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Nonlinear electrostatic global gyrokinetic simulations of collisionless ion temperature gradient
(ITG) turbulence and E×B zonal flows in axisymmetric toroidal plasmas are examined for different
choices of the initial distribution function. Using a local Maxwellian leads to the generation of
axisymmetric E × B flows that can be so strong as to prevent ITG mode growth. A method using
a canonical Maxwellian is shown to avoid this spurious generation of E × B flows. In addition, a
revised δf scheme is introduced and compared to the standard δf method.

I. INTRODUCTION

In this paper we address the physical problem of defining a gyrokinetic equilibrium in a model where collisions
are neglected. The general context is that of gyrokinetic simulations of turbulence generated by microinstabilities,
such as ion temperature gradient (ITG) modes. The prominent role of axisymmetric E×B zonal flows, generated by
turbulent fluctuations and having a regulating role for these, has been widely recognized [1]. Hence the importance
of avoiding spurious effects on zonal flows. In Ref. [2] it was shown that an inaccurate description of the gyrokinetic
equilibrium can yield to unphysical excitation of zonal flow oscillations, with a measurable impact on the predicted
heat flux. In collisionless systems, the gyrokinetic equilibrium distribution function feq is defined to be constant along
unperturbed orbits:

dfeq
dt

∣

∣

∣

∣

0

= 0 (1)

where the subscript 0 refers to the ordering with respect to the perturbation. In toroidal axisymmetric systems, the
unperturbed orbits are characterized by three constants of motion: the particle energy ε, the magnetic moment µ and
the toroidal canonical momentum ψ0. Writing the equilibrium magnetic field as:

~B = F∇ϕ+ ∇ψ ×∇ϕ (2)

where F = F (ψ) is the poloidal current flux function, ψ is the poloidal magnetic flux and ϕ is the toroidal angle, the
toroidal canonical momentum can be expressed as:

ψ0 = ψ +
qi
mi

F

B
v‖ (3)

for species of charge qi and massmi. This implies that any equilibrium feq (in the gyrokinetic sense) must be expressed
in terms of ε, µ and ψ0. We shall call these fC (ψ0, ε, µ) canonical distribution functions. Often, an approximation
is chosen for feq, in which feq is specified in terms of ψ instead of ψ0. We shall refer to these as local distribution
functions fL (ψ, ε, µ). The difference between ψ and ψ0 is due to the radial orbit excursion of the gyrocenters. The
error made by the local approximation to the true feq is therefore of the order of the ratio of the radial orbit width
over the equilibrium gradient lengths of density Ln or temperature LT . For a local distribution function Eq. (1) is
not satisfied.

The δf particle in cell (PIC) scheme [3] is widely used to solve the gyrokinetic equations. The method, which
we shall call standard -δf in the following, is based on local Maxwellian equilibrium functions and a time evolution
equation for δf , which is derived neglecting the term dfL/dt|0 6= 0. This approximation cannot be justified in a
general toroidal configuration. However, removing this approximation has the effect of driving spurious zonal flow
oscillations [2]. This undesirable effect seems to be avoided by the use of canonical equilibrium distribution functions.

In this paper, we will show that the specification of a canonical distribution function must avoid two problems.
First, the symmetry in v‖ could be broken, leading to a net parallel flows. Second, since ions and electron have
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different orbit widths, it is not obvious to satisfy the equilibrium quasi-neutrality (n0i = n0e) without introducing
strong radial electric fields. These problems can lead to the unphysical suppression of the ITG instabilities through
the spurious generation of parallel and axisymmetric E×B flows, respectively. Here, we emphasize that the problem
is not bound to the numerical method actually chosen to solve the equations, but it is a physical problem inherent
to any gyrokinetic model where collisions are neglected. The problem of finding a gyrokinetic equilibrium, which
satisfies both the absence of parallel flows and the quasi-neutrality condition in the collisionless limit, is not a trivial
one. We propose a scheme which minimizes the v‖ asymmetry and the difference between n0i and n0e, thus avoiding
spurious flow drive.

In order to show that the problem is not specific to the particular method chosen to solve the gyrokinetic equations,
we apply a modified algorithm based directly on the constancy of the full distribution function f along the (perturbed)
orbits. This scheme has been called direct-δf [4]. Here, it is applied to toroidal configurations and in the Appendix
we show that it is equivalent to the standard-δf scheme modified to include the term dfL/dt|0. Both schemes are
also equivalent when a canonical feq is used.

