperature is necessary.

If the plasma parameters Isat , Ufloat , and Te are fluctuating due to turbulence,

then the time to take one characteristic should be sufficiently short, i.e. the frequency

of the voltage sweeps should be higher than the bandwidth of the fluctuations. This

poses the question, whether the bandwidth of the actively applied U must be limited

in order to retain the validity of equation (2.19).

2.5.1 Limiting frequency for the Debye sheath

An estimate of parasitic high frequency currents is possible by modelling the sheath

as a plate capacitor with an area equal to the current collection area A⊥ eff and a

plate distance equal to the shielding length λS (equation 2.10). Given the probe

is operated in the vicinity of the floating potential, the critical angular frequency,

where the ohmic current balances the amplitude of the capacitive current, is the

inverse of the RC time constant. In this case C is equal to the sheath capacitance

and R is equal to the real sheath impedance from equation (2.20).

τRC, Debye =
ǫ0 A⊥ eff

λS

kBTe

e Isat
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Using the Stangeby model, one obtains with a single ion species and Te = Ti

ωDebye = τ−1
RC, Debye =

√

e2 n0

4 ǫ0mi

=
ωp, i

2
√
Z

. (2.21)

The ion plasma frequency ωp, i is O(3 GHz) in the boundary of the W7-AS. Thus, for

hydrogen and sweep frequencies O(1 MHz) the sheath is stationary (ω ≪ ωp, i) and

there is no objection against equation (2.19) from that side.

Non-saturation and hysteresis of flush mounted probes

With plane flush mounted probes and small angles of inclination between the probe

surface and the lines of the magnetic field, the area for ion collection depends sig-

nificantly on the probe voltage [Weinlich 1995]. This is an effect of the so-called

magnetic presheath. Additionally, capacitive hysteresis loops at voltage sweep fre-

quencies far below ωp, i were reported in this situation by Verplancke [1996]. The

complications can be avoided, if the angle of incidence of the magnetic field to the

probe surface is sufficiently large. This is the case for most of the effective area of

cylindrical probes aligned perpendicular to B.

2.5.2 Dynamics of the voltage drop in the presheath

The electric current drawn by the probe will predominantly flow in parallel with the

lines of the magnetic field. If the potential of this particular field line varies with a

high frequency relative to the surrounding plasma, then according to equation (1.11)

ion polarisation currents flow in perpendicular direction. Such thing could happen

in the far-ranging presheath of a probe. Nedospasov and Uzdensky [1994] proposed

an appropriate model for measurements with swept probes and it was shown, that

the polarisation current acts as a perpendicular capacitance. Written as a capacity

per unit length the formula in cylindrical geometry is

cpol =
C

L
=

2π n0mi

ln ra

ri
Z B2

, (2.22)

which is the one of a long cylindric capacitor with inner and outer diameters ri and

ra , respectively, and n0mi /ZB
2 replacing the electric constant ǫrǫ0 . Note that the

electron density n0 over Z is the ion density. Approximating the natural logarithm

with 1, the expression (2.22) was used by Geier [1997] in order to model Langmuir

probe characteristics in the edge plasma of the W7-AS. There, with hydrogen ions

the capacitive coating has an electric constant of 1.3 · 10−9 As V−1m−1, which is

more than two orders of magnitude higher than in the vacuum case.

Geier could demonstrate experimentally, that using cpol only is not sufficient to

characterise high frequency phenomena with large electron currents. Therefore the

model was extended by longitudinal inductance and resistivity, and a perpendicular
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2.5 Fluctuation measurements with probes

conductivity [Niedermeyer et al. 1996]. Altogether this led to reasonable agreement

with the experiment. The inductance is simply the vacuum value [Verplancke 1996],

i.e. in cylindrical geometry

lvac =
Lind

L
=
µ0

2π
ln
ra

ri
. (2.23)

In order to calculate the parallel resistance per unit length r‖ , there is the Spitzer

value for the resistivity η (see appendix A.1.3), so that r‖ = η / πr2
i . The perpendi-

cular conductance g⊥, however, is not yet fully understood. Theoretical predictions

by Spitzer yield g−1
⊥ ∼ η⊥ ≈ 3.3 η [Chen 1974], whereas experimental values are by

far too large [Weinlich 1995]. Utilising an effective perpendicular resistivity ηeff
⊥ the

conductance per unit length becomes

g⊥ =
G

L
=

2π

ηeff
⊥ ln ra

ri

. (2.24)

Weinlich [1995] estimated the ratio ηeff
⊥ / η in the scrape-off layer of the ASDEX Up-

grade Tokamak from both a model with ion-neutral friction and from the anomalous

Bohm diffusion. His results were 8 · 106 and 3 · 107, respectively.

Summing up, the complex high frequency impedance of the presheath W is the

one of a coaxial transmission line with losses

W =

√

r‖ + iω lvac

g⊥ + iω cpol

. (2.25)

Since the phase velocity in such a line (lvac cpol)
−0.5 is equal to the Alfvén velocity,

the model is referred to as the Alfvén wave cable model. If one wants to include

W when evaluating probe characteristics, particular attention must be paid to the

fact, that in a fluctuating environment neither density nor temperature are constant

and, consequently, the straightforward application of equation (2.25) with constant

coefficients r‖ and cpol in Fourier space is not possible. Furthermore the anomalous

and averaged value of g⊥ should be called into question and it is worthwhile to

check, whether a strongly fluctuating cpol (density fluctuations) can take over this

contribution.

The impedance of the return sheath will be considered briefly. It is part of the

return circuit, but because of its larger area, it won’t contribute significantly to the

probe characteristic unless the probe draws an electron current [Niedermeyer et al.

1996]. Only in the latter case there is a low specific probe impedance and a high

specific return sheath impedance. The Alfvén wave cable model and the return

circuit are displayed schematically in figure 2.2.
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2.5 Fluctuation measurements with probes

Figure 2.2: Equivalent circuit for the presheath (shaded region). It is connected to the

probe tip on the left via the Debye sheath, modelled as a diode with a real impedance

(ω ≪ ωp, i). The capacitance, inductance, and conductances shown are intended to be

infinitesimal and their arrangement must be repeated several times along the extent of

the presheath in order to provide a realistic numerical modelling. Contacts to the wall by

additional sheaths (slim diodes) can be neglected, if the probe does not draw significant

electron current.
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Chapter 3

Experimental and technical

concepts

Several technical challenges have to be overcome in order to set up a Langmuir probe

diagnostic with the specified resolution at the Wendelstein 7-AS. In particular the

electronic transmission and acquisition system turned out as the most complex part.

This will now be discussed after giving a short introduction into the experimental

boundary conditions and the magnetic configuration.

3.1 The Wendelstein 7-AS

The Wendelstein 7-AS is a stellarator with a five-fold symmetry (section 1.1.3). Its

main components are a toroidally closed vacuum chamber, three coil systems, and

various auxiliary devices for plasma heating and plasma diagnostics to modify and

detect, respectively, the properties of the plasma.

The independent coil systems (see figure 1.3) can be used to produce various

configurations of the magnetic field by superposition. There is a modular system, a

planar one, and one to produce a vertical field. Hence, to characterise the magnetic

configuration three parameters are necessary. Naturally it is the three currents that

flow in the different systems, but for convenience the derived parameters ι , B0 and

Bz are frequently used, where ι is the edge rotational transform, B0 is main magnetic

field strength on the torus axis, and Bz is the strength of the vertical magnetic field.

In addition to the magnetic configuration, working gas, plasma density, heating

power, and the heating method have to be specified. Hydrogen is used in the case

of the probe measurements, released as neutral gas from a valve into the chamber.

During plasma operation the valve is controlled by a real-time measurement of the

plasma density in a feedback loop in order to hold the density stationary. Electron

cyclotron resonance heating (ECRH) with ∼ 0.5 MW is utilised as a power source.

This heating scheme produces plasmas which are highly reproducible and stationary.
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3.1 The Wendelstein 7-AS

3.1.1 Details on the magnetic configuration

When finally the measurements of turbulent fluxes are compared to the total turn-

over of particles and energy, the magnetic geometry at the position of the measure-

ment plays a role. There are tools available to investigate this geometry, mainly the

TRANS code [Sardei and Richter-Glötzl 1988] to map the coordinates of the probe

tips to magnetic surfaces, and the GOURDON code [Gourdon and Lotz 1970] to

do a field line tracing. The GOURDON code is also useful to calculate intersection

points with in-vessel components and thus determine so-called connection lengths

along the lines of the magnetic field.

Magnetic surface area of the W7-AS

The concept of an effective radius reff has already been introduced in equation

(1.6). The average cross section is characterised by A = πr2
eff and the volume of an

equivalent circular torus is in good approximation V = 2π2R0 r
2
eff , where the major

radius R0 of W7-AS is 2 m.

For the surface area the evaluation is more difficult. If a torus with an elliptical

cross section is considered, then its volume is Vκ = 2π2R0 a
2 κ , where κ is the

elongation b/a, and a and b are the semiminor and semimajor axis of the ellipse,

respectively. Calculating the surface area Aκ by multiplying the ellipse perimeter 1

Uκ with the circumference along the torus major axis yields

Aκ = 2π2R0 a (1 + κ) · f(κ) .

If the elongation is not too large, the correction f(κ) is of the order one:

κ = 2 → f = 1.03 (precision is at least 1%).

The average elongation in the W7-AS is κ ≈ 2 [Geiger et al. 2004]. From the

comparison of V and Vκ the average semiminor axis a = κ−0.5 reff can be deduced.

Hence, the area of the last closed magnetic surface with reff = rsep ≈ 17.5 cm is

Aκ(rsep) = 15.1 m2 .

Importance of the local flux expansion

There is experimental evidence, that both fluctuation amplitude and phase are con-

stant and far extended along the magnetic field lines for connection lengths of several

meters [Bleuel 1998]. The local magnetic geometry determines the transport rele-

vant poloidal electric field and thereby the magnitude of the fluxes that are measured

in the laboratory system. In particular, the measured fluxes are proportional to the

1 Uκ = π a (1 + κ) · f(κ) , f(κ) = 1 + 1

4

(

κ−1

κ+1

)2

+ 1

64

(

κ−1

κ+1

)4

+ O
(

(

κ−1

κ+1

)6
)

[Weisstein 2005b]
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3.2 The probe diagnostic

Figure 3.1: Radial separation of two magnetic field lines versus toroidal angle Φ in the

edge (reff=17.5 cm) of W7-AS according to field line tracing calculations at ι = 0.3497,

B0 = 2.553T and Bz = 10.13mT. Individual values are plotted with small diamonds

as a function of the toroidal angle. The horizontal line denotes the average. At the

probe position (25.4◦, starting point of the calculation, indicated by the solid cross) the

separation is 1 cm.

actual distance between adjacent magnetic field lines in radial direction [Endler

1999].

Exemplarily two adjacent field lines should now be considered. Their spacing

depends on both the poloidal (θ) and the toroidal (Φ) coordinate in the W7-AS. The

two field lines are selected such, that they both intersect the reciprocation axis of the

probe, but with a radial distance of 1 cm. Since the rotational transform ι is close

to 1/3 in the magnetic configuration of the measurement, the lines have been traced

three times along the toroidal circumference (in total 38 m), which corresponds to

a poloidal rotation of θ = 360◦. Every ∆Φ = 10◦ the magnetic surface cross section

and the field line position were overplotted and the radial distance was evaluated

geometrically. In figure 3.1 the results are shown. Following considerations from

above, the ratio between the spacing at the probe position and the average radial

spacing should be equal to the ratio between the flux measured by the probe and the

average flux. The average fluxes Γ∗, Q∗, and q∗ (equations 1.27-1.29) are increased

by a factor of 1.22 above the local fluxes at the probe position. The relative error

of this value deduced from the standard deviation is 4% .

3.2 The probe diagnostic

Since the plasma performance of the W7-AS depends on the quality of the vacuum in

the main chamber and on the condition of the walls, the vessel is usually kept closed

and evacuated. If a Langmuir probe measurement system is to be installed, it must
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3.2 The probe diagnostic

be connected vacuum tight to the outboard side of a gate valve that terminates a

port of the main vessel. After several weeks of pumping, when vacuum pressures are

comparable on both sides of the valve, the shutter can be opened and the probe is

advanced into the port by a remotely controlled manipulating system. Schematically

this is displayed in figure 3.2.

Figure 3.2: Set-up of the probe system at the W7-AS. A cross section of magnetic surfaces

and of the vacuum vessel is shown. From the lower right the probe is advanced into the

vessel by a manipulator system over a distance of ∼ 70 cm. During plasma operation the

probe head, which carries an array of 15 tips, can be brought into plasma contact by a fast

reciprocation. The direction of the stroke of this reciprocation is indicated and it amounts

to ∼10 cm.

Probe tip geometry

At Wendelstein 7-AS good expertise exists with the usage of small graphite cylinders

used as electrical probes for fluctuation measurements [Bleuel 1998]. Graphite as

the plasma facing component has sufficient electrical conductivity and can withstand

the high heat fluxes in the edge plasma. For the measurements described in this

work, an array of graphite tips has been used, where the individual tips are stacked
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3.3 Design of the measurement electronics

vertically and the envelope of the tip front is tangent to the magnetic surfaces,

thus the arrangement is called a poloidal array. Since the inclination of field lines

is small O(2◦) at the position of the probe, the poloidal array can be regarded as

aligned perpendicular to the lines of the magnetic field in good approximation.

Any tip and its eletrical connection are built coaxially and they are shielded in

order to suppress cross-talk and to ensure adequate high frequency properties. The

graphite cylinder is insulated by ceramics, leaving a length of 2 mm exposed on the

plasma facing side (figure 3.3). At the opposite end it is connected to the inner

conductor of a coaxial cable, whereas the shield of that cable is connected to the

steel tube that covers the tip insulation.

Figure 3.3: Detail of the tip mounting within the probe head. To produce the 15

tip array the tip structure including insulation and screening is stacked in the direction

perpendicular to the plane of this view.

Individual tips are supported by a block made of glass ceramics, which is attached

to the vacuum feedthrough (see figure 3.4). Block, glass support and cables are

covered by the probe head, made of the insulating material boron nitride. At the

leading edge the probe head is flush mounted with the tip insulation.

Behind the vacuum feedthrough there is a small cylindrical cell, that is air-vented

and connected to the outside by a long tube. This cell provides space for the high

frequency differential amplifiers (to be discussed in the following section), whereas

the tube is needed as a duct for the data cables and also for the mechanical support.

The whole system can fulfill a reciprocating stroke of ∼ 10 cm within ∼ 300 ms by

means of a pneumatical drive, which is located outside the vessel port. Hence, it is

possible to minimise the exposure time of the probe head and the tips. Additionally

the reciprocation is useful to record a radial profile.

3.3 Design of the measurement electronics

The tip voltage should stay below the floating potential in order to retain the validity

of the Emmert model for the presheath (section 2.4.4), and the voltage should

be actively swept with an amplitude O(1
2
kB Te) to resolve the nonlinearity of the
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3.3 Design of the measurement electronics

Figure 3.4: Front end of the probe system. To the right is the plasma facing side with the

graphite tips and the probe head covering. The probe tips are connected to the vacuum

feedthrough by coaxial cables. The cylindrical cell behind the feedthrough is used for the

measuring electronics, including shunt resistors and several amplifier boards.

characteristic. In the edge plasma of the W7-AS, 1
2
kB Te is equivalent to ∼ 15 V.

Since the floating potential is close to the reference potential of the vessel (0 V), a

bias equal to the sweep amplitude is necessary.

The required time resolution was specified (see section 2.2) and defines a design

value for the frequency of the voltage sweep 1 MHz . In principle the waveform of the

voltage can be harmonic, i.e. sinusoidal. A proper impedance matching, however,

is not possible, because the tip impedance is nonlinear and fluctuating. There-

fore reflections will be present in the transmission system, distorting the sinusoidal

sweep. Altogether an extended bandwidth of the voltage measurement is required,

the design value is 10 MHz .

There are similar requirements for the current measurement on individual tips.

Even if the tip voltage is sinusoidal, the sheath current depends nonlinearly on it,

which generates higher harmonics. Hence, the bandwidth of the current measure-

ment must also be > 1 MHz , the design value is 10 MHz .

Since the phase of the current must be measured precisely relative to the phase

of the voltage, cable lengths must be critically discussed in such high frequency

circuits. If the cable connected to one tip passes through the probe head, the

cable duct and finally through the vessel port, then cable lengths of 3 m cannot be

avoided at the W7-AS before any measuring device outside the vacuum vessel is
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3.3 Design of the measurement electronics

Figure 3.5: An amplifier board containing 4 channels for the current measurement. SMD

devices are utilised to build the miniaturised circuits. The overall board dimensions are

100× 40× 4mm. On the right hand side is the top cover, which has got a grounded inlay

in order to prevent the pick-up of HF from the surrounding. Circular gaps in the cover

provide access to the trimming capacitors after closing the board.

reached. Tip impedance is usually far above the 50 Ω impedance of a coaxial cable

and thus the cable behaves as a parasitic capacitive load, giving rise to displacement

currents which must be compensated. These currents have been observed to limit

the achievable bandwidth in earlier measurements by Giannone et al. [1994], who

used high bandwidth clamp-on ammeters. The conclusion is to reduce the cable

length between the tip and the measuring device.

A practicable solution was proposed by Pfeiffer [1997], who also built the proto-

types: Miniaturised amplifier boards are placed within the cylindrical cell directly

behind the tips (see figure 3.4), allowing for a short cable connection O(0.1 m). Such

board is displayed in figure 3.5, it contains 4 channels to measure tip currents. Al-

together four boards are stacked, providing measurement channels for all 15 tips.

Basically the amplifiers do an impedance transform and drive a correctly terminated

50 Ω transmission line, which can be sufficiently long O(10 m) to reach the analog to

digital converters (ADCs) of a fast sampling data acquisition system. For a detailed

description of the amplifiers, see appendix C.
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3.3 Design of the measurement electronics

3.3.1 Signal flow overview

Additional components are necessary in order to set the bias and the sweep voltage.

For the DC bias, a remotely controlled voltage supply (F.u.G. NTN, 0 − 125 V,

0 − 10 A) is used, capable of delivering Isat for any tip up to the density n0 =

3 · 1019 m−3 (Te = Ti = 30 eV), which is considered to be sufficient.

The sweeping voltage is generated by a radio frequency (RF) amplifier (BONN

BTA 0110-1000) with a maximum output power of 1 kW into 50 Ω. The total high

frequency impedance of all tips including the shunt resistors can be estimated to

∼ 20 Ω in the edge plasma. Even though the transmission line from the amplifier

to the probe head is thus not terminated correctly, there is abundant RF power to

produce the required amplitude of the sweep voltage.

The RF amplifier has got a gain of 60 dB and is driven by a remotely controlled

function generator. Since the sweep voltage is only to be generated during the

acquisition time of ∼ 0.17 s, the function generator output is gated, while the RF

amplifier will run continuously.

Both DC and RF supply are brought to the probe system by independent trans-

mission lines over a distance of approximately 10 m. Before the signals are fed into

the probe voltage line, they run through a mixing network (figure 3.6). Note that

close to the output of the mixing network the voltage line is tapped by the invert-

ing amplifier, which is necessary to provide the active common mode rejection (see

appendix C.2).

Figure 3.6: Mixing network for the DC and the RF part of the probe voltage. It consists

of a −3 dB attenuator to improve impedance matching and damp reflections, furthermore

of a capacitor for the RF coupling and a coil to connect the DC line. Towards the probe,

an ohmic load is provided (200Ω). This introduces a finite impedance to fluctuations with

intermediate frequencies and, thus, prevents the voltage line between mixing network and

front end from large excursions. On the right the hybrid inverting module (see appendix

C.2) and the shunt resistors for the current measurement are indicated.
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3.3 Design of the measurement electronics

3.3.2 System control, monitoring and safety

On one hand there are high voltages in the signal source system: Peak values of

O(100 V) are possible, depending on the phase of the sweep voltage and on plasma

induced voltage fluctuations. On the other hand a delicate data acquisition system

[Sig 1997; FAS 2001] with a sampling rate of 50 MHz is used, which can be damaged

by input voltages that exceed ±4 V. The source and the acquisition system are

separated by voltage dividers and by the current amplifiers. Nevertheless one can

construct a scenario with a fail of one or more electronic components, that can lead

to an overvoltage at the ADC input. Two independent safety measures are taken

to prevent such an accident: First, a regular and automatic self-test, and second,

an electronic common mode monitoring within the probe head, connected to an

interlock which blocks both the RF and the DC source.

The self-test is compliant with a pulsed operation, it can be carried out before

the measurement. Generally all signal sources, DC, RF, and also the measuring

circuits are switched off in order to prevent the densely packed current amplifiers in

the front end from overheating. After switching on, the DC bias is ramped up in

two steps, each time comparing the nominal bias with the output of the tip voltage

measurement. Only if the nominal and real values of both steps are in accordance

within a given tolerance, then the sweep signal source is enabled. This procedure

is written in LabVIEW [Nat 2000] and uses a multi I/O card (AT-MIO-16XE-50)

as interface to the hardware. Schematically the program is displayed in figure 3.7.

Since the status of the self-test is available before the start of the plasma operation,

it is possible to block the probe reciprocation in case an error occurs.

The common mode monitor and interlock system basically controls the operation

of the inverting amplifier that is necessary for the active common mode compen-

sation. Since the level of the common mode is measured continuously by a special

channel in the probe head (see appendix C), any fail of the inverting amplifier can

be detected. This is done by a fast comparator, which finally triggers the inter-

lock of the entire system. The sequence of interlock effects and corresponding time

constants are:

• Blocking the gate of the function generator within ≈ 2µs . This is the fastest

measure and will remove the sweep signal from the input of the RF power

amplifier.

• Deactivation of the power amplifier by a relais circuit. Response time of the

relais ≈ 0.1 ms, amplifier power off within several ms .

• Removal of the DC bias after ≈ 100 ms, i.e. within the duration of the probe

reciprocation. That could be made faster, but if the probe still has contact

with the plasma, then tip currents are minimised with the bias, because the

floating potential is usually negative when crossing the separatrix. The bias

alone is unlikely to produce an overvoltage at the ADC input.
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3.3 Design of the measurement electronics

Figure 3.7: Automatic test and measurement procedure, implemented in LabVIEW

software. Below the program modules the corresponding evolution of the tip voltage is

displayed schematically. Note that two analog signals come from the W7-AS environment

in order to trigger the preparation (“timer start”) and the acquisition (“plasma experi-

ment”) phase.
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Chapter 4

Data evaluation

In this chapter the procedure is specified that allows one to generate spatio-temporal

data of plasma quantities from the raw data. Starting with the recorded time series

of tip currents and the common applied voltage, the critical point of addressing

individual characteristics is discussed. The measured turbulent fluctuations have a

rather high bandwidth in the frequency domain, therefore a fit model with continu-

ous evolution of parameters in the time domain must be introduced. Analysing the

statistical properties of the fit result, it is found that the parameters become covari-

ant whenever the interrelation between tip current and tip voltage deviates from the

ideal exponential law. In correlation functions, the covariance of parameters leaves

a characteristic fingerprint, which will be referred to as noise, to be distinguished

from plasma fluctuations. Eventually a workaround is presented in order to mask

the noise and recover the information relevant for plasma turbulence. With a final

note on channel equilibration this chapter shall close.

4.1 Raw data and addressing of characteristics

When the multi-tip probe is operated with the fast voltage sweep in a W7-AS plasma,

a proper timing is essential. The duration of the stationary plasma state is typically

1 s and the pneumatic probe reciprocation takes roughly two times 150 ms, once for

the forward and once for the backward movement. Since the stroke is large compared

to the gradient lengths of the plasma quantities at the edge, only the central part

of the reciprocation around the point where the probe extends furthermost into the

plasma, is useful to acquire data. The memory of the high speed multi channel

acquisition system is limited to 168 ms and it is not fully synchronised. Hence, in

order to identify equivalent sweeps in the recorded voltage and in the recorded tip

currents, both the start and the termination of the active voltage sweep are to be

recorded.
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4.1 Raw data and addressing of characteristics

Altogether the timing is like this:

• Self-test of the sweep system (see section 3.3.2), preparation of the W7-AS

plasma operation.

• Main timer signal indicates begin of plasma discharge, the reciprocation is

triggered with a delay of several 100 ms .

• Typically 100 . . . 200 ms after the start of the reciprocation, the 50 MHz acqui-

sition system is triggered and with an additional delay of some µs also the HF

voltage sweep.

• The sweep is terminated before the acquisition runs out of memory.

The procedure is illustrated for a W7-AS plasma experiment in figure 4.1. General

timing, trigger and reciprocation signals are recorded by slowly sampling (5 kHz)

Figure 4.1: Timing of the W7-AS plasma discharge #55760. On top the total kinetic

energy content of the plasma, measured by a diamagnetic loop. From t = 0.7 s on a plasma

current was induced artificially, which changed the confinement. The probe is driven into

the second stationary phase. At the bottom, the reciprocation signal is displayed together

with the interval of the fast voltage sweep.
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4.1 Raw data and addressing of characteristics

Figure 4.2: Start of the active sweep on one probe tip. On top the tip voltage and

at the bottom the tip current as a function of time. Sampled data are displayed using

diamonds and an interconnecting line. The “global fit” which is used to address individual

characteristics is overplotted with a dotted line.

ADCs, so that the time window of the fast swept probe measurements can be mapped

to the actual probe position and to the W7-AS experiment time.

Start and termination of the voltage sweep on one of the fifteen probe tips is

displayed in the figures 4.2 and 4.4. Clearly the sinusoidal signal source generates

a dominating first harmonic in both the tip voltage and the tip current. Due to

the nonlinear response, each half period of the tip current together with the cor-

responding half period of the voltage forms one characteristic. In order to map

the half periods correctly between unsynchronised channels the “global fit” must be

introduced.

4.1.1 The “global fit” synchronisation

The task to isolate single characteristics is somehow equivalent to the localisation of

minima and maxima in the current and voltage data. If there are large fluctuations

in the plasma quantities (see figure 4.3), then the minima and maxima are smeared

out and become difficult to localise. If one additionally takes into account the
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4.1 Raw data and addressing of characteristics

Figure 4.3: Active voltage sweep (top) and tip response (bottom) for maximum stroke

of the probe. The time axis has been shifted relative to the sweep start. A joint of two

global fit segments is shown with dotted lines in blue and magenta.

amount of the order of 105 recorded characteristics per channel, then it is obvious

that a manual separation is not possible at all.

Hence, a harmonic model function is to be adapted to the data by a numerical

fit procedure (routine E04FYF from [Num 1999]). Phase, angular frequency, offset

and two amplitudes corresponding to two harmonics are free parameters. Since

either source or sampling frequency (which of the two could not be figured out) were

observed to vary slightly within the acquired interval, the fitting is done in segments,

each segment containing typically 5 · 104 samples or 1000 sweep periods. When all

of the data is eventually modelled, individual sweep periods can be addressed via

the phase of the model function. Note that the global fit sets up a new time base,

which is defined by the sweep frequency and independent of the sampling rate.

Fit algorithms try to establish an optimum, i.e. minimum deviation between

data and model function. Not necessarily this procedure converges and additionally

it may run into a local instead of the global minimum of the deviation. In the

case of the global fit, two measures are taken to control these effects: First, the

minimisation routine’s output flags are checked. If there were too many iterations

without convergence or if the mathematical conditions for a minimum are not met,
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Figure 4.4: Termination of the active voltage sweep. On top the tip voltage and at

the bottom the tip current, where the time axis was shifted relative to the sweep start

corresponding to the duration of the sweep interval. The “global fit” is overplotted with

a dotted line in magenta during the sweep and in red after the termination.

then the routine terminates with an error value. Second, the boundaries between the

segments are examined. From both sides, i.e. using the previous and the following

model function, the temporal localisation of the minimum closest to the boundary is

calculated. Only if these two calculated positions coincide within a given tolerance

(±80 ns typically) then both fits are accepted. An example showing such a junction

is displayed in figure 4.3.

In the partly synchronised system, it is in principle sufficient to generate the

global fit once for each different timebase. Nevertheless it proved to be a benefit,

if the procedure is applied to each channel for two reasons: One is the trigger

uncertainty of individual ADC boards, which was observed to be several samples.

The other is the need to allow for an artificial and individual even though small

phase shift between voltage and current. This leads to the next section.
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4.1.2 Artificial phase shift

If current channels are synchronised with the voltage by means of the global fit, then

usually the data samples of different channels won’t lie exactly at the same phase

of the model function. Thus, in order to bring the samples together, the current

signals are interpolated using a cubic spline (routines E01BAF and E02BBF from

[Num 1999]). Since the sample noise is small compared to the sweep signals, the

interpolation is not considered to be a significant source of error.

By a straightforward cutting of the signals at the maxima and minima of the

model function and eventually fitting single up and down sweeps with the exponen-

tial formula from equation (2.19), time series of the fit parameters are obtained. If

the fits from the upward sweeps are compared to those of the downward sweeps,

then a systematic deviation is often observed, e.g. see figure 4.5.

Such deviation can be explained, if the phase of the current signal is shifted

relative to the voltage signal. But, since the signals were actually synchronised

to the local minima and maxima of the dominating first harmonic oscillation, the

Figure 4.5: Time series of fit parameters Ufloat and Te from upward sweeps only (black),

compared to the corresponding series of the downward sweeps (red). Clearly there is a

systematic deviation between the two time traces.
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4.1 Raw data and addressing of characteristics

problem must be more subtle. If higher harmonics are shifted, then also the shape

of the up sweep will be different from the down sweep. Reasons can be either the

transmission line between the tip and the shunt resistor, where actually the tip

impedance does not match the characteristic impedance of the line, or the complex

impedance of the tip’s presheath. The former can be quantified, which will be done

in the next section, but it can explain the phase shift only partly. Hence, the phase

shift is most probably caused by a mixture of both effects. Note that the real

impedance of the sheath (ωsweep ≪ ωp, i) cannot be responsible.

Introducing an artificial and uniform phase shift turned out to be a satisfactory

countermeasure. Therefore the phase of the tip current was varied in order to

minimise the up-down assymetry of the most sensitive fit parameter Ufloat . For the

given example, the result is displayed in figure 4.6, where the up and down series of

Ufloat and of Te are nearly congruent after the phase correction.

In a spectral analysis, the up-down assymetry corresponds to a sharp peak at

the Nyquist frequency. If such a peak appears then it is to be nulled, which is a

complementary approach to remove up-down asymmetries.

Figure 4.6: Time series of Ufloat and Te , separately for the up sweep (black) and for

the down sweep (red). The raw current signal was shifted artificially by −40 ns .
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4.2 Evaluation of characteristics

Transmission line transformation

There is a short transmission line in between the probe tip and the shunt resistor,

where the tip current and the common voltage are actually measured. Although the

length has been kept to a minimum, it can cause observable phase shift between

current and voltage.

The plasma sheath at the tip does not terminate the transmission line properly,

additionally the strong nonlinearity of the sheath generates higher harmonics. In

a transmission line, however, voltage and current are coupled uniquely for a wave

travelling into one direction. Hence, if both voltage and current are known, then the

waves propagating in both directions can be calculated. This allows one to transform

the measured values from the position of the shunt resistor to the location of the

tip. Equations for the transform are [Russer 1993] :

U (ω) = U (ω)
m cos(ω τW ) − i ZW I(ω)

m sin(ω τW )

I(ω) = I(ω)
m cos(ω τW ) − i Z−1

W U (ω)
m sin(ω τW ) ,

where U
(ω)
m and I

(ω)
m denote the complex Fourier spectra at the position of the mea-

surement, while U (ω) and I(ω) are the corresponding spectra at the location of the

tip. The characteristic impedance of the transmission line is ZW = 50 Ω, ω is the

angular frequency, and the length of the line is included in τW = lW / cW with the

phase velocity being a fraction of the vacuum speed of light cW ≈ 2
3
c0 .

Realistic numerical values are

cable length between tip and shunt lW = 0.15 m

angular frequency of first harmonic ω1 = 8.75 · 106 s−1

first harmonic voltage amplitude U (1)
m = 20 V

second harmonic voltage amplitude U (2)
m = −1 V

first harmonic current amplitude I(1)
m = 12 mA

second harmonic current amplitude I(2)
m = 2 mA

The amplitudes are a typical global fit result. Note that the second harmonic voltage

is in antiphase to the first harmonic and therefore written with a minus sign. From

these figures follow the time lags of both harmonic currents relative to the voltage

at the location of the tip. While the first harmonic is delayed by 25 ns, the second

harmonic comes more early by 7.5 ns .

4.2 Evaluation of characteristics

The details of how to actually fit the nonlinear I(U) characteristic in a turbulent

plasma should now be specified. It is necessary to account for fluctuations which

are nearly as fast as the voltage sweep. Already the raw data displayed in figure 4.3
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4.2 Evaluation of characteristics

suggests that such thing can happen and this means that the fit parameters Isat ,

Ufloat and Te in the exponential formula (2.19) cannot be regarded as constant during

one sweep. The solution to this problem is simply to allow a temporal evolution

of the fit parameters, which is valid since the sheath impedance is real, i.e. it does

not introduce a time lag. In order to implement an appropriate fit function, the

raw signal must be processed in packets containing several sweeps, and, therefore,

different timebases must be distinguished. The fit method together with the result

of its application are presented afterwards. It is observed that strongly localised

overshoots can appear in the parameters, whenever the fit problem is not well posed.

This perturbs the calculation of Uplasma and n0 , and, since fit parameters can become

covariant, it has also an influence on the cross phase between different quantities.

Hence, in order to supress overshoots a smoothing technique is built into the fitting

routine.

4.2.1 The different time bases

Basically there will be three time bases:

First, the sampling of the data acquisition defines the grid with the highest avail-

able resolution. It is equal to the time points of the common tip voltage. Current

signals that were not synchronised are mapped to this grid by an interpolation. Also

the fit function will be calculated with the same resolution.

Second, the sweep frequency which defines the “natural” time base of I − U

characteristics. Typically it is slower than the sampling by the ratio O(1/50), but

since the signal source for the sweep and the acquisition clock are not synchronised,

this is neither a rational fraction nor constant throughout the entire acquisition

interval. Using two times the sweep frequency as the time base for the fit parameters

is a favourable choice, because the parameters are well defined by either up or

down sweep. The plasma quantities Uplasma and n0 will be calculated from the fit

parameters, thus two times the sweep frequency is the effective sampling frequency

with respect to the measurement of the plasma turbulence.

Third, the length of the fit packet. On one hand the packet is necessary in order

to incorporate the temporal evolution of the fit parameters and it must consist

of at least two sweeps. On the other hand discontinuities remain at the packet

boundaries, and the number of the latter can only be reduced by making the packets

large. In reality one has to restrict the packet length to keep the computing time

small, so it turned out that a length of 6 sweep periods, i.e. 12 time points for

the fit parameters, is a convenient choice. The discontinuities at packet boundaries

are removed efficiently by doing several cycles, each time using the result of the

previous cycle to predict the temporal dependency at and beyond the end of the

actual packet. After 5 cycles including the initial one, no significant change of the

result has been observed.
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4.2 Evaluation of characteristics

4.2.2 Fit function

In principle when evaluating probe characteristics the method is similar to the one

for setting up the global fit (section 4.1.1). A model function depending on the mea-

sured tip voltage and on several parameters is evaluated on the grid of the current

signal and subtracted. The square deviation is minimised by varying the parame-

ters (routine E04FYF). If this numerical process has converged, the parameters are

“fitted”, they hold most probable values. Additionally estimations for their uncer-

tainties can be extracted from the variance-covariance matrix, which is set during

the fit procedure (routine E04YCF from [Num 1999]).

Measured data are processed in packets, where each packet consists of 6 sweep

periods, and two sets of the fit parameters Isat, Ufloat and Te are assigned to any

period. The points in time for the parameters are the center of the up and of the

down sweep, respectively. When calculating the model current, the parameter values

are mapped to the fine grid of the measurement by a linear interpolation. At the

boundary to the following packet the parameter values of the previous fit cycle are

utilised. Altogether the temporal evolution of the fit parameters is continuous but

the first derivative is not.

In order to test whether the Alfvén wave cable model (section 2.5.2) for the pre-

sheath can improve the quality of the fit, the equation (2.25) of the lossy transmission

line was applied once per packet. This modifies the spectrum of the measured tip

voltage

U
(ω)
mod = U (ω) − W (ω, r‖, cpol) I

(ω) .

The parameters r‖ and cpol can be calculated from the fit result of the previous cycle,

but they must be kept constant along the packet, otherwise the calculation in Fourier

space is not possible. Concerning the scaling of the perpendicular conductivity, the

value from Bohm diffusion was used ηeff
⊥ / η = 3 · 107, and for the cable diameter

ratio ln ra

ri
= 1 .

To anticipate the result: This kind of approximation to the Alfvén wave cable

model was not successful, i.e. the deviation between measured and modelled current

was slightly increased. Two reasons are assumed to be responsible for that. On one

hand there is no self consistency in the fit of both sheath and presheath, because the

presheath parameters were calculated from the previous cycle. On the other hand

fluctuations of r‖ and cpol within one packet were neglected. The first problem could

be solved if the dependence of r‖ and cpol on the fit parameters is included in the fit

algorithm. Since several Fourier transforms are necessary, this is at the expense of

computation time. The second problem required proper treatment of a transmission

line with fluctuating impedance, but the correct implementation is beyond the scope

of this thesis. As a matter of fact the modification of U by r‖ and cpol is neglected

in all results that are presented in the following.
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4.2 Evaluation of characteristics

Assessment of the fit model

Once the parameters Isat , Ufloat and Te are fitted, any probe tip’s current can be

reconstructed. The result was to be compared with the measured current on the

fast sampling timebase. Exemplary this is done in figure 4.7. The reconstructed

tip current shows excellent agreement with the recorded one. A dynamic evolution

of Te , Ufloat and Isat is clearly observed even in this narrow time window of 9µs .

This indicates fast events in the plasma that significantly change temperature and

density. Note that −Isat is proportional to the density n0, therefore the “event” at

t = −2µs is nearly simultaneous and carries the same sign in both n0 and Te .

Sometimes slight up-down assymetries are visible as systematic oscillations of

parameters, e.g. for Te and Ufloat at t ∼ 0µs , or for Isat at t ∼ 2.5µs . The fit

routine obviously minimised the deviation between measured and modelled data by

shifting the value of adjacent parameters in opposite directions. This effect and its

consequences were discussed (section 4.1.2).

Figure 4.7: Time traces of measured voltage and current data from tip #8 together

with the continuous evolution of fit parameters. Voltage (∆Usheath) and current (Irec) are

plotted with small crosses (black). First line: fit parameter Te (red), second line Ufloat

(magenta). Last line Isat (blue). The modelled tip current is overplotted with a solid line

(green). Note that the unit of the vertical axis depends on the signal type, i.e. current in

mA , voltage in V, temperature in eV. Packet boundaries are indicated by vertical lines

and discontinuities are still visible since this is the result of the first fit cycle.
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4.2 Evaluation of characteristics

Figure 4.8: Evolution of fit parameters in a measurement of strong fluctuations. Probe

position is close to the separatrix, data is from tip #8 . The solid lines represent Te

(red), Ufloat (black), and Isat (blue). Measured and modelled tip current are overplotted

for comparison (small crosses and green line). Note that the unit on the vertical axis is

different for each curve. Additionally the vertical scale has been compressed in the range

between −60 and −10 . Packet boundaries are indicated by vertical lines.

A qualitative validation of non-systematic oscillations is possible “by eye”. If one

compares the shape of the raw current and voltage signals and the plasma induced

fluctuations of the parameters, then there are the following correlations:

• According to the exponential I(U) characteristic Isat is proportional to the

lower envelope of the oscillating current everywhere.

• Any drop in Ufloat , for instance the one at t = −2µs , displaces the current

level (signal Irec+fit in figure 4.7) in positive direction.

• A drop in Te (e.g. also at t = −2µs) is accompanied by an increase of the

current amplitude. This is due to the fact that the I(U) characteristic is the

steeper the lower the temperature.

4.2.3 Inherent smoothing of the fit function

If the fluctuation bandwidth is very large, as it is the case for a probe located close to

the separatrix, then the fit parameters display a rather erratic behaviour (figure 4.8).

Additionally the strict minimisation of the square deviation between data and fit

generates a tendency for temporary overshoots in Isat , Ufloat and Te simultaneously.
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4.2 Evaluation of characteristics

Figure 4.9: The effect of smoothed fitting on the evolution of fit parameters. Raw

data, axis range and color coding is exactly identical to figure 4.8. Smoothing parameter

ksm = 10−5 for both Ufloat and Te . Note that there are no discontinuities at the packet

boundaries, since this is the result of the fifth fit cycle.

A damping of these overshoots like in figure 4.9 is desired in order to provide smooth

time traces, which are necessary for the reliable calculation of average values. But

at the same time smoothing restricts the bandwidth of the measurement, leading to

a loss of information on high frequency fluctuations. This dilemma must be solved

individually, i.e. the impact on a particular result is to be discussed.

Smoothing can be achieved methodically by making use of two peculiarities in the

data evaluation. On one hand the length of the fit packet provides a convenient width

for the averaging window. On the other hand the scatter of one fit parameter around

its average within one packet can be made an additional minimisation criterion. The

weight of the scatter relative to the deviation between measured and model current

is controlled by a smoothing parameter ksm . Hence the expression to be minimised

in each packet is of the form:
∑

h

(

Ih mod(pqr) − Ih meas

)2
+

∑

q

kq sm · 1

nr

(

∑

r

(pqr − p̄q)
2
)

!
= min ,

where Imeas and Imod are measured and modelled current, respectively, h is the

sample index on the fast time base, r is the index on the “natural” time base of the

sweep, nr is the count of r within the packet, and q is an index to distinguish Isat,

Ufloat or Te . The value of p̄q is the packet average over r of the corresponding fit

parameter pqr .

In figure 4.9 the result of smoothed fitting is displayed. Actually this is the
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4.2 Evaluation of characteristics

counterpart to the time traces without smoothing in figure 4.8. The smoothing

parameter value was ksm = 10−5 for both Ufloat and Te , while for Isat it was 0 .

How much smoothing is necessary ?

It has been pointed out, that a good compromise has to be found when the magnitude

of the smoothing parameter is set. The appearance of overshoots in the time traces of

the fit parameters is one hint which indicates the necessity for increased smoothing.

More accurately that can be quantified by monitoring the power weighted cross phase

between fit parameters. This cross phase describes the lag between fluctuations that

are coherent in different quantities and its exact definition is given in section 5.2.3.3.

Since the fit parameters of one characteristic are covariant to some extent (to

be discussed in section 4.3), any overshoot in one parameter also yields an in-phase

overshoot of the remaining parameters (see the time traces of figure 4.8). This

is equivalent to an in-phase correlation. Given the overshoots are triggered by

deformations of the characteristic due to plasma fluctuations, then they can also be

coherent in different channels and, therefore, a parasitic cross-correlation superposes

to the cross-correlation of plasma fluctuations. Smoothing damps the overshoots and

thus damps also the amplitude of methodic in-phase correlations, so that ideally only

the correlations due to plasma fluctuations remain.

The smoothing parameter has been varied and its effect on the cross phase is

displayed in figure 4.10. There is a transition between the points ksm = 2 · 10−6 and

ksm = 10−5 , which coincides with the disappearance of the overshoots in the time

traces (figures 4.8 and 4.9). This transition is largest when the probe is located near

the separatrix and it is much less pronounced in the SOL. What happens at this

Figure 4.10: The effect of the smoothing parameter ksm on the power weighted (2D) cross

phase (section 5.2.3.3) of the fit parameters. The probe is located close to the separatrix

and the smoothing was applied to both Ufloat and Te . The solid line without symbols

represents the pair Ufloat-Isat, squares denote Ufloat-Te and asterisks Te-Isat.
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transition can be discussed qualitatively:

Firstly, the fit parameter with the largest uncertainty is Te , whereas Ufloat and

Isat are determined more accurately. Hence, the cross phase between Ufloat and Isat

is robust and does not depend on the smoothing parameter.

Secondly, the covariance between Te and Ufloat is larger than between Te and

Isat , which is due to the fact that the real floating potential, i.e. the current

free probe, is hardly approached during the voltage sweep. Thus, fitting the point

with zero current of the characteristic is an extrapolation which depends on both

parameters Te and Ufloat. In contrast, since the probes are operated near the true

ion saturation current, Isat is usually well determined. If now the smoothing is too

small, i.e. ksm < 10−5 and overshoots are clearly visible, then the covariantly high

amplitudes of the parameters Te and Ufloat dominate the power weighted cross phase

and, consequently, the latter tends to zero. Naturally the cross phase between Te

and Isat reacts to these different boundary conditions.

4.2.4 Post processing

If the fitting procedure does not converge or if the quality of the fit is very poor

then a discontinuity appears in the time series of the fitted quantities. A fail of

convergence can be identified by the fitting routine’s output flags, while a poor fit

results in a large uncertainty of fit parameters, which is detectable in the variance-

covariance matrix. In order to remove such a discontinuity, the data point in question

is replaced by a linear interpolation of two adjacent points (one to the left and to

the right) that displayed regular convergence and small uncertainty.

The detection limit for poor fits is set up in the following way: For |Isat | and Te a

relative uncertainty limit of 50% of the actual value is defined. All data points that

exceed this limit are replaced by the interpolation procedure. In the case of Ufloat

the definition of the relative uncertainty must be changed, because Ufloat can carry

both signs and its absolute can be close to zero. Eventually Uplasma is of interest,

which is Ufloat plus some factor times Te . Therefore the “relative uncertainty” of

Ufloat is calculated by normalising the absolute uncertainty of Ufloat to the sum of

Ufloat and Te .

Figure 4.11 exemplarily displays normalised PDFs of the fit parameters and their

relative uncertainties when the probe is located close to the separatrix. Clearly the

distribution of the parameter values is not Gaussian but has got a tail towards

positive values in Ufloat , Te and |Isat | . This means that the average values are

higher than the most probable values, for instance in the case of Te these two are

40 eV and 20 eV, respectively. For Isat this shape of the PDF is known [Endler 1994],

while for Te this could not be measured before. Stationary measurements of Ufloat

usually display a Gaussian PDF [Bleuel 1998]. The reason for the deviation between

the stationary measurements by Bleuel and the actual PDF is the covariance of the

fit parameters Te and Ufloat , which will be discussed in the next section.

In the PDFs of the relative uncertainty (bottom of figure 4.11) different levels
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Figure 4.11: Top: Normalised PDFs of fit parameters Ufloat (black), Te (red), and Isat

(blue), for a probe position close to the separatrix. Note that the unit on the x-axis depends

on the parameter. Bottom: PDFs of the relative uncertainties of these fit parameters.

are observed for the three parameters. While Isat is fitted very accurately, i.e. its

average level of uncertainty is rather low (6%), the uncertainty of the parameter

Ufloat relative to the sum of Ufloat and Te is increased (10% on average), and the

parameter Te has got the largest uncertainties (17% on average) together with a

very broad distribution. During post processing it is observed, that typically 10%

of the fitted Te data exceeds the uncertainty limit and, therefore, must be replaced

by the interpolation. The percentage of interpolations in Isat and Ufloat data is

considerably smaller.
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4.3 Covariance of the fit parameters

4.3 Covariance of the fit parameters

4.3.1 Phenomenology

In the fit model for the I(U) characteristic, the parameters can become covariant

whenever the samples deviate from the ideal exponential curve. Reasons for a de-

viation can be either electronic noise or a change of plasma quantities during one

sweep. The latter is relevant if frequency components of the fluctuating quantities

not much below the sweep frequency still contain significant power in the probe tip

frame of reference, e.g. due to fast poloidal E×B rotation. This is the case when

the probe approaches the shear layer and the separatrix and, therefore, the level of

covariance increases with the stroke of the probe.

The fingerprint of parameter covariance in a single fit is, that the statistical

errors of Isat , Ufloat and Te depend on each other. For instance, if the value of

Te is fitted too high, though still within the statistical error margin, then also the

values of Ufloat and Isat are affected in a particular direction. This situation is

illustrated in figure 4.12, where two sets of fit parameters actually yield comparable

least square deviations from an artificial characteristic. Only if the parameters are

changed covariantly then this proper matching is retained. If one or two parameters

are changed by the same amount without adjusting the third then the deviation

would be clearly visible.

The covariance in any pair AB out of Isat, Ufloat and Te is positive. Given the

Figure 4.12: An artificial I(U) characteristic containing noise is plotted using crosses.

The data were generated with Isat = −170mA, Ufloat = 2V, Te = 15 eV, plus uniformly

distributed current noise with amplitude 5mA . An exponential least square fit yielded

the fit parameters Isat
∗ = −172± 8mA , Ufloat

∗ = 2.7± 1.4V, Te
∗ = 15.8 ± 2.1 eV, where

all uncertainties contain positive covariance. Overplotted with a red and a blue line are

the characteristics (Isat [mA], Ufloat [V], Te [eV]) = (−176, 3.2, 17) and (−168, 2.2, 14.6), re-

spectively. Note that the fit, which was overplotted using dots can hardly be distinguished

from these two.
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definition of the correlation function from equation (2.3), this can be put into the

following expression

X
(cov)
AB (∆t,∆y) =

{

> 0 , |∆t| < packet length , ∆y = 0

= 0 , elsewhere .
(4.1)

Strictly speaking the covariance is equal to X
(cov)
AB (0, 0) , but since the data is fitted in

packets and since fit parameters are interpolated between adjacent time points, there

is a correlation along the temporal extent of the packet. Note that the covariance

disappears for ∆y 6= 0, if it has a random occurrence. Overshoots, which are

triggered by plasma fluctuations can be correlated for ∆y 6= 0 (section 4.2.3).

Impact on the spectral representation

When the complete two-dimensional cross-correlation function is evaluated, it will

contain contributions from the plasma fluctuations and from the covariance of the

fit parameters

XAB(∆t,∆y) = X
(plasma)
AB (∆t,∆y) + X

(cov)
AB (∆t,∆y) .