The numerical results presented in this paper are obtained with the code ORB5 [5]. The physical model implemented
in the code ORB5 is the gyrokinetic Vlasov-Poisson system of equations as derived by Hahm [6]. This integro-
differential system of equations describes electrostatic perturbations in a magnetized plasma. It aims at studying
the electrostatic microinstabilities that are held responsible for enhanced heat transport in fusion plasmas. The
system couples the gyrokinetic Vlasov equation for the ion distribution function to the Poisson equation. In the long
wavelength limit, the latter reduces to the linearized quasi-neutrality equation. A Boltzmann approximation is used
for the electrons, which are supposed to react adiabatically to the electrostatic perturbation. For a complete and
extensive introduction to the gyrokinetic model as it is implemented in ORB5 we refer to Hatzky et al. [7], where
the model is applied to the θ-pinch geometry. In the present paper, a general axisymmetric geometry is considered,
and the code can run on ideal MHD equilibria. For this purpose, an interface with the equilibrium code CHEASE
[8] is included. The ion distribution function is discretized according to a particle-in-cell scheme (PIC) while the
quasi-neutrality equation is solved with a finite element method (FEM). Details on the discretization can be found in
[7].

II. SIMULATION PARAMETERS

Two magnetic configurations are used for the simulations presented in this paper. The first configuration is the
one reconstructed from a shot of the tokamak TCV, therefore it will be referred in the text as TCV case. It is an
elongated D-shaped plasma, with inverse aspect ratio ε ≡ a/R = 0.27, elongation κ = 1.5, a = 0.24 m = 40 ρi (ρi

being the ion Larmor radius). The value of the magnetic field on axis is B0 = 1.44 T. The ion temperature profile is
obtained by integration of a gradient given as:

dTi

dρ
= −

kT

1 − sech2(ρ0/σs)

(

sech2

(

ρ− ρ0

σs

)

− sech2(ρ0/σs)

)

(4)

where ρ =
√

ψ/ψa, ψ is the poloidal magnetic flux, and ψa is its value at the plasma boundary, ρ0 = 0.5, kT =
3.0, σs = 0.208. The safety factor qs profile and the temperature profile are shown in Fig. 1. The electron temperature
profile is flat, with Te = Ti (ρ0 = 0.5) ∼ 1.8 keV, and the input density ni0 = ne0 is constant. The second magnetic
configuration is a circular plasma, with inverse aspect ratio ε ≡ a/R = 0.2, a = 0.18 m = 20 ρi, and it will be referred
to as TEST case. The value of the magnetic field on axis is B0 = 1.44 T. The ion temperature profile has the same
parameters as the TCV case. The qs and Ti profiles are shown in Fig. 1. The electron temperature profile is flat, with
Te = Ti (ρ0 = 0.5) ∼ 4 keV, and the input density ni0 = ne0 is constant.

In the results, the physical quantities are expressed in normalized units. Temperatures and densities are normalized
to their value at ρ0 = 0.5, T0 and n0 respectively. The velocities are normalized to the sound speed cs. The energy E
is given as E/ (nV T ) and the heat flux Q as Q/ (〈n〉 csT ), where n is the density and 〈n〉 its volume averaged value,
V is the plasma volume and T = T0 is the electron temperature at ρ0 = 0.5. The time is expressed in units of the
inverse ion cyclotron frequency Ω−1

ci .

III. INITIAL DISTRIBUTION FUNCTION

In the framework of a control variate δf method, we distinguish among the initial distribution function finit, the
equilibrium distribution function feq and the control variate function f0 (for a detailed definition and an exhaustive
introduction to the control variate δf method, we refer to the Appendix). The choice of feq is constrained by physical
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equilibrium considerations. The choice of finit defines the initial condition of the system and could, in principle, be
chosen arbitrarily. Since we are interested in the spontaneous evolution of the system from an equilibrium state to a
turbulent state, finit is typically chosen very close to feq. The choice of f0 is independent from the other functions,
and it is used to minimize the numerical noise. At the beginning of a simulation, one can suppose the system is in a
local thermodynamic equilibrium, and the natural choice for finit is a local Maxwellian:

fLM (ψ, ε, µ) =
n0 (ψ)

(2π)
3/2

v3
thi (ψ)

exp

[

−
ε

v2
thi (ψ)

]

(5)