It has been shown in equation (4.1) that the covariance of the fit parameters produces

a highly localised structure, whereas the plasma fluctuations are comparatively long-

range correlated.

The Fourier transform of XAB is the superposition of the Fourier transform of

both addends. Due to the high localisation of X
(cov)
AB , its Fourier transform will be

rather broad. Hence, the total power spectrum will be flat towards high wavenum-

bers or frequencies and the power spectrum of plasma fluctuations is masked. The

impact is similar in the cross phase spectrum: Since the covariance is positive, the

cross phase of its Fourier transform is zero. Consequently, the entire cross phase

spectrum deduced from XAB will always tend to zero towards high wavenumbers or

frequencies.

To conclude, a reliable cross spectrum of plasma fluctuations can only be ob-

tained, if one is able to separate the constituents X
(plasma)
AB and X

(cov)
AB before the

transform.

4.3.2 Correction in the data analysis

When two-dimensional cross-correlation functions are evaluated using fitted data

from fast swept probe measurements, the precise localisation of the covariance peak

is clearly observed. Thus, this peak can be masked, but the missing values must

be replaced. A convenient way in order to achieve this is to do a two-dimensional

interpolation. Two options were investigated: To use the values of a minimum

curvature surface, and to fit a two-dimensional model function. In principle both

methods are appropriate, whereupon the fit yields slightly better results and should
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be preferred, provided there is an adequate model. In the case of plasma fluctuations,

model functions are supplied in appendix A.3.

Exemplarily the two-dimensional interpolation is demonstrated using the mini-

mum curvature method to correct the cross-correlation between the fit parameters

Ufloat and Te . The primary two-dimensional function is displayed in figure 4.13.

First, the base area in ∆t and ∆y is selected, which has usually the same size as the

cutout shown in the figure. Second, at ∆y = 0 the peak and its extent in temporal

direction are masked. A numerical procedure (min curve surf, [RSI 1997]) eventu-

ally calculates the minimum curvature surface using all data of the base area except

the masked values, and finally the values in the gap are replaced by the values on

the surface. The resulting cross-correlation without the covariance peak is also dis-

played in figure 4.13. In this case it can be observed, that the ridge of the underlying

correlation structure, which stems from plasma fluctuations, does not pass through

∆y = 0 and ∆t = 0 . Hence, there is a non-zero phase shift between Ufloat and Te

fluctuations.

Figure 4.13: Replacing the covariance peak by a two-dimensional interpolation. On

top is the cross-correlation function between the fit parameters Ufloat and Te , shown as a

surface with the function value in the vertical coordinate and the independent variables ∆y

and ∆t forming the two-dimensional grid. The ranges are ∆t = ±5µs (front to back) and

∆y = ±2.2 cm (right to left), with a spacing of 0.35µs and 0.2 cm, respectively. Connected

to the peak is a small ridge (±5 samples or |∆t| < 1.8µs) extending in temporal direction

at ∆y = 0 . At the bottom the result of a two-dimensional interpolation is displayed,

where the peak and the ridge have been replaced.
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Note that the technique to mask the central peak can also be applied to the

autocorrelation function. In this case the variance instead of the covariance is the

source of the peak. Masked values can be replaced using the fit function from

appendix A.3.1. After the correction, the autocorrelation should be renormalised to

the interpolated value at ∆y = 0 and ∆t = 0 .

A separation of signal and methodic or experimental noise in the domain of

the correlation function is a common technique. For instance it has been applied

successfully by Sattler and Hartfuss [1993] and Bäumel [2002] in order to measure

temperature fluctuations in the plasma core by highly resolved electron cyclotron

emission radiometry.

No correction in single channel analysis

One must not forget that despite the feasible correction of the correlation function,

recovering the time traces of Isat , Ufloat and Te without the covariance induced

noise is not possible. Consequently the cross spectrum between two quantities on

the same tip is in error, at least as long as the fluctuation amplitudes are smaller

than the influence of the covariance. An arithmetic effect can lead to an apparently

defined phase between n0 and Te : Since n0 is calculated from fitted Isat and Te by

the operation

n0 ∼
Isat√
Ti + Te

,

the assumption Ti = Te together with the fact that the relative fit error of Isat is

much smaller than the one of Te leads to an anticorrelation of n0 and Te . Indeed

using swept Langmuir probes a phase shift of π between n0 and Te has been reported

in the past [Hidalgo et al. 1992], but the influence of the fit parameter covariance

was not discussed.

4.4 Channel Equilibration

If wavenumber spectra are to be generated, it is necessary to do a multichannel

analysis. Here, individual channels correspond to probe tips, which are connected

to separate amplifiers, transmission lines and data acquisition channels. In order to

deduce the correct spatial fluctuation patterns one requires equal sensitivites for all

channels. Such state is hardly feasible in the experiment. For instance the Langmuir

probe tips themselves are a common source of deviation between different channels:

The contact resistance between the graphite tip and the copper cable cannot be

reproduced with arbitrary precision. Additionally, the exposed part of the tip will

suffer from thermomechanical stresses that possibly lead to micro cracks or defects

in the graphite, which finally affect the electric resistance, too. Thus, even an initial

state with nearly homogeneous sensitivites may deteriorate after several cycles of

operation in a plasma.
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It is possible to compensate for different channel sensitivities in the later ana-

lysis by redistributing the measured signal power evenly among the channels. A

common way to achieve this is to introduce weighting factors for each channel’s

amplitude. The process to deduce these weighting factors by statistical methods is

called equilibration and will be specified in the following sections.

4.4.1 Basics

Since the analysis is to be carried out with fluctuation data, the first important

step is to remove the offset value and low frequency components. Therefore, a

second order regression was subtracted from the time trace of every quantity and the

residuum was filtered by a second order highpass with Bessel characteristic [Tietze

and Schenk 1980]. A threshold frequency of 1 kHz turned out to be appropriate for

this application.

The simplest form of equilibration is to conserve the total measured fluctuation

power Pt and to distribute it uniformly. This is called the power weighted equilibra-

tion and, given the power, or more accurately autopower, Pi is measured at channel

i (i = 1 . . . N), this yields

w2
i Pi =

1

N
Pt =

1

N

N
∑

i=1

Pi ,

where wi are the individual channel weights that are multiplied with the amplitude.

Dividing this equation by w2
i and adding up all channels, it is obvious that the

weigths obey
N
∑

i=1

1

w2
i

= N . (4.2)

The method is robust but naturally it does not distinguish between signal and

noise. In a situation where the signal to noise ratio varies between different channels,

this can lead to unsatisfying results. An example (table 4.1) should illustrate this:

Consider four channels A-D, where A and B have the same properties, C is noisy

and D has got a reduced sensitivity, i.e. a lower amplitude. Ideally the channels

channel A B C D

ratio of noise power 0 0 1
2

0

relative sensitivity 1 1 1 1
2

√
2

w2
i from simple equilibration 1 1 2

3
2

Table 4.1: Equilibration of channels A-D with different sensitivities and different signal

to noise ratios, and corresponding weights wi according to equation (4.2).
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4.4 Channel Equilibration

A-C should receive equal weights and the fourth channel should be rescaled, but

if the power weighted equilibration is applied straightforward, this is not the case,

as shown in the table. To improve the power weighted equilibration, one must

distinguish between signal and noise during the equilibration procedure.

4.4.2 Equilibration of Correlated Power

It is helpful to consider the measured power per channel as sum of signal power and

power due to noise,

Pi = Pi, signal + Pi, noise .

Usually, noise and signal cannot be disentangled in a single channel measurement.

In particular, the noise amplitude as a function of time is not available.

If there exist several channels and if the signals are correlated between these

channels, it is possible to evaluate the non-zero cross-power P
(X)
(i) (i+j) , which is the

covariance of the channel i amplitude and the channel i+j amplitude. Note that the

second channel is denoted by the relative channel distance j, which can be both neg-

ative and positive. Additionally, the cross-power should be evaluated at a particular

time lag τ̂ between channels i and i+ j , where the signals are not orthogonal. For

a more detailed definition of orthogonal and uncorrelated fluctuations, see [Müller

and Heywang 1990]. The result of the cross-power calculations will be similar to

the unnormalised cross-correlation (2.3), but without an averaging over equivalent

channel pairs. Uncorrelated noise will be strongly damped. Rescaling the channels

by weighting factors modifies the cross-power according to

P
(X)
(i) (i+j)(τ̂ ) → wiwi+j P

(X)
(i) (i+j)(τ̂) . (4.3)

Hence, the weights should be adjusted in such a way, that the rescaled cross-power

on the right hand side of formula (4.3) does not depend on i when j and τ̂ are

fixed. Conservation of total power, however, is not guaranteed by this procedure and

must be included separately as a constraint. The equilibration becomes a numerical

nonlinear optimisation problem, where the following expression has to be minimised:

∑

τ̂ , j

min(N,N−j)
∑

i= max(1, 1−j)

(

wiwi+j P
(X)
(i) (i+j)(τ̂ ) − 1

N − |j|

min(N,N−j)
∑

i= max(1, 1−j)

wi wi+j P
(X)
(i) (i+j)(τ̂)

)2

+ λ

(

N −
∑

i

1

w2
i

)2
!

= min . (4.4)

There are three terms on the left hand side of equation (4.4): The first addend

within the double sum is the actual cross-power and the second is the actual average

of channel pairs with distance j . By taking the difference between both addends

squared, deviations of individual cross-power are minimised. Outside the double
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4.4 Channel Equilibration

sum there is the formulation of power conservation like in equation (4.2), only it is

weighted relative to the cross-power by the constraint parameter λ .

The sum over τ̂ and j is important for two reasons: Firstly, oscillatory solutions

of adjacent wi could result, if only one sort of channel distances, even or odd j

are accounted for exclusively. Therefore a mix of even and odd j is recommended,

and their count must be at least equal to N being the number of free parameters.

Secondly, one must select particular values of τ̂ , where the signal fluctuations are

not orthogonal, i.e. where the covariance is non-zero. Furthermore, the statistics

can be improved, if a set of different τ̂ is used simultaneously.

Equation (4.4) was implemented in a computer code using the module E04JYF

from the numerical library [Num 1999] for minimisation. By testing different values

of the constraint parameter, it has been observed that one should select a small

value in the beginning, and repeat the calculation with increasing magnitudes of λ .

Meanwhile, the optimisation success and the quality of power conservation must be

carefully monitored. Finally, the iteration can be stopped, if the deviation of the

total power is below an appropriate threshold. For the analysis of the Langmuir

probe data the threshold was set in such a way, that equation (4.2) must be fulfilled

within 1% relative deviation.

To illustrate the capability of the numerical method, the sample data of the pre-

vious example (table 4.1) can be used. An assumption about the cross-power must

be made in advance: It will be set exemplarily to 0.5 at one channel distance, and to

0.2 at two channel distance. If routed through the previously defined sensitivities,

that would yield “measured” cross-powers of 0.5 for the combinations AB or BC,
1
4

√
2 for CD, 0.2 for AC, and 1

10

√
2 for BD. The result of the numerical equili-

bration is shown in table 4.2 with two different values of the constraint parameter.

If λ vanishes, N and
∑

w−2
i deviate, but as soon as the influence is significant, the

“ideal” weighting is obtained within numerical precision.

channel A B C D

ideal weighting wi 0.9354 0.9354 0.9354 1.3229

numerical equilibration

wi (λ = 10−12) 0.9056 0.9056 0.9056 1.2807

wi (λ = 10−6) 0.9354 0.9354 0.9354 1.3229

Table 4.2: Numerical equilibration with the correlated power method. Sensitivities were

taken from table 4.1 . The nominal cross-power was set to 0.5 for the one-channel distance

and to 0.2 for the two-channel distance.
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4.4 Channel Equilibration

Figure 4.14: Weights of density and temperature fluctuation data as a function of both

the channel number i and the probe position reff . The weights were estimated by mini-

mising the expression from equation (4.4).

4.4.3 Weighting of the Langmuir Probe Data

Now the 15 tip Langmuir probe array should be considered. The weighting factors

have been determined by the correlated power method, separately for each fluctu-

ating quantity and for each radial position of the probe. Channel distances j from

1 through 5, and 10 different values of τ̂ were used. In figure 4.14 the results are

presented for the fluctuations of electron temperature and density during the probe’s

outward movement.

When looking at the data for small ∆reff , i.e. close to the bulk plasma, the
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4.5 On the use of correlation functions

weighting is nearly homogeneous with values close to unity. This means that both

proper reproduction of measurement channels and probe tip alignment were suc-

cessful. For large ∆reff a trend is visible in temperature and density, which assigns

larger weights to the higher channel numbers i . Probably the alignment of the tip

array to the magnetic surface is not at its optimum there.

Note, that the fine structure of the weighting is different for density and tem-

perature. This is, however, not necessarily a contradiction, since on one hand the

radial scale length of the two quantities may well be different. On the other hand

at fixed radial position separate weighting profiles along the channel index i are

also possible. For instance, if the tip areas are slightly different, then mainly the

evaluated density is affected but not the temperature. If there are parasitic currents

that shift the phase in the current voltage characteristic, then it is vice versa. The

latter effect will preferably appear for small current signals, i.e. for large ∆reff , and

it is most likely the cause of the weight dropout in the temperature of the channel

with the index i = 11 .

4.5 On the use of correlation functions

4.5.1 Correlation of the poloidal electric field

The poloidal electric field will be obtained from E = − gradUplasma , where Uplasma

is calculated from the fit parameters Ufloat and Te according to the Emmert model

(equation 2.17). In the following only the gradient perpendicular to the magnetic

field and tangent to the magnetic surface is of interest and this is approximated by

taking finite differences of Uplasma on adjacent probe tips

Epol = − 1

d
(Ui+1 − Ui ) ,

where d is the tip spacing. Individual Ui are the sum of the scaled local Te and

Ufloat , and both are covariant fit parameters, i.e. they contain correlated noise.

Thus, the deduced electric field is erroneous, but its correlation function can be

recovered:

Firstly, the noise is identified with the central peak (typically |∆t| < 7µs ,

∆y = 0 ) in the correlation function of the plasma potential. This has been discussed

in section 4.3.2. The peak is masked and the missing values are replaced by model

values, which are obtained from the fitted model function (appendix A.3.1). The new

correlation function without the noise peak is referred to as the corrected correlation.

Secondly, the Wiener-Khinchin Theorem [Weisstein 2005c] says, that the back-

ward transform of the absolute square of the U := Ũplasma(t, y) Fourier transform

yields the two-dimensional correlation function.

XUU(∆t,∆y) = F−1
[

| F [U(t, y)] |2
]

(4.5)
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4.5 On the use of correlation functions

In this formula F−1 denotes the backward transform. If the spectrum F [U(t, y)]

is multiplied with the wavenumber k in Fourier space, it corresponds to the first

derivative in real space, i.e. the electric field. The absolute square is the spectrum

of the electric field’s correlation function. Since it contains k2 , this is equal to the

second spatial derivative applied to the Ũplasma correlation function.

In order to approximate the second spatial derivative, a finite difference formula

is used, which can easily be derived from the following consideration: Assume that

U is known in between two tips, so that

Epol, i =
1

d

(

Ui− 1
2
− Ui+ 1

2

)

.

By making use of the linearity in the correlation integral, the (unnormalised) corre-

lation value between arbitrary tips i and j becomes

Epol, i ⋆ Epol, j =

1

d2

(

Ui− 1
2
⋆ Uj− 1

2
+ Ui+ 1

2
⋆ Uj+ 1

2
− Ui− 1

2
⋆ Uj+ 1

2
− Ui+ 1

2
⋆ Uj− 1

2

)

Both the first and the second term on the right hand side correspond to the value of

the correlation function of U at space lag ∆y = (j − i) · d . The third term denotes

the space lag ∆y = (j − i + 1) · d and the last term ∆y = (j − i − 1) · d . It is

obvious that a noise peak in the correlation function of U would appear in the one

of Epol three times, namely for (j − i) ∈ {−1, 0, 1} .

To summarise, the correlation function of the poloidal electric field is

XEE(∆y) =
1

d2

(

2XUU(∆y) − XUU(∆y + d) − XUU(∆y − d)
)

, (4.6)

where the additional dependency on the time lag ∆t has been omitted, since it is

common to all terms. Formula (4.6) represents the negative spatial curvature of the

corrected correlation XUU in finite difference approximation.

4.5.2 Cross-correlation and the calculation of transport

Turbulent radial fluxes Γ∗
r , Q∗

r and q∗r (see section 1.4.1) are calculated by multiplying

the radial velocity ṽr with fluctuations of density and temperature, respectively.

The radial velocity is an E×B drift velocity and it is generated by that part of

the electric field which is perpendicular to the magnetic field and tangent to the

magnetic surfaces.

ṽr = B−1Ẽe dia

If outward fluxes are counted positive, then the electric field vector must point in

the direction of the electron diamagnetic drift, where the latter is defined by the

nonfluctuating gradient of the plasma pressure and B. This convention is illustrated

in figure 4.15, and in the following the symbol Ẽe dia is used to indicate fluctuations

of the electric field relevant for radial transport.
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4.5 On the use of correlation functions

Figure 4.15: Definition of the transport relevant electric field, pointing into the electron

diamagnetic direction. Schematically a sector of the cross section in a toroidal magnetic

configuration is shown. The plasma center is to the left and the plasma edge is on the

right. The lines denote magnetic surfaces.

Since only the stationary flow is examined, the product of ñ0 (or T̃e) and ṽr must

be averaged in time and space. One should remember that the cross-correlation

already provides the required average, when evaluated at ∆t = 0, ∆y = 0 :

<ñ0 ṽr>tS , yS
= lim

tS , yS →∞

1

(2 tS) (2 yS)

∫ tS

−tS

∫ yS

−yS

dy dt ṽr(t, y) ñ0(t, y) . (4.7)

In order to obtain the correct flux, one has to take care that this correlation function

is not normalised to any variance of the fluctuating variables but only to the lengths

of the integration intervals. For discrete and finite data the correct form has been

supplied in equation (2.3).

The poloidal electric field Ẽe dia is eventually calculated by taking finite differ-

ences of the plasma potential on neighbouring probe tips. Denoting the channel or

probe tip by the subscript i and considering the tip arrangement from bottom to

top at the outward side of the W7-AS plasma, the transport relevant electric field is

(Ẽi)e dia =
1

2d

(

Ũi+1 − Ũi−1

)

, where Ũ = Ũplasma (4.8)

and d is the distance between adjacent tips. The electric field at position i is deduced

from the potential difference of both neighbouring tips i+ 1 and i− 1, therefore the

denominator in the formula is 2d . Formula (4.8) yields a positive Ẽe dia if the main

magnetic field in the W7-AS carries a positive sign.

Since the transport relevant flux in equation (4.7) is linear in the plasma poten-

tial, it is possible to interchange the integral with the finite-difference evaluation of

the electric field. Writing XUn(∆t,∆y) for the discrete correlation function between
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4.5 On the use of correlation functions

plasma potential and density, the average particle flux can be expressed as

< ñ0 ṽr >tS = (B 2d )−1
(

<(ñ0)i Ũi+1>tS − <(ñ0)i Ũi−1>tS

)

=
1

B 2d

(

XnU(0, d) −XnU(0,−d)
)

=
1

B 2d

(

XUn(0,−d) −XUn(0, d)
)

. (4.9)

Note, that at this point the result is not affected by a noise peak at ∆y = 0 in the

correlation function XUn .

In order to estimate the wavenumber spectrum of the flux, the cross-correlation

XUn has to be corrected for the central noise peak. To achieve this, the noise peak

should be replaced by the values of the fitted model function from appendix A.3.2.

The corrected function is used in the calculation of the cross-correlation between

electric field and density XEn following the finite difference approximation of the

equations (4.8) and (4.9). Thereby the full range of ∆t and the available range of

∆y is retained.

Investigating the formula for the backward transform of the cross spectrum from

equation (2.5), it becomes obvious that the origin of the independent variables ∆t =

0 and ∆y = 0 is the relevant point for the mean transport. This has been set

up explicitly in equation 4.7. The mean transport is equivalent to the total and

complex sum of the cross spectrum with constant phase factor equal to unity (see

equation 2.5). During the summation all imaginary parts cancel due to the hermitian

symmetry and only the real parts remain. The latter are the Fourier image of even

waveforms, i.e. only even patterns in the cross-correlation between electric field and

density contribute to the transport.

A different approach to the spectrum of the transport is also possible, if one

argues that transport is the convolution of potential and density in Fourier space

[Theimer 1990].
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Chapter 5

Results on Wendelstein 7-AS

plasma

The main results are presented and discussed. Based on measurements with the

multi-tip fast swept Langmuir probe array in the edge plasma of the Wendelstein

7-AS, the following contains several aspects of the observed turbulent fluctuations.

The behaviour of floating potential Ufloat and ion saturation current Isat data are

known from other machines (e.g. Zweben and Gould [1985]) and also from former

W7-AS measurements (Bleuel et al. [2002]). With the present campaign the elec-

tron temperature Te is available simultaneously to Ufloat and Isat and with good

resolution. Thus, some of the figures are the first of their kind.

In the beginning a basic comparison with independent diagnostics is done. By

plotting average values of the highly resolved probe data, fair agreement is found.

For the second part average values are subtracted and only the turbulent fluctua-

tions are discussed. Spatio-temporal as well as wave properties are exposed using

correlation and Fourier transform techniques, respectively. A relationship between

different plasma quantities is established. In the third and final part the fluctuation

induced transport is calculated and compared to global plasma confinement.

Constraints

The Wendelstein 7-AS target plasma was generated by electron cyclotron resonance

heating (ECRH). For the machine configuration several constraints had to be ful-

filled:

• Magnetic surfaces must be smooth at the position of the probe tips and no

magnetic islands should be present. The shape of the tip array must be correct

for this specific configuration as well. For such conditions correct alignment

within one magnetic surface is possible and one can assume both average

values and fluctuation properties to be homogeneous along the tip array. The

geometry of magnetic surfaces in the W7-AS is determined by the rotational

transform ι (equation 1.4), which depends on the current ratio in the external
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coil systems. In our case, the tip alignment was optimised for values of ι ≈
0.35 . The calculation of magnetic surfaces and mapping of the probe tips was

done with the TRANS code [Sardei and Richter-Glötzl 1988].

• The power flux should be small to reduce the heat load on the tips. This will

allow for either maximal intrusion of the probe into the plasma or maximal

lifetime of the graphite tips. Therefore, only one gyrotron was used for plasma

heating. The nominal field strength in this mode of operation is B = 2.5 T

(on axis).

When the probe is reciprocating in the stationary phase of a W7-AS plasma, data

from the inward going probe can be compared to data from the outward going probe

in order to analyse, whether a hysteresis exists in the radial profile of average (i.e.

non-fluctuating) values. To summarise the experimental findings, such a hysteresis

was not found, at least as long as the probe did not reach the last closed magnetic

surface (LCMS). For such case, i.e. the probe crossed the separatrix and intruded

into the bulk plasma, usually global signals like plasma energy content, bulk temper-

ature profiles or line averaged density changed. The plasma could not be regarded

as stationary any more and the data was disregarded.

In principle, the interpretation of the measurement is easiest, if the probe is lo-

cated exactly at the separatrix (see section 1.4.2). Due to the high fluctuation levels,

however, the evaluation of the recorded probe characteristics becomes unreliable at

this position. Hence, the presented data covers only the range from the SOL until

several mm outside the LCMS.

5.1 Validation of average values

Radial profiles of the electron temperature Te and density n0 are measured in the

bulk plasma by the W7-AS Thomson scattering system. Te is additionally measured

by electron cyclotron emission (ECE). Both systems are located at different toroidal

positions, therefore they must be mapped onto the reff coordinate. Since their

temporal resolution is much smaller than that of the fast swept Langmuir probe,

only a temporally averaged value of the Langmuir probe data can be compared.

Te and n0 values from the Langmuir probe data are averaged in several time

windows that correspond to different radial positions. The reciprocation of the

probe within the scrape-off layer (SOL) is mapped to the reff coordinate. But there

is a restriction: Outside the LCMS, i.e. outside the separatrix, the radial decay

length of the plasma depends on the local connection length to the next limiter in

the direction parallel to the lines of the magnetic field. The connection length may

vary significantly for different toroidal and poloidal positions. Hence, outside the

separatrix the mapping via reff is not possible. If the profile is extrapolated towards

the separatrix, however, one would expect a smooth junction with the profiles from

the bulk measurement systems. Additionally there must be a monotonic decrement
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Figure 5.1: W7-AS discharge #55760 at t = 1.1 s . Plasma electron density measured

by YAG Laser Thomson Scattering (crosses with squares) as a function of reff . Vertical

lines are error bars obtained from the standard deviation of several time points within

the stationary plasma phase. The crosses for reff larger than 18 cm are Langmuir probe

measurements with vertical error bars from the standard deviation of the 15 tips. The

grey shaded region indicates the position of the separatrix.

of Te in radial direction, since the only heat source is located in the center of the

plasma at reff = 0 (on-axis ECRH).

In figure 5.1 it is shown that the density is decreasing monotonically and that the

YAG System and the probe don’t yield contradictory results. When extrapolating

the YAG and the probe profile linearly to the separatrix, it seems that the probe

slightly overestimates the density. This could be explained with an underestimated

ion temperature Ti, for the density is calculated from the ratio of the measured

saturation current Isat and the sound velocity. If Ti is actually higher, then the

sound velocity increases and the calculated density value decreases.

The calibration of the horizontal axis must be commented. In this case, the probe

alignment relative to the W7-AS vacuum vessel in conjunction with a TRANS code

calculation were used to determine the abolute position in terms of the magnetic

surface label reff . In order to estimate the separatrix position rsep experimentally,

the fingerprint of structures with opposite propagation directions in the correlation

function of Ufloat fluctuations was utilised. The radial electric field changes sign close

to the separatrix, producing a so-called velocity shear layer, e.g. see [Ritz et al. 1984].

On W7-AS Bleuel [1998] showed, that the radial width of the velocity shear layer is

typically 1 cm and that both poloidal propagation directions are visible in this region.

If it is assumed, that the separatrix is reached after having penetrated the shear
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Figure 5.2: Plasma electron temperature as a function of reff . Crosses with squares from

the YAG system and with diamonds from ECE measurements. Vertical lines are error bars

and obtained from standard deviation of several time points within the stationary phase.

The crosses for reff larger than 18 cm are Te values from the Langmuir probe.

layer from outside, the separatrix position in terms of the magnetic surface label

is rsep = 17.5 cm. The uncertainty of the beginning of the shear layer is estimated

to 0.5 cm, based on the comparison of several two-dimensional Ufloat correlation

functions to data obtained by Bleuel. The accuracy of the probe’s geometrical

alignment relative to the W7-AS vacuum vessel is estimated to 0.2 cm.

For Te (figure 5.2) the profile comparison is similar to n0. This time there is

no indication of an over- or underestimation. But there is also a deviation between

YAG and ECE values, which is larger than the error bar, and which is probably due

to mapping uncertainties, i.e. the reff coordinate is in error. There are attempts

to find a formulation of mapping uncertainties and their effects and thus bring

together several diagnostics from different locations by application of probability

theory [Svensson et al. 2004], however this will not be discussed here.

5.2 Characterisation of W7-AS edge turbulence

The simplest way to give an impression of the plasma fluctuations as measured by

the probe array is to show a two-dimensional contour plot, where the gray scale

denotes the fluctuation amplitude. Temporally and spatially resolved saturation

current Isat (figure 5.3) and electron temperature Te (figure 5.4) are compared. The

data were recorded in the scrape-off layer plasma of the W7-AS discharge number
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55760. For Isat such visualisation already exists [Bleuel 1998], whereas for Te such

representation was not available before.

Figure 5.3: A finite time window extending along the horizontal axis for all 15 channels,

which are assigned to the vertical axis, displaying the spatio-temporal evolution of |Isat|
fluctuations. The amplitude is encoded using different shades of grey, where lighter shades

correspond to higher amplitudes. By suppressing the average value the colour range is

used most effectively. The structures reflect mainly fluctuations of the plasma density n0.

Figure 5.4: The same window with the spatio-temporal evolution of Te . Again the

shade of grey corresponds to the fluctuation amplitude and the mean value is suppressed.

Since the channels are arranged poloidally and since the inclination of the mag-

netic field lines is small, the vertical direction in the picture corresponds in good

approximation to the coordinate, which is perpendicular to the field lines and tan-

gent to one magnetic surface. To compensate for different channel sensitivities, all

channels have been normalised to equal standard deviation.

Please note, that the vertical resolution in the figures 5.3 and 5.4 is 15 points.

The continuous evolution of the colour chart along the y-axis is only generated by
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an interpolating algorithm of the visualisation routine CONTOUR [RSI 1997].

Stripe patterns with varying lengths and sizes are observed in both figures. The

patterns are inclined, indicating a nearly uniform motion of the structures in the

upper direction. In other words: There is an average poloidal velocity. Since the

magnetic field is pointing left to right and since the pressure gradient is directed

radially inward (i.e. into the image plane), the upward movement is in direction of

the ion diamagnetic drift. Within 30µs the structures propagate 2 cm on average,

thus the magnitude of the poloidal velocity is roughly 7 · 102 m s−1. Considering the

local magnetic field strength of 2.3 T, and assuming that the poloidal velocity arises

from E×B drift (equation 1.5), then there must exist an electric field, which points

radially outward and has a strength of +1.6 · 103 V m−1.

Various structure sizes are typical for turbulent phenomena. Additionally, such

fluctuation structures exist only for a limited amount of time. That can be recognised

in the figures, for instance the large stripe at t = −30µs corresponds to a fluctuation

that enters from below at y = −1.4 cm and starts to decay at t = −10µs and

y ≈ 0.5 cm . Other structures are “born” and grow within the spatial extent observed

by the probe array like the one at t ≈ −75µs and y ≈ 0.5 cm (figure 5.3).

Comparing pictures 5.3 and 5.4, two things are remarkable: First, a resemblance

at least of the major structures is visible. Given Isat reflects mainly the density, this

means that fluctuations in plasma density and temperature are similar. Second, the

picture of Te , which is actually a fit parameter, is much more noisy. In order to

extract those structures coherent in Isat and Te , refined statistical methods are to

be employed.

5.2.1 Lifetime and poloidal size

Spatio-temporal correlation functions (see section 2.1.2) are evaluated now. This

function works out average shape and lifetime of the fluctuation structures. Coherent

oscillations would show up as an undamped oscillation, but that is not observed in

the probe data and, therefore, the finite lifetime is accounted as another indication

of the turbulent origin of the fluctuations.

At ∆t = 0 there is a characteristic width of the correlation function in the spatial

direction (figures 5.5 and 5.6). This width is referred to as the poloidal size dpol . It

is defined as twice the distance from the central maximum up to the point, where

the maximum correlation value has dropped to the fraction e−1 ∼ 0.37 .

The correlation function is tilted due to the poloidal propagation. Hence life-

times τL must be measured in the comoving frame of the fluctuations. This can

be approximated by taking the extent along the principal axis. More accurately it

is defined in [Endler 1994]. It has been demonstrated by Theimer [1997], that the

velocity of a uniform poloidal propagation can be deduced from the inclination of

the central correlation structure. For small |∆t| the ridge defined by subsequent

slices ∆t = const yields the propagation velocity. Similar to the definition of the

poloidal size, the lifetime is twice the distance from the origin up to the e−1 drop-off.
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Figure 5.5: Spatio-temporal correlation function of the electron temperature Te as a

function of time and space lag. The tilt reflects the poloidal propagation. Probe position

is in the SOL, about 2 cm outside the separatrix. A time window of 7ms in length was

used, corresponding to roughly 20000 samples.

Figure 5.6: Spatio-temporal correlation function of the electron density n0 . Same probe

and evaluation parameters as in figure 5.5 .

Figures 5.5 and 5.6 display the two-dimensional correlation functions of electron

temperature and electron density fluctuations. In this case the density has been

calculated from Isat and Te according to the Emmert model (section 2.4.4), assuming

a constant ion temperature Ti = T̄e . The similarity between ñ0 and T̃e that has

been supposed in the previous section is confirmed. Lifetime and poloidal size are

basically the same, namely dpol ≈ 28µs and τL ≈ 1 cm .

When the probe approaches the separatrix and the LCMS (figures 5.7, 5.8, 5.9),

the poloidal propagation of the fluctuation structures becomes faster. In this so-

called velocity shear region [Bleuel et al. 2002], the measured speed-up is assumed
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5.2 Characterisation of W7-AS edge turbulence

Figure 5.7: Spatio-temporal correlation function of Te when the probe is located close to

the separatrix between bulk plasma and SOL. The underlying correlation structure covers

only a small range of the color scale, since the latter is normalised to the central noise

peak at ∆y = 0 and ∆t = 0 .

to be an effect of an increased radial electric field. The speed-up, however, involves a

drawback: The higher the poloidal velocity, the higher are the fluctuation frequencies

that are seen by the probe tips. Since the fluctuation frequencies come close to the

sweeping frequency, the quality of individual probe characteristics degrades. The

reliability of the fitting decreases and the noise of the evaluated parameters increases.

It is observed that the electron temperature is affected primarily (figure 5.7).

In order to visualise the underlying structure of correlations due to Te fluctua-

tions, the colorbar has been compressed in figure 5.8. A structure appears which is

similar to the SOL measurement in both dpol and τL . Additionally a short living

anticorrelation of T̃e is observed on adjacent tips (∆y = ± 2 mm) and with zero

time lag. The width in ∆t is approximately 1µs. Although this is a small detail in

figure 5.8, its impact on the fluctuation spectra is significant (see section 5.2.2). The

origin of this structure could not be identified. In further steps of the data analysis,

however, it is not considered to be the result of turbulent plasma fluctuations. It

is imaginable that in the strongly fluctuating plasma close to the separatrix, the

presheaths of neighbouring probe tips are coupled via polarisation currents. This

coupling would be capacitive (see the Alfvén wave cable model in section 2.5.2) and

it would influence the current in the steep part of the characteristic, and thereby

the fitted Te . Due to the reported problems (see section 4.2.2), when trying to in-

clude the Alfvén wave cable model in the evaluation of the characteristics, further

investigation has been omitted.

For comparison with the Te correlation in figure 5.8 the correlation function of

the plasma density at the same probe position is shown in figure 5.9. This quantity

is significantly less affected by the noise and a rescaling is not necessary.

To conclude, the similarity between the fluctuations of electron temperature and
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5.2 Characterisation of W7-AS edge turbulence

Figure 5.8: Correlation function of electron temperature, figure 5.7 rescaled.

Figure 5.9: Correlation function of density, probe parameters as in figure 5.7.

density does not change for the whole range of radial probe positions. When the

probe is located close to the separatrix, the fluctuation lifetime is slightly smaller

than in the SOL and amounts to 22µs, whereas the poloidal size is basically the same

as in the SOL. Close to the separatrix a propagation velocity of 2.5 ·103 m s−1 can be

estimated from the inclination of the correlation function in the region |∆t| < 5µs .

Taking into account the local strength of the magnetic field this corresponds to a

radial electric field of +5.8 · 103 V m−1.

Correlation functions of plasma potential and electric field

In order to extend the experimental picture of plasma fluctuations further, the cor-

relation functions of the plasma potential and of the poloidal electric field are dis-

cussed. For the probe positioned in the SOL, the two-dimensional correlation func-
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Figure 5.10: Corrected spatio-temporal correlation function of Uplasma fluctuations. The

probe is located in the scrape-off layer.

Figure 5.11: Correlation function of the poloidal electric field, deduced from the Uplasma

data by evaluating the second spatial derivative. The baseline in ∆y direction is smaller

than in the previous figure, since finite differences were utilised.

tions are shown in the figures 5.10 and 5.11, where the latter was generated from

the Uplasma correlation function utilising the second spatial derivative in finite dif-

ference approximation (see section 4.5.1). Note that the Uplasma correlation function

in figure 5.10 is a corrected one.

It is obvious, that poloidal size, lifetime and propagation speed of the plasma

potential fluctuations are essentially the same as for the temperature and density

fluctuations. For the fluctuations of the poloidal electric field (figure 5.11) it is

different: Poloidal size and lifetime are significantly smaller. This could be ex-

pected for the space domain, since the spatial derivative increases the weight of high

wavenumbers, but for the time domain it is an interesting feature. The values are:
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5.2 Characterisation of W7-AS edge turbulence

Figure 5.12: Corrected spatio-temporal autocorrelation function of Uplasma fluctuations.

Probe is located near the separatrix.

dpol = 0.4 cm and τL ≈ 10µs .

When the probe approaches the separatrix, the correlation of Uplasma in figure

5.12 displays an additional structure if compared to the correlation of density or

temperature: An oblique stripe appears, passing from the top at ∆t = −5µs through

the origin to the bottom at ∆t = 5µs, and indicating fluctuations that move in the

opposite direction. The corresponding speed is higher than for the main structure:

−5 · 103 m s−1 or equivalent to a radial electric field of roughly −12 · 103 V m−1.

This phenomenon is attributed to the velocity shear layer at the separatrix. Both

propagation directions are visible within this layer, whose thickness was often found

to be the order of 1 cm in radial direction [Bleuel 1998]. This information is valuable

to calibrate the actual radial position of the probe.

Please note, that the high amplitudes at the lower and the upper edge of figure

5.12 have no physical meaning. They are caused by poor statistics, since only one

pair of probe tips is available to sample the highest spatial distance. For small

spatial distances more pairs of tips are available and the statistics get better.

In figure 5.13 it is easy to see that the noise is strongly amplified, if the correlation

function of poloidal electric field fluctuations is calculated straightforward from the

Uplasma correlation function, when the probe is close to the separatrix. To work out

the significant structure, the model function defined in appendix A.3.1 was fitted

to the Uplasma correlation function and the Epol correlation function was calculated

alternatively from the model. This result is displayed in figure 5.14. Although the

structure sizes now come close to the limits of the available resolution (tip spacing

0.2 cm, temporal resolution 0.35µs), a poloidal size of 0.4 cm and a lifetime of 4µs

can be estimated.

To summarise: While the fluctuations of plasma potential still bear resemblance

to the fluctuations of density and temperature, the electric field has much smaller

structure sizes. This is expected for the spatial scale, but it is also observed in the
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Figure 5.13: Two-dimensional correlation function of the poloidal electric field Epol

fluctuations, calculated as the negative second spatial derivative of the data from figure

5.12.

Figure 5.14: Correlation of Epol , calculated from the model function of the Uplasma

correlation. The latter had been fitted to the data from figure 5.12.

time domain. When the probe is located close to the separatrix, counter-propagation

of potential structures is visible, which indicates the vicinity of the shear layer.

5.2.2 Power spectra

It is possible to estimate power spectra P of the fluctuations in density and temper-

ature by transforming the correlation into Fourier space

P = | F [U(t, y)] |2 = F
[

XUU(∆t,∆y)
]

,

according to equation (4.5) from section 4.5.1. Since there is the effect of the fit

parameter covariance (section 4.3), also the variance is comparatively high, which
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5.2 Characterisation of W7-AS edge turbulence

Figure 5.15: Fourier transform of electron temperature fluctuations. Two probe positions

are displayed: triangle symbols for SOL, asterisk for the separatrix. Solid lines represent

the evaluation with limited bandwidth in the frequency domain (smoothed fitting) and

the dashed lines full bandwidth. The effect of the anticorrelation between adjacent tips is

indicated by the dotted lines that correspond to both separatrix positions.

produces a large noise peak at the origin of the two-dimensional correlation. There-

fore, power spectra should be deduced after the noise correction (section 4.3.2),

where the central peak is replaced by function values from the model function (ap-

pendix A.3.1). After the two-dimensional transform summing up all frequencies

finally yields the k-spectrum.

One must keep in mind the arbitrariness introduced to some degree by this

method: The height of the fitted central peak significantly changes the width and

the power level of the calculated spectrum. Hence, the shape of the result spectrum

depends on the choice of the fit function.

Figure 5.15 displays the Fourier transform of the corrected Te correlation func-

tion. The independent variable is the wavenumber normalised to the inverse of the

dispersion scale ρs from equation (1.19). Only the values below kρs = 0.1 are con-

sidered to reflect the power spectrum of real temperature fluctuations. For higher

wavenumbers, the spectral power strongly increases, which is caused by the strong

anticorrelation on neighbouring tips ∆y = ±2 mm at time lag ∆t = 0 (see figure

5.8). When fitting the model function, this anticorrelation is modelled by the third

addend in the fit formula (appendix A.3.1) and its contribution to the power spec-

trum can be visualised by a separate transform (dotted lines in figure 5.15). The

spectra are calculated for the two extreme probe positions and for two different

bandwidths during the fitting of the probe characteristics. These bandwidths are
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Figure 5.16: Power spectra of ñ0 and Ĩsat as a function of the wavenumber. Triangles

denote ñ0 and a probe position in the SOL and asterisks ñ0 close to the separatrix. Dashed

lines belong to the corresponding spectra of Ĩsat . The dotted lines are plotted in order to

indicate the power law P ∼ kx with x = −2.5 (SOL) and x = −1.5 (separatrix).

determined by the magnitude of the smoothing parameter within one packet, and,

since the packet length is 4.3µs, strong smoothing is comparable to a 230 kHz low

pass in the frequency domain.

Obviously, the smoothing damps the short range anticorrelation and conse-

quently it damps also the enhancement of the power at high wavenumbers. But

at the same time the slope at the steepest part of the spectrum (kρs ≈ 0.08) is

changed. While a power law P ∼ k x with an exponent x = −2 for the wavenum-

ber can be estimated from the spectra with smoothed fitting, the evaluation without

smoothing suggests x = −1.5 . . .−1 . It must be concluded that the smoothed fitting

also attenuates turbulent plasma fluctuations with wavenumbers kρs
<∼ 0.1 .

Power spectra of density fluctuations do not suffer from the effect of anticorre-

lation. In figure 5.16 there is no enhancement of the power at high k values. This

time the spectra indicate a characteristic exponent for the wavenumber of x = −2.5

in the SOL and of x ≈ −1.5 close to the separatrix. The latter value is similar to

the exponent from the T̃e spectrum.

There is a steepening of the ñ0 curve around kρs ≈ 0.2 when the probe is in

the SOL. Such steepening is not observed when the probe is close to the separatrix.

Comparing the spectra of ñ0 and Ĩsat one observes that the spectral decay of Ĩsat,

being a compound of both T̃e and ñ0, is much slower. This finding is consistent with

enhanced T̃e spectra.

In the strict sense, n0 is calculated from Isat , Te and Ti , and therefore the
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5.2 Characterisation of W7-AS edge turbulence

Figure 5.17: Ratio of density fluctuation power for the assumption Ti = Te relative to

the model Ti = T̄e = const. Two probe positions SOL (triangle) and separatrix (asterisk)

are shown.

assumption on the ion temperature also affects the result. The model Ti = T̄e =

const was used to evaluate ñ0 in figure 5.16. In order to study the impact of a

different ion temperature model, a second calculation with the assumption Ti = Te

even for the fluctuations has been made. The obtained power spectra are similar,

but the magnitude of the n0 fluctuations is considerably decreased. This is due to

the fact that Te = Ti fluctuations generate a larger fraction of the measured Isat

fluctuations than Te fluctuations alone.

In figure 5.17 the ratio of the power spectra calculated with the two different

models is displayed for both probe positions. Up to kρs ≈ 0.1 the model with

Ti = Te yields ∼ 80% of the fluctuation power when compared to the Ti = const

model. The ratio is nearly independent of k, which indicates that this part of the ñ0

spectrum is reliable. For higher wavenumbers kρs > 0.1 the T̃e power anomaly due

to short range anticorrelation, together with Ti = Te expectedly affects the shape of

the spectrum.

5.2.3 Mutual relations between different quantities

The analysis is extended towards compound properties of fluctuations in different

quantities. With respect to fluctuation induced transport the main focus is on the

cross phases, which are prepared by analysing the Fourier transform of corrected

cross-correlation functions (see section 2.1.3). In detail this is exemplarily demon-

strated with the pairs Ufloat-Te and Te-n0, where the notation (e.g.) Ufloat-Te actually
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denotes the cross relation between the fluctuations of Ufloat and Te .

Figure 5.18: Corrected cross-correlation functions between Ũfloat and T̃e, on top for a

probe position in the SOL, bottom for a probe position close to the separatrix. The time

lag is displayed on the horizontal axis and on the vertical axis the tip separation. The

value of the cross-correlation is colour-coded and normalised to the absolute maximum

found within that region.

5.2.3.1 Cross-correlation

The spatio-temporal cross-correlation function is calculated with a data set length

of 7 ms , corresponding to roughly 20000 probe characteristics per channel at a

sweep frequency of 1.4 MHz . The visualisation of such a function usually reveals a

noise peak in the origin of the ∆y-∆t plane on top of a fluctuation induced cross-

correlation structure. If there is significant phase shift between the two different

quantities, then the crest of the underlying structure is displaced from the origin.

Following the technique introduced in section 4.3.2, the corrected cross-correla-

tion functions are generated by ignoring the central peak and replacing the values by

those of a fitted two-dimensional model function. It turned out, that it is sufficient to

apply this on the time lag interval |∆t| < 4µs and the ∆y = 0 distance exclusively.
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5.2 Characterisation of W7-AS edge turbulence

Figure 5.19: Corrected cross-correlation functions between T̃e and ñ0, on top for a probe

position in the SOL, bottom for a probe position close to the separatrix. The correlation

value is colour-coded and normalised to the absolute maximum value.

The cross-correlation function is not to be normalised to the autopower, since the

autopower noise peaks are up to one order of magnitude higher than the crest of the

underlying correlation structure, depending on the considered quantities and on the

probe position. In order to make best use of the color range when displaying such

data, the corrected cross-correlation function is simply normalised to the maximum

absolute value within the region of interest.

Figures 5.18 and 5.19 display the cross-correlation functions Ufloat-Te and Te-n0.

When compared to the correlation functions within one quantity (section 5.2.1,

figures 5.5 - 5.9) it is remarkable, that the shape of the correlation structure, lifetime

and poloidal size are very similar. This means Ufloat , Te and n0 do not fluctuate

independently but follow quasi-coherently, i.e. within the lifetime of the structure, a

certain pattern. There is, however, a defined sequence for the three quantities with

a non-zero temporal and spatial lag. Therefore, within any pair of quantities, the

center of mass of the positive cross-correlation strucure is displaced from the origin.

Comparing the different probe positions within figures 5.18 and 5.19, the eye

is caught by two distinctive features: First, the propagation velocity increases in
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Figure 5.20: Logarithmic cross power spectrum (top) and cross phase spectrum (bottom)

between Ũfloat and T̃e. Probe is positioned in the SOL. The power has been normalised to

the absolute maximum value. For the cross phase a periodic colour chart is used, including

a rapid change of the colours around 0 angle.

the vicinity of the separatrix. This is the same for the correlation function of any

quantity. Second, the displacement in time and space changes, since the center of

mass of the positive cross-correlation structure moves to a different position. This

is observed in both Ufloat-Te and Te-n0, but with opposite sign. In the case of

Ufloat-Te the displacement is of particular interest with respect to the fact, that

plasma potential fluctuations are often assumed to follow fluctuations of floating

potential measured by probes. Depending on the position relative to the separatrix

this assumption is not very good. For the evaluation of the plasma potential both

Te and Ufloat must be taken into account.

The cross-correlation Te-n0 in figure 5.19 displays a remarkable change of phase

between the SOL and the separatrix location. While ñ0 in the SOL is displaced

relative to T̃e in electron diamagnetic direction, i.e. ∆y < 0 , it is different close to

the separatrix, where the center of mass of the positive structure is slightly above

∆y = 0. There is also a small scale anticorrelation at ∆t = 0 and ∆y = ±0.2 cm
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Figure 5.21: Cross spectra between Ũfloat and T̃e. On top: Normalised logarithmic

cross power spectrum. Bottom: Cross phase spectrum. Probe is positioned close to the

separatrix.

when the probe is located close to the separatrix. The density is evaluated from two

measured quantities, namely Isat and Te . Only the fluctuations of Te display this

particular anticorrelation (figure 5.8), so that it is just inherited from there.

5.2.3.2 Wavenumber-frequency spectra

The wavenumber-frequency or kf cross spectrum is the Fourier image of the cross-

correlation function (section 2.1.3). Applied to the experimental data it reveals the

common amplitude and the cross phase spectra of the fluctuations in two differ-

ent quantities. The information is a convenient starting point in order to put the

fluctuation properties into a theoretical context.

To avoid spectral leakage a two-dimensional Hanning window (section 2.1.3.2)

was multiplied with the cross-correlation function before the transform. Wavenum-

bers were normalised to the inverse of the dispersion scale ρs , which depends on

the probe position via the radial profile of the averaged Te . The numerical value is
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Figure 5.22: Cross power spectrum (top) between T̃e and ñ0, normalised to the absolute

maximum value. Below is the corresponding cross phase spectrum. The probe was located

in the SOL.

always close to ρs = 0.02 cm .

The cross spectrum is complex and has a particular symmetry (appendix A.2.2),

hence it is sufficient to display only the first and the fourth quadrant. These two

quadrants contain positive frequencies and both signs of the wavenumber, which

correspond to opposite propagation directions of the fluctuations. In the following

both probe positions of the parameter pair Ufloat-Te (figures 5.20 and 5.21) and of

the pair Te-n0 (figures 5.22 and 5.23) are shown.

All figures of the cross power spectrum have in common, that the main part of the

fluctuation power can be found in the quadrant with negative k as expected for the

preferred direction of propagation in positive y direction (phase factor ei(2πft−|k|y) ).

The most prominent structures are found in both Ufloat-Te and Te-n0 spectra.

Cross power spectra: The cross power of any pair has got a broad maximum in

the kf plane. It is located at f ≈ 25 kHz and k⊥ ≈ −0.05 ρs
−1 when the probe is in

the SOL (figures 5.20 and 5.22). Close to the separatrix the wavenumber localisation
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Figure 5.23: Cross spectra between T̃e and ñ0 for a probe position close to the separatrix.