ψ being the poloidal flux, ε the particle energy per unit mass, µ the magnetic moment, vthi and n0 initial thermal
velocity and density profiles. But, collisions are not included in our model, and fLM is not a kinetic equilibrium in
a toroidal configuration (it is not constant along unperturbed particle trajectories). A more logical choice can be an
finit, function only of the constants of motion [2]. So we have the canonical Maxwellian:

fCM (ψ0, ε, µ) =
n0 (ψ0)

(2π)
3/2

v3
thi (ψ0)

exp

[

−
ε

v2
thi (ψ0)

]

(6)

where the toroidal canonical momentum, ψ0, is now constant on the unperturbed characteristics (qi/mi is the ratio
of ion charge and mass). Fig. 2 shows ψ and ψ0 on an unperturbed trajectory as function of time. ψ oscillates
around a mean value, ψ0 is constant but its value is far away from the mean value of ψ. This means that the effective
temperature and density profiles (evaluated from the particle distribution function, after the loading with fCM) differ
substantially from the input ones given as a function of ψ as shown in Fig. 3. The canonical Maxwellian can lead to
large parallel flows. Depending on the configuration, particularly for small system size and large n0 and vthi gradients,
they can be so strong as not to allow the instability to develop. But, if we add to ψ0 a function of the constant of

motion, we obtain a ψ̂ = ψ0 + ψ0corr that is still constants of motion. We can use this degree of freedom to reduce

the gap between the mean value of ψ and ψ̂. Thus, we define:

ψ0corr ≡ −sign (vq)
qi
mi

R0

√

2 (ε− µBmag)H (ε− µBmag) (7)

which is an estimate of the average radial excursion of the particle orbit. Bmag is the magnetic field on magnetic

axis (H is the Heaviside function). With finit = fCM

(

ψ̂, ε, µ
)

, ψ̂ is now close to the mean value of ψ (Fig. 2), the

profiles are close to the local ones (Fig. 3), and the initial large parallel flows are reduced to a level compatible with
the development of the instability.

IV. SPURIOUS GENERATION OF AXISYMMETRIC FIELDS WITH LOCAL MAXWELLIAN

In the standard-δf method, f0 = finit is supposed to be an equilibrium function and Eq. (A11) is applied. If f0
is chosen to be a local Maxwellian, which is not an exact solution of the unperturbed equation of motion, Eq. (A12)
must be applied. Thus we have an extra term in the δf evolution equation:

−
df0
dt

∣

∣

∣

∣

0

= −
∂f0
∂µ

dµ

dt

∣

∣

∣

∣

0

−
∂f0
∂ε

dε

dt

∣

∣

∣

∣

0

−
∂f0
∂ψ

dψ

dt

∣

∣

∣

∣

0

(8)

Since µ and ε are constants of motion:

−
df0
dt

∣

∣

∣

∣

0

= −
∂f0
∂ψ

∇ψ ·
dR

dt

∣

∣

∣

∣

0

(9)

with the motion along the unperturbed trajectories described by:

dR

dt

∣

∣

∣

∣

0

= vqh + v∇b + v∇P (10)

The three terms on the right hand side represent the parallel motion along the magnetic field lines (h = B/B), the
magnetic and pressure gradient drifts, respectively. Reminding that ∇ψ · h = 0,

−
df0
dt

∣

∣

∣

∣

0

= −
∂f0
∂ψ

1

B∗
q

(

µB + v2
q

Ωci
h×∇B +

v2
q

Ωci
h × µ0

∇P

B

)

· ∇ψ (11)
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with:

B∗
q

= B+
mi

qi
v‖h·∇ × h (12)

Ωci =
qi
mi

B (13)

Since ∇P ‖ ∇ψ :

−
df0
dt

∣

∣

∣

∣

0

= −
∂f0
∂ψ

µB + v2
q

B∗
q
Ωi

h×∇B · ∇ψ (14)