Top: Normalised logarithmic cross power spectrum. Bottom: Cross phase spectrum.

slightly changes towards k⊥ ≈ −0.03 ρs
−1, i.e. the most common structure size is

larger than in the SOL. This is also observed in the correlation function, where the

vertical size of the background pattern changed between the two probe positions

(e.g. top and bottom of figure 5.19).

The full width of the spectral power in the frequency domain at one third of

the maximum is approximately 40 kHz in the SOL and 70 kHz close to the separa-

trix. Most striking is the emerging of high frequency power (f > 150 kHz) close

to the separatrix, which stems from the speed-up of poloidal plasma convection.

As observed in figures 5.21 and 5.23, the high frequency power component of the

fluctuations between 50 kHz and 200 kHz has got a wavenumber k⊥ ≈ −0.06 ρs
−1.

In the Ufloat-Te cross spectrum an additional cross power maximum is visible,

which is located between 160 kHz and 180 kHz and at wavenumbers with opposite

sign k⊥ ≈ 0.03 ρs
−1 (figure 5.21). The corresponding structure in the spatio-temporal

domain thus propagates opposite to the main structure and due to the elevated

frequencies the propagation velocity is higher. Such counter propagation has been

observed before in the Uplasma correlations (figure 5.12) and it is explained by the
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fact, that the probe picks up high amplitude fluctuations from inside the confinement

region. Near the separatrix the background radial electric field changes sign and

thus the poloidal plasma convection is opposite. The additional maximum cannot

be found in the Te-n0 cross spectra. This indicates that fluctuations of n0 are radially

stronger localised than those of Te or Uplasma .

Cross phase spectra: Generally, the spectra display a well defined cross phase

in those regions, where the cross power is significant. Furthermore the phase is

relatively uniform there. If the cross power amplitude is at noise level, the phase is

random and bears no physical meaning.

Comparing the two probe positions, a clear variation of the cross phase is ob-

served in both cross spectra Ufloat-Te and Te-n0. In the case of Ufloat-Te the phase

is small in the SOL (figure 5.20) and increases up to π/2 broadband at the sepa-

ratrix (figure 5.21). Concerning Te-n0 (figures 5.22 and 5.23), a change of sign is

clearly visible. This is compatible with the shift of the center of mass in the positive

structure of the cross-correlation function (see figure 5.19).

The Ufloat-Te cross phase of the counter propagating structure that corresponds

to the additional maximum (160 kHz < f < 180 kHz , k⊥ ≈ 0.03 ρs
−1) is rather noisy

in figure 5.21. It can be deduced, however, that this cross phase does not follow the

tendency of the main structure. Instead, it remains close to zero.

5.2.3.3 Phase profiles in the scrape-off layer

In the next step of the analysis the stable phase within regions of significant cross

power is utilised. It is adequate to define an average phase by weighting the cross

phase spectrum with the cross power. Thus, the kf phase spectrum can be merged

into a single number by taking the power weighted mean. The phase α between two

quantities is multiplied with the associated cross power |C| at the same values of k

and f . This results in a power weighted phase spectrum, where an average phase ᾱ

is obtained by adding up a predefined range of k and f . The formula to be applied

to a discrete spectrum reads with correct normalisation

ᾱ =

(

∑

k

∑

f

|C(k, f)| α(k, f)

)

/

(

∑

k

∑

f

|C(k, f)|
)

.

The procedure can be repeated for several radial positions of the probe. This way,

profiles of the average phase between fluctuating quantities are deduced.

In the following analysis a temporal length of 7 ms in the primary time series was

used to compute one kf spectrum. Only a small region in the fourth quadrant, i.e.

positive f from 1 to 100 kHz and negative k from −1 to −4.3 cm−1 were selected to

average the phase. By convention the sign of the cross phase (figure 5.24) is inverted

when compared to the complete kf spectra (figures 5.20 - 5.23). The selected set of

wavenumbers corresponds roughly to the range 0.02 ρs
−1 . . . 0.09 ρs

−1.
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Figure 5.24: Profiles of the power weighted cross phase between fluctuations of plasma

quantities as a function of the distance to the separatrix (reff − rsep): Black diamonds

denote Uplasma versus n0, red triangles Uplasma versus Te and magenta asterisks Te versus

n0. The profiles corresponding to the inward (solid) and the outward (dashed) movement

of the probe are overplotted for the model Ti = T̄e = const, whereas the evaluation

according to the model Ti = Te is overplotted with a single dotted line. In the case of

Uplasma versus Te (red triangles), the two models are indistinguishable.

A positive phase between two quantities denotes a temporal delay of the second

quantity with respect to the first one. In the particular geometry of the poloidal

probe array the main propagation direction of the fluctuating structures is upward,

and the cross product between grad p and B, i.e. the electron diamagnetic drift

points downward. Considering the propagation and the phase sign convention, this

means that with a positive cross phase the second quantity is offset in electron

diamagnetic direction.

Figure 5.24 shows that both pressure contributions T̃e and ñ0 have an offset in

electron diamagnetic direction with respect to Ũplasma . This experimental result

is consistent with the drift wave picture [Scott 1997]. Since the evaluation of the

density n0 depends on Ti , the models Ti = T̄e = const and Ti = Te yield different

results. The difference is at its maximum near the LCMS and vanishes in the SOL.

Near the LCMS the cross phase Uplasma-n0 is almost zero in the case Ti = Te , whereas

it remains positive (∼20◦) if Ti is constant. Generally, cross phases that contain the

density n0 are decreased by <∼ 20◦ in the model Ti = Te .

The interrelation between n0, Te, Uplasma and the primary fit parameters Isat and

Ufloat is displayed in figure 5.25. In the SOL, T̃e is closely in phase with both Ũfloat

and Ĩsat , whereas near the LCMS the cross phase Ufloat-Te even exceeds Ufloat-Isat.
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Figure 5.25: Profiles of the power weighted cross phase between primary fit parameters

and plasma quantities as a function of the radial position. Solid lines correspond to the

inward and dashed lines to the outward movement of the probe. Blue diamonds: Ufloat

versus Isat . Green triangles: Ufloat versus Te . Orange crosses: Ufloat versus Uplasma .

Magenta asterisks: Te versus Isat . Grey squares: Isat versus n0 , where n0 is evaluated

with either assumption Ti = T̄e (solid line), or Ti = Te (dotted line).

If Ũfloat is compared to Ũplasma, then a phase deviation is observed, which is largest

(50◦) near the LCMS and small (12◦) in the SOL. The assumption on Ti has a minor

effect on this cross phase: If Ti = Te then the cross phase decreases by 5◦ near the

LCMS. In the SOL the difference is not significant.

Two conclusions can be drawn: First, Ĩsat and ñ0 are in phase closely. Depending

on the model for Ti , excursions up to 15◦ are observed. Conventional Ĩsat measure-

ments therefore reflect the phase of density fluctuations within that precision. Sec-

ond, the ubiquitous (e.g. see [Bleuel et al. 2002]) phase shift of approximately π/2

between Ũfloat and Ĩsat is confirmed. It is even possible to refine it by identifying the

interconnection to the electron temperature: The changing sign of the cross phase

Te-Isat shifts Te fluctuations away from Ufloat fluctuations near the LCMS, while

further outside in the SOL the phase of Te fluctuations is shifted towards the phase

of Ufloat fluctuations.

5.3 Calculation of transport

The average radial flow of particles and energy is calculated from the measured fluc-

tuations, following the method described in section 4.5.2. Additionally, the spectrum
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of the transport is estimated by a decomposition into the contributions of different

spatial scales. Finally, the total turnover of energy in the W7-AS is compared to

the measured local flux by an extrapolation.

Figure 5.26: Measured profile of the ambipolar radial particle flux driven by fluctuations.

If the model Ti = const is used to evaluate the density then the upper black curve (asterisk

symbols) results. Both profiles corresponding to the inward (solid) and outward (dashed)

movement of the probe are overplotted in this case. The dotted lines with asterisks

represent the flux according to the model Ti = Te . Additionally, the simplified calculation

from Isat and Ufloat fluctuations alone is overplotted with blue diamonds. Error bars are

deduced from the deviation of the transport calculated by individual probe triplets.

5.3.1 Transport of particles

The profile of the particle flux according to formula (1.27) is calculated from the

cross-correlation function between Uplasma and n0. Both models Ti = const and

Ti = Te have been used alternatively to evaluate n0. In figure 5.26 the result is

displayed and it can be compared with the traditional but simplified calculation,

which uses fluctuations of Ufloat and Isat together with the stationary profile of

Te . Each data point is the average over 7 ms . Within this time interval the probe

moved 0.3 cm at most. In order to deduce the experimental error, 13 individual

probe triplets have been evaluated: the density measured by the middle tip of

each probe triplet is multiplied with Ẽe dia calculated from two adjacent tips as

in equation (4.8). This yields 13 individual profiles of the transport. The average

of the individual results is in good agreement with the flux deduced from the cross-

correlation. Numerically, they are not equal, since the correlation function at the
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space lags ± d is the average of 14 tip pairs out of the 15 tips. The scatter of the 13

individual fluxes was used to calculate the standard deviation of the average value,

which is shown exemplary for two radial positions as an error bar in figure 5.26.

This error amounts to ∼ ±0.7 · 1020 m−2 s−1 for the model Ti = const, whereas for

Ti = Te the error is ±1 · 1020 m−2 s−1 near the LCMS, while in the SOL it is also

∼ ±0.7 · 1020 m−2 s−1.

Independent of the model for the ion temperature the profile of the radial particle

flux displays a remarkable variation with a maximum approximately in the middle

between the extreme positions of the radial probe movement. This maximum is

Γ∗
r = 5.5 · 1020 m−2 s−1 in the Ti = const model and Γ∗

r = 4 · 1020 m−2 s−1, given

Ti = Te . Since the decrease towards the separatrix is not observed in the flux

deduced from Ufloat and Isat fluctuations, this is clearly an effect of the temperature

fluctuations changing the sign of their cross phase relative to the density fluctuations.

The effect of this cross phase is larger in the Ti = Te model. While in the SOL both

models yield comparable results, Ti = Te reduces the calculated particle flux by a

factor 3 near the LCMS.

The figures 5.27 (model Ti = const) and 5.28 (model Ti = Te) display the spectral

distribution of the flux according to the method described in section 4.5.2. The

spectral distribution is shown within the wavenumber range that can be resolved by

the probe array, and as a function of the probe position. In order to evaluate this, the

corrected cross-correlation functions XEn of each probe position were multiplied with

a Hanning window (section 2.1.3.2) using the two widths ∆tH = 0.3 ms and ∆yH =

2.8 cm before applying the Fourier transform. After the transform, corresponding

quadrants were subsumed (see appendix A.2.2) to obtain a real quantity and all

frequencies were added up to retain a wavenumber spectrum.

Note, that all wavenumber contributions are positive, i.e. the flux is directed

radially outward. In the SOL a localised maximum for wavenumbers k ≈ 0.06 ρs
−1

with a spectral width ∼ 4 cm−1 (FWHM) can be observed. The strong localisation

disappears near the LCMS and the center of mass moves to higher wavenumbers

k ∼ 5 cm−1, i.e. k ∼ 0.1 ρs
−1. These properties are basically independent of the as-

sumption on Ti . When compared to the model Ti = const, the transport evaluation

using the model Ti = Te (figure 5.28) yields smaller values by an attenuation, which

is basically uniform along the resolved range of wavenumbers. This is in accordance

with the observation of broadband uniform cross phases between Isat , Ufloat and Te .

5.3.2 Transport of energy

The turbulent radial energy flux consists of the convective component Q∗
r and of the

conductive component q∗r (see section 1.4.1). The convective component is closely

related with the particle flux. Neglecting the averaged center of mass kinetic energy,

it is obtained by simply multiplying the particle flux with the factor 3
2
kB T̄e for the

electron part, as introduced in equation (1.28). In figure 5.29 the profile of the energy

flux convected by electrons is displayed. For the calculation of the density the model
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Figure 5.27: Spectral distribution of the particle flux as a function of the wavenumber

(horizontal axis) and of the probe position (vertical axis). The model to evaluate the

plasma density assumes Ti = const and the data corresponds to the outward movement

of the probe. The spectral distribution of the particle flux is colour coded and has got

a fixed resolution ∆k = 1.16 cm−1 in the wavenumber domain. Along the vertical axis

the discrete flux samples (denoted by asterisks in figure 5.26) are plotted using a constant

binsize. Since there are more samples available near the LCMS, the mapping of the probe

position is stretched in this region.

Figure 5.28: Spectral distribution of the particle flux during the outward movement of

the probe similar to figure 5.27, but using the model Ti = Te when evaluating the plasma

density n0.

Ti = const has been used. The profile is indeed very similar to the corresponding

profile of the particle flux from figure 5.26. Contributions of ions were not measured

and will be discussed later. Minor variations of the convected energy flux caused by

the profile of the mean temperature are possible, for instance in the SOL towards

large reff , the convected energy flux decreases more rapidly than the particle flux.
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Figure 5.29: Measured profiles of electron contributions to the turbulent energy flux,

where Uplasma and n0 have been evaluated according to the model Ti = const. Black

asterisks: convected flux, red triangles: conducted flux. Both directions of the probe

movement are overplotted, as solid lines (inward) and as dashed lines (outward). The

error bars are estimated from the deviation of individual tip triplets (see section 5.3.1).

The particular shape of the profile with the decline of the convection towards

smaller reff is evidence, that convection alone cannot account for the total flux of

energy. Since there is no energy source in the boundary plasma and in the SOL, a

decrease of the total energy flux near the LCMS would be a contradiction. Therefore

an additional mechanism must complement the energy transport.

5.3.2.1 Conduction of energy by temperature fluctuations

Temperature fluctuations can sustain an energy flux without transport of particles.

This so-called conduction is quantified in equation (1.29). Evaluating the contribu-

tion of the electrons yields the radial profile, which is overplotted in figure 5.29. The

visualisation suggests, that the reduced convection close to the separatrix is actu-

ally replaced by conduction. Furthermore the computing procedure reveals, that the

triple product ñ0 T̃e ṽE×B can be neglected in good approximation, thus T̃e ≈ T̃e
∗
.

Similar to the case of the particle flux, the cross phase of the fluctuating quanti-

ties plays the decisive role. For conduction it is the Uplasma-Te cross phase (cf. figure

5.24). Obviously, the rise in the conducted flux towards the separatrix follows the

increasing cross phase.

If absolute values of convected and conducted energy flux are critically assessed,

then a very sensitive dependency of the conduction on the bandwidth during the fit-
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ting of probe characteristics must be conceded. Increasing the smoothing parameter

ksm from 10−5 to 4 · 10−5 (see section 4.2.3) reduces the conducted energy flux by a

factor of 2 . This suggests that, when compared to convection, the high fluctuation

frequencies are more important for the conduction. Nevertheless, the profile shape

is robust, i.e. it does not change with the value of ksm.

Finally, the corrected correlation function between potential and temperature is

used to deduce the spectral composition of the conducted transport. The result is

displayed in figure 5.30. All scales produce a radially outward conduction of energy

Figure 5.30: Spectral distribution of the conducted energy flux during the outward

movement of the probe. The description of the axes is the same as in figure 5.27. Both

models that assume either Ti = const or Ti = Te when evaluating the plasma potential

yield essentially the result shown here.

and the spectral shape hardly changes with the level of the total conducted transport.

When compared to the spectrum of the particle flux (figure 5.27), the dominant

scales are indeed smaller and the conduction is more broadband. The localisation of

transport relevant power around k ≈ 0.06 ρs
−1 is much less pronounced than for the

particle flux. Approaching the separatrix it is rather replaced by a spectral plateau

ranging up to k ≈ 0.1 ρs
−1.

5.3.2.2 Uncertainty of the measured fluxes

Before discussing the details of experimental uncertainties, one must become aware,

that the aim of the present analysis is to relate the local measurements to the overall

confinement. Thus, the region of interest is the one close to the separatrix. The

main contributions to the uncertainty of the average particle or energy flux are

the statistical deviations of the transport along the extent of the array, and the

uncertainty of the ion temperature plus its fluctuations. Additionally, the impact of
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the coefficient for secondary electron emission is evaluated and discussed.

Algebraically, the statistical error can be calculated from the scatter of the local

transport that is measured by individual probe triplets within the 15 tip array. Since

the scatter is rather high for the case of conductive transport (including singular

triplets with values around zero or slightly negative) the error bar is large. Close to

the separatrix, this statistical error is typically 50% of the mean value. In the case

of the convective transport, the scatter is much smaller and can be neglected with

respect to the uncertainty introduced by the ion temperature model.

A different aspect is given by the uncertainty of Ti , its gradient and its fluctua-

tions. Since there is no accurate measurement, both assumptions Ti = T̄e = const

(disregarding Ti fluctuations), and Ti = Te are investigated. An enhanced value Ti

equal to 1.5 times the average electron temperature at the separatrix should now

be assumed. Considerations that support such and even higher ratios are reported

from the JET tokamak [Fundamenski et al. 2002]. The interrelation between den-

sity, saturation current, and the temperature ratio τ = Te / Ti is supplied by probe

theory. Taking this into account, the evaluated plasma density would decrease by

the factor 0.89, as well as the particle flux and both energy fluxes conducted and

convected by the electrons. The energy flux by the ions would rise by the factor

1.34, for the increased temperature outweighs the decrease of the density.

If there are significant fluctuations of the ion temperature, then a dramatic

change is to be expected in the calculated flux of convected energy Q∗
r . For the

extreme case Ti = Te the situation is shown in figure 5.31 and can be compared to

the calculation with constant Ti in figure 5.29. Close to the separatrix the value

of Q∗
r has dropped by a factor of ∼ 3 from 2.4 kW m−2 to 0.8 kW m−2 for these as-

sumptions. One reason was already anticipated in section 5.2.2: Ti = Te yields a

reduced level of density fluctuations. Another reason is the behaviour of the cross

phase Te-n0 , which is more negative in the model Ti = Te when compared to the

model Ti = const (see figure 5.24). The change in the Te-n0 cross phase further

diminishes the particle transport and the energy flux convected by electrons.

Despite these dramatic changes in particle and energy convection, the energy

flux conducted by electrons is rather unaffected, naturally, by ion temperature fluc-

tuations. It is notable, however, that the statistical error is smaller than in the

computation with constant Ti . Obviously Ti = Te reduces the scatter of the con-

ducted electron transport calculated from individual probe triplets.

Considering the influence of the coefficient for the emission of secondary electrons

γe (see section 2.4.4), it turned out, that the uncertainty of its actual value plays a

minor role compared to the other sources of uncertainty. The complete calculation

of energy fluxes was carried out with values γe ∈ {0.4, 0.5, 0.6}. So far, the presented

results were all obtained using γe = 0.5 . Increasing γe from 0.5 to 0.6 enhances the

convection by roughly 10% close to the separatrix, while other radial positions as

well as the conducted energy flux are nearly unaffected.

To conclude, the uncertainty of the energy flux conducted by electrons is deter-

mined by the statistical deviation of individual probe triplets and amounts ∼50%,
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Figure 5.31: Measured profiles of electron contributions to the turbulent energy flux with

the model assumption Ti = Te also for the fluctuations. Asterisks stand for the convected

flux (Q∗
r) and red triangles for the conducted one (q∗r). Axes, linestyles, and the method

to deduce the error bars are the same as in figure 5.29.

while the average value (1.8 kW m−2 close to the separatrix) and the shape of the

radial profile are robust with respect to the different assumptions on Ti . In contrast,

particle and convected electron energy flux depend strongly on the Ti model. For

the particle flux the uncertainty is more or less constant along the profile (in both Ti

models) and amounts to ∼ 7·1019 m−2 s−1. For the convected energy the uncertainty

is mostly 0.4 kW m−2, except when Ti = Te and the probe is located close to the

separatrix. In that case the uncertainty is 0.7 kW m−2.

5.3.2.3 Total energy flux

Neglecting the fact that the ion self collision time is comparable to the lifetime of the

fluctuations, which could put the concept of an ion temperature into question, one

may add the energy flux carried by ions in a straightforward way. In this case the

dependence of the total energy flux on the ion model is not so serious: On one hand

with Ti =const= T̄e the total flux is twice the convected flux plus the conducted flux

by electrons alone, altogether (6.6 ± 1.5) kW m−2 near the LCMS (figure 5.32). On

the other hand the assumption Ti = Te requires to add two times the corresponding

convected flux plus two times the conducted flux, altogether (6.0±1.0) kW m−2 near

the LCMS (figure 5.33).

The relative error of the total flux is smaller than that of the conductive flux.

As before, 13 individual probe triplets have been used to calculate this error, but
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Figure 5.32: Profile of the total turbulent energy flux according to the model Ti =

const. Both directions of the probe movement are overplotted, as a solid (inward) and

a dashed line (outward). The error bars are estimated from the deviation of individual

tip triplets. For values reff > rsep + 1.2 cm the regression analysis yields the gradient

(4.2 ± 0.4) kW m−2/ cm (red line).

this time evaluating temperature times density on the middle tip of each triplet,

multiplied with the electric field fluctuations that are deduced from the adjacent

tips. Obviously the scatter of these individual fluxes is smaller when compared to

the scatter of conduction. This can be understood, since the product of temperature

and density is equivalent to Isat times
√
Te , which reduces the impact of Te being

the fit parameter with the highest noise level.

From the magnitude of the total flux and its gradient (see figures 5.32 and 5.33) a

gradient length can be estimated. This length is λ = 1.6 cm in the model Ti = const,

and λ = 1.5 cm in the model Ti = Te . Power decay lengths have been measured

before in the SOL of the W7-AS, however without the divertor. For a similar

magnetic configuration, 460 kW ECR heating and a volume averaged density of

2 · 1019 m−3, the reported power decay length was λq ≈ 1.4 cm [Grigull et al. 1995],

which is a reasonable agreement.
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Figure 5.33: Profile of the total turbulent energy flux similar to figure 5.32, but

using the model Ti = Te . The regression analysis in the SOL yields the gradient

(4.0 ± 0.3) kW m−2/ cm (red line).

5.4 Comparison of the transport to the overall

confinement in W7-AS

One may scale the measured local fluxes to the entire surface of the W7-AS and

discuss the overall turnover of particles and energy. If the turbulent fluctuations

are relevant for the average radial transport at least in the edge plasma, then the

measured values should yield a significant ratio of the entire particle or energy

turnover in the machine. According to equations (1.30) and (1.31), the comparison

has the fewest unknown parameters when the data from near the LCMS is used. For

the energy flux the method is simple, since the energy source inside the plasma bulk

volume is well known. A detailed discussion of the particle flux, however, would

require the exact recycling sources at the limiters and a computation of the neutral

gas, and ionisation profiles, e.g. by the Monte Carlo code EIRENE [Reiter 1992].

This is beyond the scope of this work.

5.4.1 Impact of finite bandwidth

Examining the k-spectra of the transport in figures 5.27, 5.28 and 5.30, it is obvious

that particularly the spectrum of conduction is broad compared to the bandwidth

of the measurement. Since the contribution of conduction to the total energy flux

is large near the LCMS, this puts the significance of the measurement into ques-
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Figure 5.34: Artificial power spectrum as a function of the normalised wavenumber. The

transport relevant slope with exponent −3/2 models the experimentally obtained one.

tion. A simulation of the measurement, where the observed spectral properties are

extrapolated beyond the bandwidth, is considered to be helpful. Two questions can

be tackled:

• Are the contributions of small wavenumbers to the transport measured cor-

rectly, if indeed the wave period is small compared to the recording time, but

the wavelength is larger than the baseline of the probe array?

• Extrapolating the measured spectral properties to high wavenumbers: How

large will the fraction of the transport actually be, that can be resolved prop-

erly with the given tip spacing?

One method to address these topics is to set up artificial spectra, spatio-temporal

signals and transport numerically on a sufficiently fine grid. The data is numerically

sampled on a more coarse grid corresponding to the tip spacing and the temporal

grid.

Defining the temporal resolution dt = 0.2µs and the poloidal resolution dy =

0.067 cm and using 50625 × 1125 grid points, the periodic simulation area has got

side lengths ∼ 10 ms and 75 cm , respectively. The length in time is equivalent

to one packet, i.e. one probe position of the evaluated experimental data. Given

ρs = 0.02 cm , the y spacing is chosen to match k ≈ ρs
−1 as the maximum resolved

wavenumber. This should be sufficient, since any numerical simulation of drift wave

turbulence shows a strong drop-off in the spectral power above kρs = 1 (e.g. [Scott

1997]).
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Figure 5.35: Contour plot of the artificial data, sampled by a numerical 15 tip probe.

The fluctuating part of the density is color coded and displayed as a function of time and

space, where the latter corresponds to the poloidal coordinate in the real measurement.

The primary data were calculated from the artificial amplitude kf spectrum and a random

distribution of the phases.

Within the kf plane an amplitude spectrum is selected that models the ex-

perimentally obtained ones for either T̃e , ñ0 or Ũplasma . The artificial spectral

power has got a plateau in the square region 0.251 cm−1 < k < 0.05 ρs
−1 and

10 kHz < f < 50 kHz . Beyond the plateau, lines of equal power display quadratic

contours in the kf plane, where the amplitude decrement with the exponent −5/4 of

either k or f is chosen to generate the experimentally observed −3/2 power law after

integrating the f coordinate of the amplitude squared. The model power spectrum

as a function of k alone is displayed in figure 5.34.

Thereafter the corresponding phase spectrum can be defined: For simplicity the

phases of potential fluctuations are assumed to be randomly distributed. When

calculating the density or temperature fluctuations, this random phase spectrum is

reused, but the phases are shifted uniformly by 40◦ according to the experimental

value close to the separatrix. In the following only the term “density” will be used

in order to describe either density or temperature fluctuations.

Keeping in mind the guidelines written down in appendix A.2.2, the Discrete

Fourier Transform is employed to produce the fluctuations in the spatio-temporal

domain. Since the transform is a superposition of harmonic waves, electric field fluc-

tuations can be evaluated from the potential exactly. The full transport wavenumber

spectrum is obtained from the cross spectrum between the electric field fluctuations

and the density by summing up all frequencies (see section 4.5.2).

Now an artificial probe measurement is performed in a 2.8 cm wide subset of

the data. In several runs the location has been shifted along the spatial extent

of the simulation area without significant change of the results. Defining a probe

grid with 15 points, 2 mm spacing and 0.4µs temporal resolution, the turbulence

is “measured” artificially and a time slice of the “sampled” data can be displayed

(figure 5.35).
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Figure 5.36: Cross-correlation function between modelled potential and density fluctu-

ations, calculated from the numerical probe measurement. The function is normalised to

the absolute maximum of the displayed region.

Analogue to the evaluation of experimental data, potential and density fluctu-

ations are filtered by a 1 kHz highpass, the cross-correlation function is computed

and averaged over equivalent tip pairs, and the electric field is approximated by

taking finite differences. It is worth mentioning that the poloidal size of the cross-

correlation in figure 5.36 is indeed similar to the experimentally obtained one. This

scale is related to the location of the shoulder in the k-spectrum (see figure 5.34),

i.e. where the plateau passes over to the spectral decay following a power law. If

the numerical values are compared, then the poloidal size is roughly 0.37 times the

wavelength associated with the wavenumber at the location of the shoulder.

There is one slight difference to the experimental results, that is the propagation

velocity is less uniform. This is an effect of the weak proportionality between k and

f in the model amplitude spectrum.

Finally, the transport spectrum as measured by the numerical probe and the

exact spectrum are compared. With respect to the initial questions there are these

findings:

• Contributions of wavelengths longer than the baseline of the probe are negligi-

ble. The spectral peak of the transport is located at the shoulder of the input

wavenumber spectrum which is closely connected to the poloidal size.

• With the given −3/2 decay of fluctuation power extrapolated until the disper-

sion scale k ρs = 1, and assuming that the cross phase is stiff in that region,

the probe misses approximately 70% of the total transport. The missing flux

is carried by small scales, i.e. large wavenumbers. Even within the observable

wavenumber range, the technique to use finite differences for the calculation

of the electric field leads to significant leakage.
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Figure 5.37: Simulated and numerically sampled spectral density of the transport. The

solid line is the exact calculation and the squares denote the result of the numerical

probe measurement. Experimentally obtained transport spectra were scaled manually

and overplotted with a dotted (convective) and a dashed (conductive) line.

In order to substantiate these statements, figure 5.37 shows the spectral density of

the transport from both the exact calculation and the numerical probe measurement.

Note that the spectral decay of the (exact) transport is much slower than that

of the power spectrum in figure 5.34. Additionally, two experimental transport

spectra are overplotted, which were obtained close to the separatrix. Both the

conductive and the convective part display a striking resemblance to the numerical

probe measurement for kρs > 0.2 . Due to the fact that the natural spectrum of

plasma fluctuations in the W7-AS is actually more smooth around the shoulder, the

experimental spectra are more flat for kρs < 0.2 .

Concluding, an increased bandwidth particularly in the wavenumber domain is

required, if one wants to measure a larger fraction of the actual turbulent transport.

For future probe measurements this is equivalent to an array with more closely

spaced tips.

5.4.2 Turnover of particles and energy in the W7-AS

In order to maintain a W7-AS plasma steady state, energy supply (in this case ECR

heating) and neutral gas supply for particle refueling are necessary. The absolute

values of the corresponding rates are available from the control signals. The balance

inside the plasma volume requires that the total heating power is equal to the

absorbed microwave power. For the particles it is more complicated, since recycling
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neutrals from the wall diffuse into the plasma volume where they get ionised. This

adds to the external supply of gas. A realistic treatment of the recycling is rather

complex and will be omitted. Hence, the turnover of particles discussed here is only

a lower limit, while the value for the energy is rather accurate.

The external particle fuelling rate of the W7-AS plasma during the probe mea-

surement was Rn = 4 ·1020 s−1, and the absorbed heating power was PE = 0.48 MW.

Bolometry measurements suggest that the radiation losses inside the bulk plasma

amount to 0.04 MW. The additional energy sink defined by the volume integral over

WionSn (see section 1.4.2) is negligible. This is given by the particle fuelling rate

times the ionisation energy of hydrogen (13.6 eV) in the present case.

Since the area of the magnetic surface tangential to the probe is Aκ(rsep) =

15.1 m2 (see section 3.1.1), and since the radial transport at the location of the

probe is decreased by a factor 1.22 due to the local flux expansion (see also section

3.1.1), the expected local radial flows are

Γ̄∗
r =

4 · 1020 s−1

15.1 m2 · 1.22
= 2.2 · 1019 m−2 s−1

and Q̄∗
r + q̄∗r =

(0.48 − 0.04) MW

15.1 m2 · 1.22
= 24 kW m−2 ,

where the uncertainties of these values are small compared to those of the measured

turbulent fluxes.
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Chapter 6

Discussion

Before going into the interpretation of measurement results, it should be pointed out

that the observed properties of fluctuations in the SOL of W7-AS ECRH plasmas

are exemplary. They are not the average of a large database of various plasma

experiments. However, discharges with ECR heating are highly reproducible in W7-

AS with respect to radial profiles of temperature and density and to the total energy

content. Therefore, an exemplary snapshot of edge fluctuations and their associated

radial fluxes of particles and energy should also describe plasma edge turbulence

under these experimental conditions in general.

6.1 Characteristics of W7-AS plasma edge

turbulence

The simultaneous measurement of temperature, density and electric potential with

sufficient resolution in both time and space allows one to determine properties of W7-

AS plasma edge fluctuations in detail. Fluctuations are observed to be turbulent

throughout the investigated region from near the LCMS into the SOL: From the

measurements there is no evidence for long-range coherent periodicity of fluctuating

plasma quantities, neither in time nor in the poloidal direction. Instead, using spatio-

temporal correlation functions, the fluctuations appear to be localised features that

can be characterized by a poloidal size dpol and a lifetime τL (see section 5.2.1). In

W7-AS SOL at full magnetic field B = 2.5 T typical values are dpol = 1 cm and

τL = 30µs, respectively, for fluctuations of both n0 and Te .

Transforming the spatio-temporal correlation into Fourier space, these properties

are corresponding to a mode spectrum of finite width. In the temporal domain,

the total bandwidth is determined by poloidal E×B convection. The convection

velocity is comparatively homogeneous along the extent of the Langmuir probe array,

since the latter is aligned within one magnetic surface. The magnitude of the velocity

depends on the distance to the LCMS. This was reported by Bleuel et al. [2002] and

it is known from other machines, e.g. Ritz et al. [1984]. The poloidal convection is
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induced by the stationary profile of the radial electric field that builds up depending

on the total power and particle balance inside a plasma machine as can be described

by neoclassical theory. Thus, since we cannot discuss the radial electric field within

this frame, we do not rely on frequency spectra.

A more meaningful characterisation of the turbulence is possible by dpol and

the k spectrum, respectively. In this case, the spectral power as a function of

normalised k is localised at low wave numbers with a slight maximum for values

k⊥ρs = 0.04 . . . 0.05 (section 5.2.2). Beyond the location of this maximum, the power

spectrum decays proportional to k x with an exponent x <∼ −1.5 until the limit of

resolution k⊥ρs ≈ 0.33 . The slowest decay (x = −1.5) is found near the LCMS and

a more steep decline is found in the SOL. For density and potential, these poloidal

scales in the W7-AS SOL have been reported before by Bleuel et al. [2002], who did

meaurements in the SOL and show a power spectrum with x = −3 . For Te alone,

there are measurements available inside the plasma confinement region of W7-AS

by Sattler et al. [1994] and Bäumel et al. [2003]. Although in the latter reference

the distance relative to our position in radial direction is about 8 cm, the normalised

poloidal scale is of the same order. Bäumel measured the poloidal evolution of the

coherency. Given dpol is two times the decay length of the coherency, his result is

dpol = 1.6 . . . 3 cm, depending on the ECR heating power. This is a factor 1.6 . . . 3

higher compared to the edge, at the same time the normalisation parameter ρs ,

however, rises to ∼ 3 times the edge value due to the electron temperature profile

[Bäumel 2002]. Since k⊥ scales with the inverse of the poloidal size, the product

k⊥ρs remains more or less unchanged (factor 1 . . . 1.9) inside the plasma.

Comparing the scales of density fluctuations measured with Langmuir probes

in the SOL plasma of various tokamaks, the situation is very similar. For edge

parameters Te = 20 eV, n0 = 3 · 1018 m−3 and varying magnetic field strengths,

Zweben and Gould [1985] (B = 0.35 T), Levinson et al. [1984] (B = 0.8 T), Ritz et al.

[1984] (B = 1 T) and others report that the spectral power peaks below k⊥ρs = 0.1 .

More recently, frequency spectra of single point measurements, which are more easily

to obtain, have been compared between different machines by Carreras et al. [1999].

Compensating for the E×B convection in the method of analysis, the authors find

a universal similarity in the turbulence spectra.

6.2 Numerical simulation of plasma turbulence

Self consistency of particle dynamics and the relevant fields generated by these par-

ticles is achieved in numerical models for fully developed plasma turbulence. So

far, the corresponding computer codes, however, are only applicable for the plasma

confinement region. Present day’s most advanced numerical simulations are three

dimensional (3D) when using fluid representation of the plasma and five dimensional

(5D), respectively, when applying a gyrokinetic model (i.e. neglecting the phase of

the gyro motion). They are able to include magnetic geometry in detail. Scott [1997]
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(3D) and Jenko [1998] (5D) provide simulations in flux tube geometry of a tokamak.

For the simulated conditions at the plasma edge, but still within the LCMS, both

find power spectra in density and potential with peak values at low wavenumbers and

a rollover towards an exponential decay in the range k⊥ρs = 0.1 . . . 0.2 . The fluid

model has been adapted by Kendl [2000] to the flux tube geometry of a stellarator,

including the W7-AS magnetic configuration. Kendl also compares the numerical

results for different geometries and finds a dependence of the fluctuation induced

transport level on the integrated modulus of the local shear, which is nonuniform

within one magnetic surface of a stellarator. Normalized k spectra, however, are

almost unaffected. Kendl’s comparison of the k spectra, obtained from the simu-

lation of turbulence in various stellarator and tokamak geometries is displayed in

figure 6.1. One remark concerning the limit k → 0 should be added: While the

simulations usually show a white spectrum for small k values, this is not observed

in the measurement due to the finite size of the observed volume.

Figure 6.1: Power spectra of density fluctuations as a function of the wavenumber ky

(perpendicular to the magnetic field) in units of ρs

−1 [Kendl et al. 2003]. The data

are obtained from numerical simulations of drift-Alfvén turbulence in various stellarator

and tokamak magnetic field configurations. The high degree of similarity indicates the

universality of the turbulent spectrum.

To conclude from the previous experimental and this theoretical section: The

poloidal size dpol and the corresponding location of the rollover in the k spectra of

both temperature and density fluctuations are universal, when normalised to the

drift scale ρs . This is confirmed by the W7-AS measurements at several positions

in the SOL up to the LCMS. Compared with numerical simulations of drift wave

turbulence on closed magnetic surfaces, the rollover of the k spectra measured in

the SOL is located at wavenumbers, which are smaller by a factor ∼ 2.
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6.3 Phase relations between fluctuating

quantities

It was pointed out in section 5.2.3, that the phase of the cross kf spectrum be-

tween two fluctuating quantities is independent of the values of k and f in good

approximation. Therefore, it is sufficient to discuss scalar power weighted phases.

6.3.1 Measured properties

First of all it is remarkable, that the Ufloat-Isat cross phase is close to 90◦ with

marginal variation for different radial positions in the SOL. Along the direction of ion

diamagnetic drift Ũfloat is always leading Ĩsat. Assuming that the negative gradient

of Ufloat is equal to the transport relevant electric field (generally this is not a good

assumption), then this phase shift yields the largest possible fluctuation induced

radial transport directly opposed to the stationary gradient of the plasma pressure.

The quantities Ufloat and Isat were measured with non-sweeping probes on several

devices and the observation of this characteristic phase shift is indeed universal.

Levinson et al. [1984] found it at PRETEXT, Endler et al. [1995] at ASDEX, Lechte

et al. [2002] at TJ-K, and it has already been documented at W7-AS by Bleuel

[1998]. Taking into account the electron temperature Te and its fluctuations, it

becomes obvious that this stiff relation is composed of counteracting evolutions in

the cross phases Ufloat-Te and Te-Isat . Close to the confinement region the cross

phase between fluctuations of Te and Isat is small and the Ufloat-Isat phase shift is

sustained by the displacement of Ũfloat with respect to T̃e . Far out in the SOL the

complementary behaviour is found: the Ufloat-Te cross phase tends to small values

(the minimum value that has been found was 30◦) while the phase between the

fluctuations of Te and Isat increases.

The phase of the density fluctuations ñ0 deduced from Ĩsat sensitively depends on

the model assumption for Ti (section 5.2.3.3). Experimentally, it was not possible to

distinguish between the two models Ti = T̄e = const and Ti = Te within this work.

In theory, on one hand the ions don’t take part in the fast parallel dynamics of the

electrons. This is an argument in favour of Ti = const. But on the other hand radial

E×B drifts in a radial background gradient of Ti introduce a finite fluctuation level,

which is an argument in favour of Ti = Te . Hence, when evaluating the Isat-n0 cross

phase with the two different model assumptions, the results can be interpreted as a

lower and an upper boundary. The absolute deviation of the cross phase between

the two models is ∼ 15◦ when evaluated close to the LCMS, whereas the deviation

vanishes in the SOL.

Fluctuations of Te and n0 are highly correlated (see sections 5.2 and 5.2.3).

Between the SOL location and the location near the LCMS there is a remarkable

change of the cross phase: While in the SOL ñ0 is displaced relative to T̃e in electron

diamagnetic direction it is opposite close to the separatrix. The variation is larger
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in the Ti = Te model than in the Ti = T̄e = const model. This has a serious

consequence for the radial transport of particles: Since Te contributes significantly

to the plasma potential (see the probe theory in section 2.4.4), the change of the

cross phase sign leads to a reduction of the radial particle flux. The reduction is

stronger pronounced in the Ti = Te model.

Data from other devices concerning the phase relation between T̃e and ñ0 are

very rare. Meier et al. [2001] supply a measurement at the LCMS of TEXT-U and

deduce an in-phase fluctuation of Te and n0 . This would be consistent with W7-AS

for a probe position close to the LCMS. The Te-n0 cross phase was measured in the

confinement region of W7-AS ECRH plasmas with a completely different diagnos-

tic setup. Häse et al. [1999] used an ECE crossed sightline correlation radiometer

combined with a broadband heterodyne reflectometer and they report in-phase cor-

relation of T̃e and ñ0 , and a radial outward propagation of turbulent structures.

6.3.2 Theoretical approaches

Self consistent simulations of plasma edge turbulence are, as already pointed out,

only available for the confinement region. Zeiler et al. [1997] find a significant corre-

lation between T̃e and ñ0 with fluctuations in phase, independent of the influence of

the magnetic curvature. This is not surprising according to Scott [1997], since the

basic characteristics of turbulence, i.e. the shape of the spectrum and the distribu-

tion of cross phases do not depend on the inclusion of single instability mechanisms.

Fundamental is only the interplay between E×B drifts in a background pressure

gradient on one hand, and the mode coupling and the dissipating parallel electron

motion on the other. Scott additionally supplies the phase distribution between

Ũplasma and ñ0, which is generally independent of k and peaks at ∼ 20◦. The width

of this distribution is also ∼ 20◦ and depends on the normalised parameter β̂, that

can be estimated to be close to 0.5 in the SOL of the W7-AS. When compared

to the measurement near the LCMS, the most probable value of the cross phase

obtained from the simulation is smaller by a factor ∼ 1.5 . Assuming that the sim-

ulation result is valid in the confinement region until the LCMS, and extrapolating

the experimentally observed trend of a decreasing phase shift when approaching the

LCMS from outside, then this finding is in accordance with the measurement. Sum-

ming up, there is remarkable agreement with respect to the sign and the order of

magnitude of the cross phase, and with regard to the fact that also in the simulation

results the phase distribution doesn’t dependend on the wavenumber. In this way,

the simplification to discuss a scalar power weighted phase is justified from both the

measurement and the theoretical point of view.

In the SOL such detailed comparisons are not possible, because currently there

are no simulations of fully developed turbulence available. Linear models by Ne-

dospasov [1989], Garbet et al. [1991] and Endler [1994] are able to identify regions

of unstable poloidal wavenumbers and predict growth rates. Endler studies the

influence of both temperature and density gradient. For the case that the density
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gradient is steeper than the temperature gradient, a “second instability mechanism”

is reported. This mechanism affects mainly small poloidal wavenumbers and yields

fluctuations of Uplasma and Te in phase, while n0 is shifted by 90◦. Since Ufloat de-

pends on Uplasma and Te, it is clear that in this case Ufloat fluctuations have the

same phase as Uplasma fluctuations. According to Endler, in this parameter range

the boundary condition imposed by the sheath at the target plate dominates over

the drift effects and gives strong and mutual feedback on the fluctuating quanti-

ties. Measurements for probe positions far out in the SOL, which indeed yield small

cross phases Ufloat-Te and Ufloat-Uplasma (section 5.2.3.3) approve this model. The

density gradient measured by the probe is slightly steeper than the temperature

gradient (see section 5.1), which is in compliance with the model requirements. One

has, however, to keep in mind the simplification of a linear stability analysis. A

self-consistent numerical treatment of the fully developed turbulence with correct

sheath boundary conditions would be very valuable for detailed further comparison.

There is a phenomenological model for cross field transport by D’Ippolito et al.

[2002], which presumes that an elongated (along B) structure of a plasma density

perturbation exists in the SOL. Such “blob” structure is in accordance with the

result of the correlation analysis of the measured data (section 5.2.1), if it has got

the poloidal size dpol on average and if it has got a finite lifetime. Due to the

boundary conditions in the SOL, each “blob” is terminated on both sides by a

sheath. According to D’Ippolito, the charge separating magnetic curvature drift in

combination with the sheath potential leads to a polarisation of the “blob”. The

polarisation can also be generated by the friction force between the “blob” and

streaming neutral particles [Krasheninnikov and Smolyakov 2003]. The large phase

shift between Uplasma and n0 measured in the SOL (see figure 5.24) corresponds to

the polarisation. Whether the observed cross phase Te-n0, which is comparatively

large in the SOL, and the small cross phase Uplasma-Te are reproduced by the “blob”

model, however, requires further investigation.

6.3.3 Comparison of floating and plasma potential

In general the floating potential Ufloat in a magnetised plasma is a very sensitive

quantity, depending on a large number of parameters. For instance, a significant

impact on Ufloat by modifications in the probe geometry is reported [Höthker et al.

1999]. A complete theoretical treatment of Ufloat would require kinetic modelling

of both ions and electrons, including the probe geometry in 3D. This is not within

the frame of this work. Following equation (2.17), only the interrelations between

Ufloat , Te and Uplasma are discussed.

It has been shown (section 5.2.3.3) that the phase of Ufloat fluctuations differs

from the phase of Uplasma fluctuations. The difference is small in the SOL and max-

imal in the vicinity of the LCMS. Given the aim of the measurement is to deduce

transport relevant fluctuations of the poloidal electric field: In this case, Ufloat can

nevertheless be used instead of Uplasma for the computation of the conductive en-
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ergy transport, since the modification by Te , namely the transport relevant product

between the fluctuating poloidal gradient of Te times the Te fluctuations, is zero

[Pfeiffer et al. 1998]. But in the case of the convective transport the usage of Ufloat

fluctuations alone is not adequate (cf. figure 5.26). This is actually the consequence

of the non-zero cross phase Te-n0.

At this point it should be noted, that the phase relation Uplasma-Te deduced from

the Ufloat-Te cross phase data, and using probe theory, could be confirmed by Fink

[2002], who measured fluctuations at the LCMS of W7-AS with emissive probes.

Fink did a single point measurement and found significant spectral power in the

frequency range 0 . . . 100 kHz . From his data he deduces Uplasma-Te cross phases

around 45◦. For comparison, the measurement with the swept probes yields 40◦

near the LCMS (cf. figure 5.24).

The phase deviation between Ufloat and Uplasma is a natural consequence of the

utilised probe theory. Uplasma fluctuations can be illustrated as the vector sum of

Ufloat and Te fluctuations, where the cross phase denotes the angle between them

(figure 6.2). Consequently, if Ũfloat and T̃e are not in phase, as seen in the mea-

Figure 6.2: Comparison of the relative phase between different fluctuating quantities

(represented as arrows in the complex plane) at different radial positions in the SOL

(schematically, amplitudes not to scale). The cross relation between Ũfloat and ñ0 is the

same in both figures, in compliance with the measurement results. According to probe

theory, Ũplasma is the vector sum of Ũfloat and T̃e (plotted also with a dashed line).

surements, then Ũplasma and T̃e won’t be either. It can also be put the other way

round: If numerical turbulence simulations in the confinement region yield a small

but significant cross phase Te-Uplasma , then probe theory demands a different, i.e.

larger phase shift between Te and Ufloat .

The applied probe theory is stationary in a sense that all transit times of electrons

and ions through the presheath and the sheath are assumed to be small compared

to the temporal scale of the turbulence. For both species in the sheath and for

the electrons in the presheath this is uncritical. Regarding the transit time of the

ions through the presheath (see section 2.4.5) this assumption is marginally fulfilled.
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If the perpendicular diffusion, which refills the flux tube emptied by the probe, is

modelled as a result of turbulent fluctuations, then the presheath size will fluctuate,

too, and the presumption of a stationary probe measurement is not valid. Since

the presheath determines the ion acceleration, this has a sensitive impact on the

floating potential, whereas the measurement of Te is not affected. Possibly that

difference could explain the special properties of the Ufloat fluctuations, such as the

extraordinary phase shift with respect to Isat. One way to approach this problem,

i.e. to study dynamic presheath effects, would be to carry out a kinetic simulation

of both the plasma turbulence and the potential drop imposed by the boundary

condition of a probe collecting ions. An additional outcome of such a simulation

could be the influence of the yet neglected ion temperature fluctuations. This is,

however, outside the frame of this work.

6.4 Electrostatic turbulent transport in the

context of the global confinement

The fast swept Langmuir probe system at W7-AS is calibrated to absolute values,

therefore it is possible to evaluate the turbulent particle and energy flux quanti-

tatively. If the local measurement at the probe position is representative for the

entire magnetic surface, one can evaluate the total turbulent flux by multiplying the

local flux with the area of the magnetic surface. The total flux can be compared

to the global energy and particle balance of W7-AS. Of course, the assumption of

homogeneity within the magnetic coordinates of the flux surface is a rigorous sim-

plification, based on the numerical simulations by Kendl (see section 2.3). In order

to make a better extrapolation, one would have to measure at different poloidal

positions, in the 3D field of a stellarator even at several toroidal positions.

6.4.1 Energy transport

The calculation of the turbulent radial energy flux has been simplified by using

the equations (1.28) and (1.29) for both electrons and ions. These formulas were

derived for isotropic pressure and for turbulent flow velocities much smaller than

the thermal velocities. Both conditions are only marginally fulfilled for the ions.

Keeping these problems in mind, probe data evaluation yields energy fluxes up

to (6.6 ± 1.5) kW m−2 near the LCMS. Farther outside in the SOL the turbulent

radial energy flux decreases with a scale length ∼ 1.5 cm, in accordance with the

power decay length of the W7-AS SOL (section 5.3.2.3). The expected energy flux,

calculated from the ratio of the total deposited heating power and the flux surface

area, is 24 kW m−2, where the effect of the local flux expansion is already included

(section 5.4.2).

Although the magnitude of the radial flux actually measured is only ∼ 28% of

the expected value, it cannot be excluded that turbulent fluctuations account for
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the radial SOL transport in total: A simulation of the probe measurement in a

fluctuating background shows that the missing percentage can be carried by small

scales which are unresolved by the probe (section 5.4.1). This result relies on the

extrapolation of the observed spectral properties near the LCMS, namely the power

law for the fluctuation amplitude and the stiffness of the cross phase, beyond the

resolution limit (k⊥ρs ≈ 0.33) until the dispersion scale (k⊥ρs = 1).