This term relies only on equilibrium quantities and is responsible of the spurious zonal flow drive addressed by
Idomura [2]. Zonal flows are axisymmetric E × B flows, they correspond to the radial n = 0, m = 0 component of
the electric field (here, n and m are respectively the toroidal and poloidal Fourier mode number). Modes with n = 0
are linearly stable, but they are excited by turbulence trough nonlinear coupling [9]. So they should not appear from
the beginning of the simulation, but they should follow the development of the turbulence after the linear phase. As
shown in Fig. 4, the inclusion of the term in Eq. (14) drives the zonal flows from the very beginning of the simulation
to a level orders of magnitude higher than the turbulence level. This effect is not of numerical origin but is due to
the choice of initial conditions, i.e. the system is not close to an equilibrium and, as a result of the particle magnetic
drift across magnetic surfaces a strong radial electric field develops in order to maintain the quasi-neutrality imposed
by the model. Following the usual practice in tokamak PIC simulations, we could neglect the term in Eq. (14) (thus
incorrectly assuming that the local Maxwellian is a true equilibrium function) and we would get rid of this initial
zonal flow (Fig. 5). But, dropping df0/dt|0 cannot be justified in a perturbative framework because it is a 0-th order
term. The direct-δf scheme correctly solves the δf equation and includes this term automatically, so with this scheme
we get the same results as shown in Fig. 4.

V. SPURIOUS GENERATION OF AXISYMMETRIC FIELDS WITH CANONICAL MAXWELLIAN

To investigate the role played by a canonical Maxwellian as an equilibrium distribution function, we have to analyze
in detail the quasi-neutrality equation:

〈ni〉 (x, t) + npol (x, t) ≈ ne (x, t) (15)

where ne is the electron density, npol is the linearized polarization density [7], and 〈ni〉, the gyroaveraged density, is
defined as:

〈ni〉 (x, t) ≡

∫

f (R, ε, µ, t) δ (R + ρi − x) dR dv (16)

here, ρi is the ion gyroradius.
We suppose Boltzmann electrons. Electrons are in thermodynamic equilibrium on each flux-surface, responding

adiabatically to the electric field perturbation, hence their distribution function is a local Maxwellian and the density
can be written as:

ne (x, t) = n0e (ψ) exp [−C (ψ)] exp

[

−
eφ

kBTe (ψ)

]

(17)

n0e is the electron initial density, C (ψ) is a generic function of the poloidal flux ψ, e the electron charge, φ the
perturbed electrostatic potential, Te the electron temperature. We suppose the electron particle number on a flux-
surface should be constant. The electron density becomes:

ne (x, t) ≈ n0e (ψ) +
en0e (ψ)

kBTe (ψ)

[

φ (x, t) − φ̄ (ψ, t)
]

(18)

where φ̄ is the flux surface averaged electrostatic potential:

φ̄ (ψ, t) =

∫ ∫

[φ (ψ, θ, ϕ, t) J (ψ, θ)] dθ dϕ
∫ ∫

J (ψ, θ) dθ dϕ
(19)
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We have introduced the Jacobian J , which, for a axisymmetric system, depends only on the poloidal flux ψ and the
poloidal coordinate θ. With the δf ansatz the gyroaveraged density becomes:

〈ni〉 (x, t) ≡

∫

[f0 (R, ε, µ)+δf (R, ε, µ, t)] δ (R + ρi − x) dR dv =

= 〈n0i〉 +

∫

δf (R, ε, µ, t) δ (R + ρi − x) dR dv (20)

If the ion distribution function is a local Maxwellian, approximating 〈n0i〉 ≈ n0i (accordingly to the gyroordering), the
electron and ion equilibrium densities cancel in the quasi-neutrality equation. If we choose a canonical Maxwellian

for the ion distribution function, we have an extra term in the quasi-neutrality equation coming from the difference
between ion and electron equilibrium densities 〈n0i〉 6= n0e (ψ). Indeed, the correct way to do it is to take a canonical

Maxwellian equilibrium feq = fCM, and a local Maxwellian control variate function f0 = fLM. Thus, the gyroaveraged
ion density can be written as:

〈ni〉 (x, t) =

∫

fLMδ (R + ρi − x) dR dv+

+

∫

[fCM − fLM] δ (R + ρi − x) dR dv+

+

∫

δf δ (R + ρi − x) dR dv (21)

The first integral on the r.h.s. cancels with n0e, and an extra term appears:
∫

(fCM − fLM) δ (R + ρi − x) dR dv ≈ n0i − n0e = n0 (ψ0) − n0 (ψ) (22)

The difference between electron and ion densities leads to the formation of a strong axisymmetric electric field. Our
simulations (Fig. 6) show that it can be strong enough to prevent any unstable ITG mode to grow. We note that
the n = 0 field energy is of comparable value to that created when using the local Maxwellian initial distribution
(Fig. 4), which is due to the fact that in both cases the n = 0 field is due to the difference between a local and a
canonical Maxwellian. One could drop the term in Eq. (22), thus approximating fLM = fCM. This could be justified
in equilibrium configurations where ψ0 is close to ψ (large aspect ratio and low values of the safety factor). But, in
general, it should be retained because it is a 0-th order correction and it leads to effects of the order of the inclusion
of df0/dt|0 [Eq. (14)] in the δf equation (compare Fig. 4 and Fig. 6).