Alternatively, one can argue with the observed power decay lengths: According to

the fluctuation spectra (e.g. figure 5.16) the fluctuation bandwidth is reduced in the

SOL, so that a larger fraction of the transport relevant fluctuations is resolved there.

The flattening of the calculated energy flux for reff < rsep + 1.2 cm is, therefore, due

to a change of the fluctuation bandwidth. Using the measured radial gradient in the

SOL (≈ 4 kW m−2 cm−1, see figures 5.32 and 5.33), and extrapolating the turbulent

energy flux to the separatrix position reff = rsep yields also a larger fraction of the

total energy flux.

Uncertainties of the measurement

Extrapolating the values measured in the SOL to the separatrix position depends on

the calibration of the coordinate reff . The position of the separatrix rsep = 17.5 cm

was deduced from the appearance of counter propagating structures in the corre-

lation function of measured fluctuations in Ufloat . With respect to the nominal

position there is a discrepancy of 1.35 cm, since field line tracing in the vacuum

magnetic configuration yields rsep = 16.15 cm. The deviation is larger than the geo-

metrical uncertainty of the probe alignment. Deviations of this order were already

reported by Bleuel [1998]. The tendency is always the same for probe measurements

in W7-AS: If the separatrix position is determined by the velocity shear layer then

it is of the order of 1 cm farther outside than the nominal position. In the present

case, the multiplication of the radial deviation with the gradient of the power decay

in the SOL suggests, that the turbulent radial energy flux at the nominal separatrix

position is larger by +5.4 kW m−2. This value can be regarded as an additional

uncertainty of the measured flux, when it is compared with the total heating power.

The evaluated turbulent energy flux is influenced by the assumption on the

magnitude of Ti , which could not be measured near the LCMS. Following the consi-

derations in section 5.3.2.2, the assumption T̄i = 1.5 T̄e reduces the energy fluxes via

the electrons and enhances the energy fluxes via the ions. Altogether in the model

Ti = T̄e = const the energy flux calculated from measurement data near the LCMS

increases by +0.4 kW m−2, and in the model Ti = Te by +0.7 kW m−2. Obviously

the effect of the Ti uncertainty is much smaller than the effects of the measurement

bandwidth and the reff calibration.

The impact of secondary electron emission on the evaluated turbulent fluxes is

negligible, which was addressed in section 5.3.2.2 by using different values for γe

during the computation.
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6.4.2 Particle transport

Concerning the particle flux, a detailed comparison is not possible, since the total

turnover of particles is unknown in W7-AS. The total particle rate from external

sources, divided by the LCMS area and compensated for the local flux expansion

at the probe position, yields the flux 2.2 · 1019 m−2s−1. Recycling sources, however,

are not considered. I.e., neutral atoms (invisible to the probe) from recombination

at the wall diffuse into the plasma, they are ionised and effuse as plasma, this

time recognised by the probe. Hence, probe measurements indicate fluxes up to

5 ·1020 m−2s−1 (see section 5.3.1), which is more than one order of magnitude higher

than the flux calculated from external injection. If one examines the radial profile of

the turbulent particle flux (figure 5.26), one notices that the peak value is measured

approximately 1.5 cm outside the LCMS. Towards the separatrix, the particle flux

decreases significantly. Depending on the model for Ti , the reduction factor can be as

small as one third. On the contrary, the energy flux does not display such behaviour.

The results can be interpreted in a way, that the recycling neutral particles from

the wall are ionized already within the SOL and are transported outward by the

turbulence. Since there are no energy sources within the SOL, the situation is

different for the energy flux.

Interpretation of the particle flux profile

Two questions may arise with respect to the measured profile of the particle flux

(figure 5.26): The first is, which property of the turbulence changes in order to

cause this peculiar radial variation? The second: Can the shape of the profile be

understood?

The answer to the first question was anticipated in section 6.3.1, and the conclu-

sion is that the decrease towards the separatrix is due to the changes in the phase

of the Te fluctuations. In principle it is unnecessary to argue with Ufloat and Te ,

since the main point is the cross phase Uplasma-n0 (cf. figure 5.24). The profile of

this cross phase and the profile of the particle transport are essentially the same

(indicating that the change in the fluctuation amplitudes plays a minor role). Ne-

vertheless, it is helpful to disentangle the contributions to Uplasma , which are Ufloat

and Te , in order to put the results into the context of former investigations. For

example, Lechte et al. [2002] and LaBombard [2002] neglected the effects of Te fluc-

tuations. It seems probable, that a part of LaBombard’s criticism could be resolved

by the inclusion of Te and its fluctuations. Pfeiffer et al. [1998] already reported a

significant overestimate of the particle flux, if one does not account for T̃e .

Turning to the second question, whether one can understand the shape of the

profile. It is helpful to remember the continuity equation (1.21) for particles and its

application to the SOL (see section 1.4.2). Since the scale length of the particle flux

variation is much smaller than the effective plasma radius reff ≈ 18 cm , the particle

flux divergence can be approximated as the partial derivative with respect to the
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radial direction. At the maximum of the radial particle flux at (reff − rsep) ≈ 1.5 cm

the effective particle source Seff is zero, i.e. the volume source Sn balances the parallel

losses div Γ‖ . Under the assumption that the volume source due to ionisation of

recycling neutrals is constant in this region, an alternative formulation of the second

question is: Do the parallel losses change with the radial coordinate?

Field line tracing in the vacuum magnetic field configuration (see section 3.1.1)

shows that there is a strong change in the connection length at (reff − rsep)≈ 1.5 cm,

cf. figure 6.3. In the direction opposite to the magnetic field the length is constant

and connects to the lower divertor of the W7-AS. Along the field vector the connec-

tion jumps from one module of the upper divertor to a more distant one. The situa-

tion is illustrated in figure 6.4. Given the parallel loss scales with the inverse of the

connection length, it can be concluded that for probe positions (reff − rsep) > 1.5 cm

the parallel loss is indeed enhanced.

Figure 6.3: Connection lengths (LC) in the W7-AS SOL from the probe to the limiters

as a function of the radial probe position. The edge rotational transform in the magnetic

configuration is ι = 0.345 . Positive LC corresponds to the direction in parallel with the

magnetic field. At the location reff − rsep ≈ 1.5 cm the connection jumps to a different

limiting component.

6.4.3 Interplay of conduction and convection

From the spectral representation one obtains insight into the composition of the en-

ergy flux. This way, different properties can be observed in conduction (figure 5.30)

and convection (figures 5.27 and 5.28). Most notably, particle and convected energy

flux are sustained by smaller wavenumbers k⊥ρs
<∼ 0.1, while the conduction spectra

are inherently broader and cover the range k⊥ρs
<∼ 0.2. The ranges are estimates for

the e−1 widths of the spectral flux density. One can assume that both the convective

transport, predominantly found in the SOL, and the conductive transport, which is

dominating near the LCMS, are sustained by “blobs” [D’Ippolito and Myra 2003].
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Figure 6.4: Probe position (solid arrow), connection lengths (slim arrows) and plasma

limiting divertor modules at W7-AS. The connection is drawn only schematically. Figure

courtesy of J.Kisslinger, IPP Garching.

In this case, although the details on “blob” stability in the particular W7-AS mag-

netic geometry would require further investigation, D’Ippolito’s remark that large

blobs (low k) will break into smaller ones (high k) on their way from the LCMS into

the SOL cannot be supported.

Following the fact that in the SOL the fluctuation power generally increases

when approaching the separatrix, the observed transition between conduction and

convection is only possible because of changes in the cross phases between the fluc-

tuating quantities. Hence, the cross phases seem to be the most important degrees

of freedom, which allow the turbulence to sustain both the recycling particle flux

and the steady energy flux.
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Conclusions and Outlook

Using the sweeping technique for a poloidal multi-tip Langmuir probe array, the set

of transport relevant fluctuations of Te , n0 and Uplasma was measured at different

radial positions in the W7-AS edge plasma. The achieved space and time resolu-

tion has broadened the experimental view of plasma turbulence. Furthermore, the

measurements provide detailed insight into the properties of the plasma fluctua-

tion dynamics, which allows one to do a comprehensive comparison with numerical

simulations of plasma turbulence.

To evaluate the data, the fit model with continuous evolution of the fit param-

eters Isat , Ufloat and Te turned out to be adequate in a sense, that the deviation

between the measured and the fitted model data is small. Near the last closed mag-

netic surface (LCMS), where the bandwidth of the fluctuations is not small when

compared to the sweep frequency, the fit parameters become covariant. Thus, the

measuring method is at its limit for such probe positions.

In the scrape-off layer (SOL) of the W7-AS, profiles of the radial heat transport

have been measured, and the contributions of convection and conduction could be

clearly separated. When approaching the LCMS from outside, the convected part of

the energy flux and the radial particle flux decrease, whereas the total energy flux is

maintained by increased conduction. This condition is due to the cross over of the

phase between Te and n0 fluctuations. The previously known power decay length in

the SOL is confirmed by the present work. Only 28% of the total energy flux near the

LCMS were measured. Calculations show that this is due to the limited bandwidth

in both the frequency and the wavenumber domain. Hence, for future measurements

further extension of both bandwidths is desirable but very demanding.

In the SOL the measurements suggest large cross phases (Uplasma,n0) up to

O(60◦). If that is to be compared to a numerical model, a self-consistent treatment

of the fully developed turbulence with correct sheath boundary conditions would be

necessary. Near the LCMS the comparison is possible: The amplitude and phase of

Te fluctuations provide the missing link between the previously obtained π/2 phase

shift (Ufloat,Isat) and the theoretical predictions of small cross phases (Uplasma,n0)

from drift-wave turbulence simulations.
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Appendix A

Formulas and Constants

The following topics are referred to in various literature. Some subtle distinctions,

however, are often neglected and the reader might have to inquire several references

to find the exact background. The basics of a couple of items, which have been

elaborately used in the previous chapters are reviewed in this appendix.

A.1 Small Plasma Formulary

A.1.1 The Coulomb Logarithm

The value of the Coulomb Logarithm is needed when the electrostatic interaction

during particle encounters has to be taken into account in a plasma. For instance

to do a computation of the parallel electric resistivity or of thermal relaxation times

or of the slowing down of fast particles. Following Spitzer [1962] the Coulomb

Logarithm is the natural logarithm of the ratio between Debye and Landau length.

ln Λ = ln
λD

λL

The Landau length λL is the impact parameter of a collision with 90◦ deflection

λL =
ZZf e

2

4πǫ0mv2
.

Since the Coulomb Logarithm is derived for a test particle moving in an ensemble of

field particles, Z is the charge number of the test particle and Zf is the charge number

of the field particles. The precise Landau length should contain the reduced mass

m and the relative velocity v. There are, however, the following simplifications:

• Given a thermal distribution, then mv2 is replaced by 3 kBT . If collisions

among ions are regarded then T = Ti . If electrons are involved either as test

or as field particles then T = Te (see [Golant et al. 1980]).
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• In the numerator of ln Λ , λD is used as a function of the electron temperature

alone. According to Golant et al. [1980] this is valid if an electron is the test

particle, because the ions cannot take part in the screening within the collision

time. If the test particle is an ion, then λS (see section 2.4.1) may be used.

Yet this particular distinction is neglected.

The approximations have only a marginal effect on the value of ln Λ . They may

change the argument of the logarithm by a factor of around 2. Since in a fusion

plasma the argument is of the order 106, the result of the Coulomb Logarithm is

affected by ±5% .

When the Landau length drops below the critical value (4π)−1 λDeBroglie ,

effects from quantum mechanics come into play and the Coulomb Logarithm must

be modified:

ln Λ = ln
λD e2

λL 2 πǫ0 h v
= ln

λD 2mv

ZZf h
.

The critical velocity and temperatures (from the root mean square velocity) are:

vcrit =
ZZf e

2

2πǫ0 h
, kB Te,i crit =

me,i Z
2Z2

f e
4

12π2ǫ20 h
2 .

Assuming a plasma that consists of electrons and protons, the temperatures corre-

spond to kB Te crit = 36.28 eV and kB Ti crit = 66.62 keV, respectively.

In present-day fusion machines the operating temperature is below Ti crit , there-

fore no quantum mechanical modification is applied to ion-ion collisions.

To conclude, using λD =
√

ǫ0 kB Te / e2 n0 and ve,i =
√

3 kB Te,i /me,i the

Coulomb logarithm is calculated from:

• with electrons involved

ln Λ e−x = ln
12 π

Zx

(

kB Te

3
√
n0 e2ǫ

−1
0

)
3
2

, if Te ≤ Te crit ,

ln Λ>
e−x = ln

2
√

3

Zx

kB Te
√

n0 h
2m−1

e e2ǫ−1
0

, if Te > Te crit

• and with collisions among ions

ln Λ i1−i2 = ln
12 π

Zi1Zi2

(kB Te)
1
2 kB Ti

( 3
√
n0 e2ǫ

−1
0 )

3
2

.
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A.1 Small Plasma Formulary

It is convenient to utilise the properties of the logarithm:

ln Λ e−x = ln(12 π) − ln(Zx) + 3
2

ln( ǫ0 [Vm]
e

) + 3
2

ln( kB

e [V]
Te) − 1

2
ln(n0 [m3])

≈ 30.37 − ln(Zx) + 3
2

ln( kB

e [V]
Te) − 1

2
ln(n0 [m3])

ln Λ>
e−x = ln(2

√
3) − ln(Zx) + 1

2
ln( ǫ0 me [V2m3]

h2 ) + ln( kB

e [V]
Te) − 1

2
ln(n0 [m3])

≈ 32.17 − ln(Zx) + ln( kB

e [V]
Te) − 1

2
ln(n0 [m3])

ln Λ i1−i2 ≈ 30.37 − ln(Zi1 Zi2) + ln( kB

e [V]
Ti) − 1

2
ln(n0 [m3]) + 1

2
ln( kB

e [V]
Te)

A.1.2 Collision Times

The “collision time” can only be defined in combination with a particular process

and, therefore, several terms are utilised. Following Spitzer [1962] the “deflection

time”, the “energy exchange time” and the “equipartition time” will be introduced.

A.1.2.1 Deflection Time

The deflection time t90◦ characterises the velocity spread of so-called test particles

within an ensemble of field particles. For example, if electrons move in a bulk of

heavy and comparatively motionless ions, then t90◦, e−i is the time until on average

the actual velocity vector of an electron is perpendicular to its initial direction.

If the initial relative velocity between test (x) and field particles is denoted by v,

and indicating quantities that belong to the field particles by the subscript f , the

expression is

t90◦, x−f =
2 π ǫ20 m

2 v3

kcorr.(s) (Z Zf e2)2 nf ln Λ x−f
.

The correction factor kcorr. depends on s , which is the ratio between v and the

thermal velocity of the field particles:

s =
v

vth, f
, vth, f =

√

2 kBTf

mf
,

kcorr. =
exp(−s2)

s
√
π

+
(

1 − 1

2 s2

) 2√
π

∫ s

0

exp(−u2) du .

For the particular example with electrons in a motionless field of ions, s approaches

infinity and kcorr. becomes unity.

An important case is the isothermal ensemble of both test and field particles: v

can be replaced by
√

3 kBT /m and s2 is equal to 3mf/2m . From that follows the

characteristic dependence of the collision time on the temperature

t90◦, x−f =
6 π

√
3 ǫ20

√
m
(

kBT
e

)3/2

kcorr. e 5/2 (Z Zf)2 nf ln Λ x−f
.
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A.1 Small Plasma Formulary

Furthermore, if test and field particles are the same species, then m = mf , the

velocity ratio s is equal
√

3/2 and kcorr. is approximately 0.714 . The corresponding

deflection time t90◦, x−x is also called “self-collision time” tc, x .

A.1.2.2 Energy Exchange Time

Similar to deflection an energy exchange time tE can be defined, which provides the

duration until the initial kinetic energy has been exchanged with the field. This

is different from deflection, since acceleration or deceleration parallel to the initial

velocity transfers energy, too. Only two special cases are presented, more details are

provided by Spitzer [1962].

• v ≪ vth, f (e.g. ions in an electron bulk): Here applies in good approximation

tE = 0.5 t90◦ . The error is below 1%, whenever v < 0.2 vth, f . At the same

time, series expansion can be used to calculate kcorr.(s) ≈ 4 s / 3
√
π .

tE, x−f =
3 π

√
π ǫ20 m

2 vth, f v
2

4 (Z Zf e2)2 nf ln Λ x−f

If both test and field particles are thermalised then

tE, x−f =
9 π

√
π ǫ20

2
√

2 (Z Zf e2)2 nf

· m
√
mf

· kBT
√

kBTf

ln Λ x−f
.

• m = mf and v ≈ vth, f : This case supplies within one particle species the

relaxation time of a slightly perturbed Maxwellian distribution. It is evaluated

by multiplying t90◦, x−x with roughly 0.880 . Hence, self-collision time tc, x and

relaxation time tE, x−x are nearly identical.

A.1.2.3 Equipartition time

If there are two groups of particles with different temperatures, they will approach

the equilibrium temperature on the timescale of the equipartition time. For the test

particles the change rate is

d

dt
T =

Tf − T

teq
, with

teq =
3
√

2π
√
π ǫ20 mmf

(Z Zf e2)2 nf ln Λ x−f

·
(

kBT

m
+
kBTf

mf

)3/2

.

This depends on the density of the field particles alone. Conservation of energy

requires

n
d

dt
T = −nf

d

dt
Tf ,

which can easily be verified.
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A.2 Mathematical Formulas

Summing up, the order of various collision times in a plasma with equal ion and

electron charge densities and with similar temperatures of the two species is roughly

t90◦, e−i : tc, e : tc, i : tE, i−e : teq = 1 : 1 :

√

mi

me

:
mi

me

:
mi

me

.

More background can also be found in [Trubnikov 1965].

A.1.3 Resistivity

The plasma resistivity η is calculated as a modification of the so-called Lorentz gas.

In a Lorentz gas, ions are at rest and electrons do not interact with each other. The

solution ηL is in SI units:

ηL =

√
me e Z ln Λ e−i

64
√

2 π ǫ20

(

kBT

e

)−3/2

.

When applied to a plasma, there is a modification depending on the ion charge Z :

η = ηL / γZ [Spitzer 1962], where γZ is provided in table A.1. Conveniently, these

numerical formulas can be utilised:

ηL = 38.0 Ωm
Z ln Λ e−i

(Te · K−1)3/2

η (Z = 1) = 65.2 Ωm
ln Λ e−i

(Te · K−1)3/2
= 5.22 · 10−5 Ωm

ln Λ e−i

(Te · (eV)−1)3/2
.

Z 1 2 4 16 ∞

γZ 0.582 0.683 0.785 0.923 1

Table A.1: Ratio between the resistivity of an ideal Lorentz gas and the one of a plasma.

A.2 Mathematical Formulas

A.2.1 Integrating the Distribution Function

A useful identity when evaluating the integrals of a Maxwellian distribution function

is this relation between the definite integral and the Gamma function.
∫ ∞

0

xn exp(−x2/a2) dx = 1
2
an+1 Γ(n+1

2
)

Γ(1
2
) =

√
π , Γ(1) = 1 , Γ(x+1) = x · Γ(x)

145



A.2 Mathematical Formulas

A.2.2 Discrete Fourier Transform in Two Dimensions

If the algorithm of the Discrete Fourier Transform (DFT) is used together with real

signals, some attention must be paid to the correct implementation. The link be-

tween the complex DFT and a representation in terms of the trigonometric functions

is shown in this section and it is exemplarily solved for two-dimensional data.

It is assumed that there is a set of time space data X(t, y) as a result of the

superposition of waves with different wavenumbers k and frequencies f . Individual

wave amplitudes are denoted Af̂ k̂ and their phases pf̂ k̂ . For equidistant f and k the

superposition reads

X(t, y) = A00 +

nf
∑

f̂=1

Af̂0 cos( 2π∆f f̂ t+ pf̂0 ) +

nk
∑

k̂=1

A0k̂ cos( ∆k k̂ y + p0k̂ )

+

nk
∑

k̂=1

nf
∑

f̂=1

A
(+)

f̂ k̂
cos( ∆k k̂ y − 2π∆f f̂ t+ p

(+)

f̂ k̂
)

+

nk
∑

k̂=1

nf
∑

f̂=1

A
(−)

f̂ k̂
cos( ∆k k̂ y + 2π∆f f̂ t + p

(−)

f̂ k̂
) ,

where the actual frequency and wavenumber values are

f = ∆f · f̂ , f̂ = 1 . . . nf and k = ∆k · k̂ , k̂ = 1 . . . nk .

The signal is split into five terms, which are: the average value (A00), spatially

uniform fluctuations (Af̂0, pf̂0), stationary patterns (A0k̂, p0k̂), waves propagating

in the positive spatial direction (A
(+)

f̂ k̂
, p

(+)

f̂ k̂
) and waves in the opposite direction

(A
(−)

f̂ k̂
, p

(−)

f̂ k̂
). Observing the formula of trigonometric addition the phase pf̂ k̂ can be

separated and X(t, y) is accordingly composed of cosine and sine series.

X(t, y) = A00 +

nf
∑

f̂=1

Af̂0

(

cos pf̂0 cos(2πft) − sin pf̂0 sin(2πft)
)

+

nk
∑

k̂=1

A0k̂

(

cos p0k̂ cos(ky) − sin p0k̂ sin(ky)
)

+

nk
∑

k̂=1

nf
∑

f̂=1

A
(+)

f̂ k̂

(

cos p
(+)

f̂ k̂
cos(ky − 2πft) − sin p

(+)

f̂ k̂
sin(ky − 2πft)

)

+

nk
∑

k̂=1

nf
∑

f̂=1

A
(−)

f̂ k̂

(

cos p
(−)

f̂ k̂
cos(ky + 2πft) − sin p

(−)

f̂ k̂
sin(ky + 2πft)

)

(A.1)

It will be shown that each addend belongs to a particular area in the complex

representation which is suitable for DFT.

146



A.2 Mathematical Formulas

A.2.2.1 Discrete Fourier Transform algorithm

The Discrete Fourier Transform maps the regularly gridded time space domain data

Xt̂ŷ and the complex kf domain data Cf̂ k̂ onto each other. The transform is

Cf̂ k̂ =
1

MN

N−1
∑

ŷ=0

M−1
∑

t̂=0

Xt̂ŷ F̄f̂ t̂ , k̂ŷ (in forward direction)

Xt̂ŷ =
N−1
∑

k̂=0

M−1
∑

f̂=0

Cf̂ k̂ Ff̂ t̂ , k̂ŷ (backward) (A.2)

Ff̂ t̂ , k̂ŷ = eiϕ = e
i 2π

“

f̂ t̂

M
+ k̂ŷ

N

”

,

where F and F̄ are phase factors and F̄ is the complex conjugate of F . Time and

space are defined by

t = ∆t · t̂ , t̂ = 0 . . . M − 1 and y = ∆y · ŷ , ŷ = 0 . . . N − 1 .

By a convention frequently used in commercial DFT modules (e.g. [RSI 1997]),

the normalisation is applied during the forward transform. There are the following

identities within the set of phase factors:

F(M−f̂)t̂ , (N−k̂)ŷ = F̄f̂ t̂ , k̂ŷ

Ff̂ t̂ , (N−k̂)ŷ = F̄(M−f̂)t̂ , k̂ŷ . (A.3)

The phase factors are constant whenever k̂ is offset by N or f̂ is offset by M . Applied

to a real signal Xt̂ŷ , the DFT yields coefficients Cf̂ k̂ with similar properties

C(M−f̂)(N−k̂) = C̄f̂ k̂

Cf̂(N−k̂) = C̄(M−f̂)k̂ . (A.4)

If (M − f̂) and (N − k̂) are associated with −f̂ and −k̂ , respectively, the interre-

lations (A.3) and (A.4) characterise a Hermitian form (see Bracewell [1986]).

The dimensions are chosen such that M = 2nf + 1 and N = 2nk + 1 . In this

way the sampling theorem will be fulfilled and the DFT can be split into different

quadrants. Observing (A.3) and (A.4) the first and the third quadrant can be

subsumed and in the same manner the second and the fourth.

Xt̂ŷ = C00 +

nf
∑

f̂=1

(

Cf̂0Ff̂0 + C̄f̂0F̄f̂0

)

+

nk
∑

k̂=1

(

C0k̂F0k̂ + C̄0k̂F̄0k̂

)

+

nk
∑

k̂=1

nf
∑

f̂=1

(

Cf̂ k̂Ff̂ k̂ + C̄f̂ k̂F̄f̂ k̂

)

+

nk
∑

k̂=1

nf
∑

f̂=1

(

C(M−f̂)k̂F(M−f̂)k̂ + C̄(M−f̂)k̂F̄(M−f̂)k̂

)

(A.5)

147



A.3 Model Functions

Since

CF + C̄F̄ = (C + C̄) cosϕ+ i(C − C̄) sinϕ

the formulation (A.5) is equivalent to (A.1), provided that there are the following

relations between the complex DFT coefficients and the real amplitude and phase

parameters:

A00 = C00 f̂ = 1 . . . nf k̂ = 1 . . . nk

Cf̂0 = 1
2
Af̂0

(

cos pf̂0 + i sin pf̂0

)

C0k̂ = 1
2
A0k̂ (cos p0k̂ + i sin p0k̂)

Cf̂ k̂ = 1
2
A

(−)

f̂ k̂

(

cos p
(−)

f̂ k̂
+ i sin p

(−)

f̂ k̂

)

C(M−f̂)k̂ = 1
2
A

(+)

f̂ k̂

(

cos p
(+)

f̂ k̂
+ i sin p

(+)

f̂ k̂

)

.

One must not forget to set up the remaining elements of C, namely the quadrants

(M − f̂)(N − k̂) and (f̂)(N− k̂) according to the relations (A.4). Hence the spectral

power of the real signal is split into opposite quadrants of the complex domain.

Comparing the arguments of the trigonometric functions in (A.1) and the defi-

nition of the phase factors F , it is evident that the k and f grids are linked to the

t and y grids:

2π

(

f̂ t̂

M
+
k̂ŷ

N

)

= ∆k k̂ ∆y ŷ + 2π∆f f̂ ∆t t̂ (for the A(−) waves)

2π

(

(M − f̂)t̂

M
+
k̂ŷ

N

)

= ∆k k̂ ∆y ŷ − 2π∆f f̂ ∆t t̂+ 2πt̂ (A(+) waves) .

The term 2πt̂ is irrelevant, because of the trigonometric periodicity. In any case the

resolutions are connected via

∆y · ∆k =
2π

N
, ∆t · ∆f =

1

M
.

A.3 Model Functions

A.3.1 Fit Function for the Autocorrelation

In the analysis of turbulent fluctuations two-dimensional correlation functions of

various plasma quantities are calculated. Although the term “autocorrelation” is

normally assigned to the temporal evolution only, in this context it is used for the

spatio-temporal correlation function within one quantity, in order to distinguish it

from the cross-correlation, where two different quantities are involved. It has been

observed that the main properties of the spatio-temporal autocorrelation function

can be modelled by this formula:

Xm, auto(∆t,∆y,p) = p0 +
p1 · cos(p2(∆y − p4∆t))

cosh(p5∆t) · cosh(p6(∆y − p7∆t))

+
p11 · cos(p12(∆y − p14∆t))

exp(p15∆t2) · cosh(p16(∆y − p17∆t))
,
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where ∆t and ∆y are time and space lag. The symbol p denotes a parameter vector.

Note that not all successive indices of p are used. The reason is a practical one:

Since the model function for cross-correlations is of a similar form, but contains

more parameters, the additional parameters are simply set zero and left out in the

autocorrelation model. The function is derived from the ones that were introduced

by Endler [1994] and Bleuel et al. [2002].

A.3.2 Fit Function for the Cross-correlation

In order to calculate the cross-correlation, the product of two different quantities is

evaluated. Since the shape of the experimentally observed cross-correlation function

bears resemblance to the autocorrelation, a similar form has been used to model

it. The two quantities, however, will not necessarily fluctuate in phase, so that

additional parameters must be introduced that model a phase shift in the spatio-

temporal plane.

Xm, cross(∆t,∆y,p) = p0 +
p1 · cos(p2(∆y + p3 − p4∆t))

cosh(p5∆t) · cosh(p6(∆y − p7∆t))

+
p11 · cos(p12(∆y + p13 − p14∆t))

exp(p15∆t2) · cosh(p16(∆y − p17∆t))
.

The phase shifts p3 and p13 denote a temporal delay if the corresponding parameters

for the wave frequency p4 and p14 are positive. A propagation of fluctuations in the

negative spatial direction would change the sign of both phase shift and frequency.

A.4 Physical Constants

Some frequently used constants with a relative precision of at least 2 · 10−5, as

recommended by NIST [Mohr and Taylor 2005]:

kB Boltzmann’s constant 1.38065 · 10−23 J K−1

h Planck constant ÷ 2π 1.05457 · 10−34 J s

e elementary charge 1.60218 · 10−19 A s

me electron mass 9.1094 · 10−31 kg

mp proton mass 1.67262 · 10−27 kg

mp/me proton-electron mass ratio 1836.15

c0 vacuum speed of light 2.99792 · 108 m s−1

ǫ0 electric constant 8.8542 · 10−12 A s V−1 m−1
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Appendix B

Annotations to data analysis

B.1 Emmert and Stangeby compared

A very common method to evaluate the perturbation of a probe is provided by

Stangeby [1986]. In this model ions enter the Debye sheath with the sound speed

cs =

√

kB (Ti + Z Te)

mi

.

Note, that the electron temperature should be weighted with the ion charge Z

[Hutchinson 1987]. Stangeby proposed to use 0.5 times the unperturbed electron

density as the plasma electron density at the sheath edge. The ion current density

on the probe is therefore

j Stangeby
i, sat =

1

2
e n0 cs .

If the probe is at floating potential, then ji, sat is balanced by the electron current

je =
1

4
n0 (1 − γe)

√

8 kBTe

πme
exp

(

eΦW

kBTe

)

.

Altogether the formula reads

Φ Stangeby
W = − kBTe

e
ln





(1 − γe)
√

(1 + 1
τZ

)

√

2mi

π Z me



 . (B.1)

Comparing the Stangeby (B.1) and the Emmert model (2.17), it turns out that they

differ by a characteristic expression rE−S :

rE−S = j Emmert
i, sat / j Stangeby

i, sat = exp

(

− e

kBTe

(

Φ Stangeby
W − Φ Emmert

W

)

)

=
4
√

2

π
D̂
(

√

ψ(τZ)
)

√

1 +
1

τZ
. (B.2)
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B.2 Displaying the 2D correlation

Figure B.1: Ion flux density (solid line) of the Emmert model divided by the density

according to Stangeby, curve label rE−S . The independent variable is the ratio of the

ion temperature to Z times Te (τ = Te /Ti). Also shown is the difference of normalised

floating potentials (dashed line), curve label ln(rE−S) .

If there is a significant ion temperature, i.e. τZ is finite, then rE−S is greater than

one, see figure B.1.

A typical experimental application is to measure ji, sat in order to deduce the

unperturbed density n0 . Using the Stangeby model this yields a density that is larger

than the density according to the Emmert model. When the plasma potential Uplasma

is calculated from the measured floating potential Ufloat and electron temperature

Te , the situation is similar: The difference Uplasma −Ufloat in the Stangeby model is

larger than for the Emmert model. The effect, however, is slightly attenuated by the

natural logarithm. With τZ = 1 numerical values are: ψ = 0.404, rE−S = 1.246,

ln rE−S = 0.2199 . The normalised potential drop ψ in the Emmert presheath is

smaller than in the Stangeby presheath (ln 2 ≈ 0.693).

Concluding, the Stangeby model overestimates the density at given ji, sat by

roughly 25% . Additionally the difference between Uplasma and Ufloat is increased by

∆U = 0.2199 kBTe /e .

If the coefficient for the emission of secondary electrons is γe = 0.5 , then ∆U

corresponds to a 10% deviation of the plasma potential evaluated from Ufloat and

Te relative to the value from the Emmert model, where

Uplasma − Ufloat ≈ 2.272 kBTe /e .

B.2 Displaying the 2D correlation

If the two dimensions of this sheet of paper are used to display both independent

variables ∆t and ∆y, and the dependent value of the two-dimensional correlation
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B.2 Displaying the 2D correlation

Figure B.2: Two-dimensional Gaussian function. The ∆t axis is oblique and points to

the upper right, and the ∆y axis is nearly horizontal from right to left.

Figure B.3: Contour plot of the two dimensional Gaussian function.

function, then a three-dimensional encoding must be utilised. The contour technique

is preferred in this case: correlation values will be color coded and plotted against

the independent variables on the horizontal and vertical axes. An example should

illustrate this: Assume a Gaussian-shaped autocorrelation

XAA(∆t,∆y) = e−(∆t
15 )

2

· e−(∆y

0.5 )
2

.

If the function is plotted as a surface in space, i.e. the spatial coordinate that is

perpendicular to the ∆t−∆y plane is assigned to the function value, then it can be

projected into the plane of the paper. This will result in figure B.2 for an oblique

line of sight. The projection is well suited to get a good idea of the shape but it is

of minor use to extract any proportions quantitatively. For comparison, the same

function is displayed using filled contours in figure B.3. With the aid of the formula

one can deduce that the function value will drop to e−1 on an ellipse passing through

∆t = ±15 and ∆y = ±0.5 . That is easily verified utilising the color chart. Note

that the color changes from orange to yellow close to this particular function value.
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Appendix C

Electronics for the probe

measurements

There are two tasks in the design of the electronics: One is miniaturisation in order

to put the amplifiers into the front end of the probe system. The second is to

achieve sufficient common mode rejection at the high frequency of the sweep. It was

proposed by Pfeiffer [1997] to distribute these two tasks to separate units. When

both are finally brought together, they must pass a detailed balancing procedure.

C.1 Differential amplifier design

Individual tip currents are measured as differential voltages across shunt resistors.

In this case it is possible to use a common voltage source for all tips (see figure C.1).

Since the voltages on both sides of the shunt are by far too high for any integrated

differential amplifier circuit, voltage dividers are necessary. The latter must have

the required bandwidth, therefore they are compensated by appropriate capacitors

(see figure C.1). Altogether these devices are used:

• Shunt resistor Rsh = 20 Ω , maximum ohmic loss of 20 W allows for a tip

current of 1 A .

• High ohmic part of the voltage divider Rh = 51 kΩ, SMD installation size 1206,

compound of four individual devices (two in parallel, two in series) to increase

the power dissipation. Maximum voltage 230 V (power limited). Given a

stray capacitance of 1 pF, the “natural” bandwidth of this device is ∼ 3 MHz

without any compensation.

• Low ohmic part Rl = 5.1 kΩ . Choosing this value yields a differential signal

at the amplifier input of 1/11 times the voltage across the shunt, e.g. for a

tip current of 100 mA the amplifier input is ∼ 180 mV. In order to achieve a

current precision of 1 mA (differential shunt voltage 20 mV) at a tip voltage

of ∼ 100 V, the relative accuracy of the resistors must be O(2 · 10−4). Hence,
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C.1 Differential amplifier design

Figure C.1: Scheme of the multi-tip current measurement. On the left, the split of the

common voltage (input S) to individual tips via shunt resistors is shown. On the right, one

channel for the current measurement is displayed, that is connected to one shunt (A,B).

The differential amplifier (output D) measures the voltage across the resistor bridge. Note

that point C is not at ground potential, but connected to an appropriate ratio of the signal

−S (phase shift π). This will be discussed in section C.2.

both resistors Rh and Rl were selected from a large, pre-aged and precisely

measured set. Distribution functions of Rh and Rl were compared and it has

been found that the largest amount of resistor pairs could be utilised with a

divider ratio of Rl /Rh = 0.099795 .

• Capacitive compensation: Parallel to Rh a value of 1/3 pF (three 1 pF capa-

citors in series) proved to be sufficient, i.e. this clearly dominated over the

observed stray capacities. Parallel to Rl trimming capacitors with 3.3±1.5 pF

were attached.

• Differential amplifier: Type MAXIM 436 (MAX436), wideband transconduc-

tance amplifier, bandwidth-gain product ∼ 200 MHz, both inputs are high

omic (700 kΩ). Maximum output current 20 mA, i.e. driving a 50 Ω line with

gain 1, the tip current range is ±0.55 A .

There are two additional channels which are not connected to a probe tip: One chan-

nel is slightly modified to measure the common mode level directly. This is achieved

by omitting the shunt and the divider at point B (figure C.1), and connecting the

corresponding amplifier input B to ground. The second of the two additional chan-

nels is used to measure the common tip voltage. Only in that case, point C is

grounded, both shunt and the B divider are omitted, and the amplifier B input is

also grounded. In order to adjust this amplifier’s input voltage range, the values

of Rl and its capacitive compensation are changed to 220 Ω and 70 pF, respectively.

Hence, this amplifier can measure voltage amplitudes up to 230 V.
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C.2 Active common mode rejection

If the tip voltage is continuously swept, then both shunt contacts A and B (figure

C.1) will undergo the voltage oscillations. In the case of zero tip current the oscil-

lations are identical. This is called a common mode, and by definition it should be

rejected in a differential amplifier. Nevertheless, a real differential amplifier is always

sensitive to common mode, which is quantified by the device’s common mode rejec-

tion rate (CMRR): The CMRR is the ratio between differential gain and common

mode gain. It is supplied in decibel, is a function of the common mode frequency,

and generally it strongly degrades towards high frequencies. The voltage dividers at

both differential amplifier inputs (cf. figure C.1) have little effect on the CMRR, pro-

vided the precision and the bandwidth of the (passive) components is high enough.

With increasing divider ratio it becomes more difficult to maintain the bandwidth,

therefore the comparatively small ratio (≈ 1/10) was used.

In principle the MAX436’s CMRR is large enough (∼ 70 dB at 1 MHz), to dis-

tinguish the differential voltage of 20 mV (corresponding to a tip current of 1 mA)

from the common mode signal ∼ 60 V at both points A and B. But the input voltage

range of the MAX436 is restricted to ±5 V (±50 V at the points A and B), which

imposes a close limit on the applied tip voltage. The situation can be improved,

however, if the properly scaled and inverted signal S, namely −k · S , is fed into

point C [Pfeiffer 1997]. Ideally k is equal to the divider ratio Rl /Rh , so that both

inputs of the differential amplifier are actively kept at 0 V (current free tip). Any

differential voltage across the shunt due to a non-zero tip current is preserved.

How to provide −k ·S ? A comparatively high amplitude in combination with the

bandwidth from DC to O(1 MHz) is needed. Readily available monolithic operational

amplifiers with a maximum supply voltage ± 15 V can only generate amplitudes up

to 13 V (corresponding to 130 V at A and B), which is considered to be insufficient.

Therefore a hybrid inverting module was designed, consisting of a low frequency

(LF) and a high frequency (HF) band (figure C.2). The hybrid inverting module

can produce amplitudes O(10 V) in each frequency band. Additionally, the phase

characteristic of the HF band can be shifted and, thus, optimised for the projected

sweep frequency without influencing the bias.

The threshold frequencies in the hybrid inverting module are 2.5 kHz for the HF

band and 70 kHz for the LF band. Hence, there is an overlap in the intermediate re-

gion, which is important in order to avoid large excursions of the phase, since voltage

fluctuations with intermediate frequencies generated by the plasma turbulence will

couple into the system via the tip voltage line (point S). The output coupling of the

two branches is ohmic for the LF and capacitive for the HF component. Due to the

ohmic LF coupling and the corresponding voltage loss, the LF output stage must be

oversized, and additionally the correct bias can only be produced for a well defined

load impedance. The latter is determined by the values Rl of all tip amplifiers in

parallel. In the case of the 15 channel front end it amounts to 140 Ω .
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Figure C.2: Hybrid inverting module, optimised for the generation of both an antiphase

sweep signal (∼ 1MHz, ∼ 10V) into output C (load impedance 140Ω), and an inverted

bias (∼ 8V). Output C ≈ −1 / 10 ·S broad-band. High input impedance is achieved, since

each branch has got a non-inverting pre-stage. The devices that determine the cross-over

frequencies are specified (fmin = 2.5 kHz for the HF part on top, fmax = 70kHz for the

LF part at the bottom). The high speed IC THS3001 (Texas Instruments) and the LF

pre-stage CA3140E (Harris) operate with ±15V supplies, whereas the HIFI IC TDA7294

(SGS Thomson) operates at ±35V. Frequency compensation and the fine tuning of the

gain by trimmers are omitted in the drawing.

Measured amplitude and phase characteristics of the hybrid inverting module

are displayed in figure C.3. There are small excursions of the amplitude (20%) and

of the phase (±7◦) in the intermediate frequency region. Note that both amplitude

and phase are stable for the two main constituents of the voltage: at DC (f = 0)

and at f ∼ 1 MHz .

The design of the hybrid inverting module, however, could not be made small

enough to allow the placement in the front end. Therefore the module was mounted

outside the reciprocation system, tapping the common tip voltage line ∼ 3 m away

from the tip current amplifiers. Whenever there is no correct termination of the

transmission line between S and the front end, reflected waves superpose. This effect

must be considered during the gain adjustment of the hybrid inverting module under

measurement conditions.

The output C of the hybrid inverting module must be transmitted into the

front end. In order to improve the impedance matching, a 100 Ω transmission line is

utilised. Since this line impedance is close to the load impedance (140 Ω ), reflections

can be neglected.

158



C.3 Calibration and high frequency properties

Figure C.3: Frequency characteristic of the hybrid inverting module, operating with the

nominal load 140Ω . On top the amplitude ratio and below the phase of the output relative

to the input. Overplotted with dotted lines are the theoretical threshold frequencies of

the two amplifier branches. At DC and around the projected sweep frequency (∼ 1MHz)

both amplitude ratio and phase are close to their nominal values (−0.1 , 0◦).

C.3 Calibration and high frequency properties

In this section an overview on the required balancing procedure is given. The ad-

justment must be done carefully, since the evaluation of plasma parameters and

of the electron temperature in particular depends very sensitive on the frequency

characteristics. It can be demonstrated that the signal flow without plasma is well

understood and in good agreement with high frequency theory.
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Figure C.4: Balancing procedure for the voltage dividers. In advance, the output of

a simple broad-band inverter (bottom left) must be connected to point C. One of the

two differential amplifier inputs is grounded (jagged arrow) and a small amplitude square

signal is fed into S . The gain of the simple inverter is adjusted with the trimming resistor,

nulling the differential amplifier signal (output D) at low source frequencies O(10 kHz).

Subsequently the source frequency can be increased up to the projected sweep frequency

(∼ 1MHz), and the trim capacitor of the voltage divider can be fine tuned. If this

procedure is completed for the A divider, the grounding (jagged arrow) is transferred to

the opposite side and the B divider can be balanced in the same way.

C.3.1 Current amplifier balance

The bandwidth of the differential amplifier is much higher than the natural band-

width of the ohmic voltage dividers when taking into account typical stray capaci-

ties. Hence, the main task is to adjust the two voltage dividers per channel correctly.

Stray capacities can be modeled and balanced adequately by the capacitors displayed

in figure C.1.

Before starting, the shunt resistor Rsh must be bypassed and one of the two dif-

ferential amplifier inputs must be grounded (cf. figure C.4). Small amplitudes are

used for the balancing procedure, therefore it is not necessary to employ the hybrid

inverting module. Instead, the signal −k · S can be provided with adequate band-

width (> 10 MHz) by a simple inverter (operational amplifier, low input impedance).

The gain of this operational amplifier must be fine tuned using low frequencies.

Measuring the output at point D, one should encounter a signal similar to one of

those displayed in figure C.5. In this case a 2 MHz square wave has been applied to

point S, so that different states of compensation can be clearly distinguished. The

ideal response is a straight line, corresponding to a perfect inverting module and a

fully compensated divider. The procedure must be repeated with the divider at the

other input of the differential amplifier.

Given the two dividers of one channel are balanced, then the achieved CMRR

can be controlled. The grounding must be removed, thus putting both differential

amplifier inputs into operation, but the shunt resistor Rsh is still bypassed. Note
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Figure C.5: Different states of compensation as a function of the trim capacitor adjust-

ment. Top left is the input voltage, top right is the response (output D) of an overcom-

pensated divider, i.e. when the trim capacity is too large. In the bottom row on the left

the divider is undercompensated and on the right it is balanced. The remaining spikes are

due to the finite slew rate of the simple inverter (which is connected to input C).

that now there are two stages of common mode rejection: the simple inverter and

the differential amplifier. Exemplary the response to a 4 MHz square is shown in

figure C.6. After a settling time of ∼ 0.05µs the output peak to peak amlitude

is ∼ 3 · 10−4 mV. Observing the divider ratio, the voltage across the shunt Rsh

that would produce the same output is ≈ 3.3 mV. Since the applied peak to peak

amplitude is US = 1.8 V, the real CMRR is 3.3 · 10−3 /US or −55 dB at 4 MHz.

Figure C.6: Common mode rejection of a differential amplifier with balanced voltage

dividers operating in combination with the simple inverter. On the left the applied voltage

and on the right the amplifier response.
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C.3.2 Balance of the hybrid inverting module

The gain of the hybrid inverting module (figure C.2) must be adjusted under mea-

surement conditions in order to match the ratio of the voltage dividers in the front

end. As already pointed out, the length of the voltage line between the front end and

the hybrid inverting module is ∼ 3 m (see also figure 3.6 in section 3.3.1). Without

plasma there is an open loop at the probe tips, thus the source wave is reflected

and the reflection superposes in the common tip voltage line. The hybrid inverting

module receives both the source wave and the reflection and, consequently, a per-

fect compensation of the common mode in the front end is not possible. The only

way to achieve the nominal gain adjustment is to employ high frequency theory for

the transmission and reflection of the source wave, and to compare the frequency

characteristics of the tip voltage and the common mode, both measured in the front

end. During plasma operation there will be a finite load at the tips, which causes

the amplitude of the reflected wave to decrease.

At first the correct open loop probe head impedance ZL(ω) has to be determined.

All voltage dividers, shunts, cables and compensation capacitors in the front end

must be taken into account. ZL(ω) is complex.

Subsequently the transfer function between the common tip voltage and the

common mode measurement in the front end must be set up. This function consists

of three parts:

• Transformation from the front end along the common voltage line to the po-

sition of the hybrid inverting module. Given the complex Fourier spectra are

Um(ω, 0) in the front end and Um(ω,−lW ) at the inverting module, this reads

Um(ω,−lW ) = Um(ω, 0)

(

cos(ω τW ) +
i ZW

ZL(ω)
sin(ω τW )

)

[Russer 1993] ,

where the length of the transmission line lW (impedance ZW ) is included in

τW = lW / cW ≈ lW / 0.7 c0 .

• Frequency characteristic of the hybrid inverting module. That was discussed

in section C.2 and displayed in figure C.3.

• Transformation from the hybrid inverting module output to the front end

through the 100 Ω line. Since this line is terminated almost correctly, the

voltage at point C of the dividers in the front end is in good approximation

UC(ω, 0) = UC(ω,−lW ) exp(−i ω τW ) .

Note that τW is the same as for the common voltage line.

The complete calculation was carried out and compared to the measured frequency

characteristic. In the figures C.7 and C.8 the results are displayed. Due to the

interplay of the cable length lW and the head impedance ZL(ω) a phase cross-over
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Figure C.7: Comparison of the theoretical and the measured amplitude and phase char-

acteristic between the common tip voltage and the common mode signal. The curves are

obtained without plasma. Several lines are displayed that correspond to different cable

lengths between front end and inverting amplifier in the theoretical calculation. Values are

2.2m, 3m, 3.7m, 4.4m and 5.1m , and the cross-over frequency decreases with increasing

cable length. The experimental values (diamonds) fit well with a cable length of 3.7m .

appears at several 100 kHz . Since ZL(ω) is well known, the precise value of lW can

be determined (figure C.7).

At the cross-over frequency the common mode amplitude has got a minimum,

but even for the correct gain adjustment it remains finite (figure C.8). The signal

most sensitive to the gain is the magnitude of the phase excursion below and above

the cross-over frequency. For a correctly aligned module values of −60◦ and +70◦ are

found theoretically. Since the experimental amplitude and phase characteristics are

in good agreement with the theory, the method is considered reliable. The accuracy

of the gain can be estimated to ±2 · 10−3. If the gain mismatch was larger, then the

theoretical phase characteristic would not fit the measured phase values.
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Figure C.8: Amplitude and phase characteristic similar to figure C.7, this time varying

the inverting module gain in the theoretical calculations. The nominal gain is modified

by the factors 0.996, 0.998, 1, 1.002, 1.003, where for higher magnitudes of the gain the

amplitude ratios decrease and the phase excursions increase. Plotted with diamonds is

the experimental characteristic, which fits the nominal case closely.
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U. Stroth, J. Baldzuhn, B. Brañas, V. Erckmann, T. Estrada, L. Giannone,

M. Hirsch, H.J. Hartfuss, M. Kick, G. Kühner, ECRH Group, and W7-AS Team.

Transport experiments in W7-AS. In Tenth International Conference on Stellara-

tors, Madrid, 1995. CIEMAT.

172



BIBLIOGRAPHY

J. Svensson, A. Dinklage, J. Geiger, A. Werner, and R. Fischer. Integrating diagnos-

tic data analysis for W7-AS using Bayesian graphical models. Review of Scientific

Instruments, 75(10):4219–4221, 2004.

P.W. Terry and P.H. Diamond. Theory of dissipative density-gradient-driven tur-

bulence in the tokamak edge. Physics of Fluids, 28(5):1419–1439, 1985.

P.W. Terry and P.H. Diamond. Theory of dissipative density gradient driven tur-

bulence in the tokamak edge. Technical Report 114, Institute for Fusion Studies,

University of Texas, April 1984.

G. Theimer. Charakterisierung transportrelevanter turbulenter elektrostatischer
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