VI. ELIMINATION OF SPURIOUS FIELD GENERATION

The two previous sections highlight the difficulties of setting up initial conditions which do not lead to an initial
radial electric field so strong as to suppress completely the turbulence. In a collisionless model, the local Maxwellian

is a thermodynamic equilibrium but is not a gyrokinetic equilibrium, so a strong electric field develops from the
beginning of the simulation in order to enforce the quasineutrality. On the other side, the canonical Maxwellian,
which is a gyrokinetic equilibrium, is not a solution of the quasineutrality equation with adiabatic electrons. In a
quasineutrality equation where a fluid model for electrons and a kinetic model for ions coexist, adiabatic electrons
cannot neutralize an ion charge density which depends also on the poloidal angle[11]. Again, equilibrium electric
fields develop to enforce the quasineutrality. Without including collisions, with the numerical difficulties involved for
a PIC code, the only possibility is to choose a n0e (ψ) such as to minimize the Eq. (22). Therefore we introduce a
new scheme where the electron distribution function n0e is no longer evaluated from an analytical expression, but it
has to be integrated from the ion distribution function after the particle loading:

n0e (ψ) =
1

2π

∫
[
∫

fCMδ (R + ρi − x) dR dv

]

dθ (23)

Thus, now we have:

n0e (ψ) ' 〈n0i〉 (24)

We remark that this equality cannot be exact, since the gyroaveraged ion density depends on the poloidal angle θ,
while, by definition, the electron density depends only on ψ. The approximation in Eq. (24) is equivalent to neglect
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banana orbit effects and it is consistent with the approximation in the polarization density. With this definition of
the electron density we are able to use a canonical Maxwellian as control variate function, therefore f0 = feq = fCM,
and Eq. (21) becomes:

〈ni〉 (x, t) =

∫

fCMδ (R + ρi − x) dR dv+

∫

δf δ (R + ρi − x) dR dv (25)

Which means that, now, the electron and ion equilibrium densities cancel out in the quasi-neutrality equation and
the extra term [Eq. (22)] is not present anymore.

We implemented this integration in ORB5 with standard-δf and direct-δf schemes and we succeeded in eliminating
the spurious axisymmetric electric field in both method, as shown in Fig. 7 using the direct-δf method (standard-δf
gives identical results). Moreover, our simulations show that the gyroaveraging of the density is indeed a correction
of higher order, and we obtain essentially the same results with a drift kinetic expression:

n0e (ψ) =
1

2π

∫

fCM dv dϕ dθ (26)

VII. CONCLUSIONS

The choice of the equilibrium distribution function plays a major role in spurious axisymmetric field generation.
When a local Maxwellian, fLM (ψ, ε, µ), is chosen, which is not a true gyrokinetic equilibrium function, a strong
electric field develops from the beginning of the simulation as particles depart from their initial magnetic surface due
to magnetic drifts. The n = 0 mode can be so large that the turbulence does not even start to develop. Dropping
the df0/dt|0 in the δf evolution equation is the only possible way to overcome this problem. But, the suppression of
this term cannot be physically justified since it is a 0-th order term in Eq. (A10). This is the reason for introducing
a canonical Maxwellian, fCM (ψ0, ε, µ). Since it is a gyrokinetic equilibrium distribution function, df0/dt|0 is null by
construction. However, two problems arise from the use of the canonical Maxwellian. The first one is related to the
effective temperature, density and shear parallel flow profiles. For certain equilibrium configurations (small system
scale, strong gradients), they can assume values for which the turbulence is completely suppressed and therefore
these configurations cannot be studied. The problem can be overcome introducing a correction to ψ0 which is an
estimate of the average radial excursion of the particle orbit. With this correction the effective profiles are close to
the local ones. The second problem arises from the difference in the equilibrium functions of ions and electrons. This
problem has been addressed in the present work for a hybrid theory with adiabatic electrons and kinetic ions, but it
also affects any collisionless full kinetic model. The equilibrium function of electrons differs from the one of the ions
and even without an initial perturbation, a quasineutrality n0i ' n0e cannot be established without introducing a
large initial axisymmetric electrostatic potential which again suppresses the turbulence. In the framework of a hybrid
theory, dropping the term representing the difference between fLM and fCM cannot be physically justified. We have
found the solution to the above problems by constructing the electron equilibrium density, n0e (ψ), by integration
of the canonical distribution of ions. The choice of the initial distribution function is of major concern also for non
axisymmetric 3D systems (such as stellarators or tokamaks with magnetic islands). In these configurations a canonical

Maxwellian cannot be built, since ψ0 is no more a constant of motion, and a collisionless gyrokinetic equilibrium with
spatial density and temperature gradients cannot be found without equilibrium electric fields. Therefore, for these 3D
systems, the problem is still an open question and should be approached within the frame of collisional (neoclassical)
theory. Within a collisional model the local Maxwellian becomes closer to a true kinetic equilibrium and can be
introduced as initial distribution function for both ions and electrons.

In conclusion, a direct-δf or standard-δf method with canonical Maxwellian plus correction term and integrated
n0e, can be used to obtain physically meaningful simulations in toroidal geometry.
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APPENDIX A: THE CONTROL VARIATE METHOD AND THE DIRECT-δf SCHEME

The δf method [3] is extensively used in gyrokinetic particle-in-cell (PIC) simulations of plasma turbulence to
reduce the statistical noise associated with the PIC scheme. The standard implementation of this algorithm involves
the integration of an evolution equation for δf . This equation is actually redundant [10], and a δf scheme can be
constructed without it. This revised δf algorithm (in the following it will be referred to as direct-δf scheme) was
already successfully implemented in the θ-pinch geometry [4]. In this Appendix, the implementation of the direct-df
in a general toroidal geometry is introduced and compared to the standard δf method.

Aydemir [10] has shown, in the framework of Monte Carlo methods, that the δf method is equivalent to a control
variates method of variance reduction. In this scheme, the statistical noise, introduced with the PIC sampling of
the distribution function, is reduced by splitting the distribution function f(Z), where Z is a set of phase-space
coordinates, in a readily calculable function f0 (Z) and a statistically approximated part δf (Z):

f(Z) = f0 (Z) + δf (Z) (A1)

Typically, the solution of a given problem requires the evaluation of various moments of f on the finite element (or
B-spline) grid. In particular, the charge assignment, i. e. the charge density deposition on the finite element grid
corresponds to the calculation of the order 0 momentum of f :

bν =

∫

f (Z) Λν (Z) dΓ (A2)

where Λν (Z) are the finite element basis functions, and dΓ ≡ J dZ. J is the phase space Jacobian. A small error in
the evaluation of bν can lead to a fast deterioration of the quality of the simulation. In a scheme where the full f is
statistically sampled, the standard error in the estimate of bν will be proportional to the square root of the variance
(σgν

) of the function [4]:

gν =
f (Z) Λν (Z)

p (Z)
(A3)

σ2
gν

=

∫

[gν (Z) − 〈gν〉]
2
p (Z) dΓ (A4)

where p (Z) is a probability density function, the distribution of the sampling PIC markers. With the split in Eq.
(A1), we can write:

bν =

∫

f0 (Z) Λν (Z) dΓ +

∫

δf (Z) Λν (Z) dΓ (A5)

Since the evaluation of the first integral does not involve any statistical error, the standard error will now be propor-
tional to the square root of the variance (σhv

) of the function:

hν =
δf (Z) Λν (Z)

p (Z)
(A6)

Thus, the reduction of the error is of the order:

σhν

σgν

∼
|δf |

f
(A7)

This reduction of the error comes from the extra information we put in the scheme: the known function f0 closely
approximates f , i.e. |f − f0| � f . In the standard δf method, this extra information comes from the physical
argument that δf is a small perturbation around an equilibrium distribution feq, so we have:

f = feq + δf (A8)

In fact, we want to stress that, in the control variates method, the choice of f0 is not bound to the choice of an initial
equilibrium function feq. It can be any given function, with the only requirement of being able to evaluate analytically
or numerically momenta of f0 without using sampling markers, i.e. without introducing numerical noise. Obviously
the closer f0 is to f , the smaller the statistical error is [Eq. (A7)]. Therefore f0 can be evolved during the simulation
to constantly approach the total f when it moves away from feq (adaptive f0). Having given a general introduction
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to the control variates method, we can now turn to analyze how it is applied to the gyrokinetic Vlasov-Poisson system
of equations. The full ion gyrocenter distribution function f is constant along the characteristics of the gyrokinetic
Vlasov equation. This statement can be used to find a time evolution equation for the statistically sampled part of
the distribution function δf . We use the Ansatz Eq. (A8), choosing f0 = feq. Particle trajectories are also split in an
equilibrium part (where the electrostatic perturbation potential φ is set to zero) and a perturbed part:

dZi

dt
=

dZi

dt

∣

∣

∣

∣

0

+
dZi

dt

∣

∣

∣

∣

1

(A9)

From df/dt = 0 along the characteristics, we can write:

d

dt
δf = −

dfeq
dt

= −
dfeq
dt

∣

∣

∣

∣

0

−
dfeq
dt

∣

∣

∣

∣

1

(A10)

Now, feq is an exact solution of the unperturbed Vlasov equation dfeq/dt|0 = 0, and the δf evolution equation is:

d

dt
δf = −

dfeq
dt

∣

∣

∣

∣

1

(A11)

We refer to this scheme, with a δf evolution equation and where f0 = feq is supposed to be a true equilibrium
distribution function, as the standard-δf scheme. More generally, in the control variate method, we can choose a f0 6=
feq. But, if f0 is not a true equilibrium distribution function, we get an extra term coming from the evolution of f0

on the unperturbed characteristics in the δf equation, which now is written:

d

dt
δf = −

df0
dt

∣

∣

∣

∣

0

−
df0
dt

∣

∣

∣

∣

1

(A12)

As pointed out by Aydemir [10] this equation is actually redundant. f (Zi (t)) = f (Zi (t0)) and δf , at a given time
t, can be evaluated from:

δf (Zi (t)) = f (Zi (t0)) − f0 (Zi (t)) (A13)

We call this scheme the direct-δf method.
The standard-δf and direct-δf scheme are theoretically equivalent. But, to get the same numerical results, the

implementation must be done carefully, in particular, the evaluation of f0 can be done in two different ways and lead
to a divergence of the two methods. In the direct-δf scheme f0 is needed in order to solve Eq. (A13). Being a known
function, f0 is sampled at the marker position Zi (t), and the accuracy of the result relies directly on the accuracy
in the particle trajectory computation. In the standard-δf scheme, δf is obtained from the integration of Eq. (A11),
that we rewrite as:

d

dt
δf = −f0

(

dZ

dt

∣

∣

∣

∣

1

· ∇ ln f0

)

(A14)

f0 and its logarithmic derivative in phase space are required to build the right hand side of this equation. In this
case, since f and δf are known, Eq. (A13) can be used to evaluate f0 which now is not directly related to the particle
trajectory computation. This means that the two schemes can give numerically different results depending on the
accuracy in the particle trajectories computation, which, among other things, relies on the accuracy in the equilibrium
reconstruction. Although the distribution function f0 is in general much larger than δf, at least a the beginning of the
simulation, inaccuracy in the calculation of f0 can lead to spurious values of δf . For this reason, in order to compare
results from the two schemes, f0 should be computed in the same way in both and an accurate equilibrium must be
supplied. The code ORB5 can run with either scheme. Fig. 8 shows a comparison of two simulations which differ
only for the δf computation method. Since the equations of our model do conserve energy and particle number [7],
these two quantities (i.e. the corresponding moments of the distribution function) can be used to evaluate the quality
of a simulation and the level of numerical noise. The small residual differences in the two simulations come from the
fact that an additional potential source of numerical inaccuracies in the standard-δf comes from the time integration
of the evolution equation, Eq. (A12). So, late in the simulation, conservation properties are slightly improved with
the direct-δf (see Fig. 8). This is not true at the beginning of the simulation, where the error coming from particle
trajectories evaluation can be bigger than the statistical noise. An additional remark: in the standard-δf scheme, the
sampling of the gradient of f0 by markers requires a smaller time step in order to converge. In the direct-δf scheme,
where f0 and not its gradient is sampled, a larger time step is allowed.
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It should be noted that both methods are equivalent for any choice of f0, provided Eq. (A12) [and not Eq. (A11)] is
used in the δf scheme, otherwise the results obtained can differ. Using Eq. (A11) for the standard-δf scheme requires
choosing f0 as a gyrokinetic equilibrium, i. e. a function of the constants of unperturbed motion.
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Figure 1 (Color online): Safety factor qs profile for the TCV case (solid line) and for the TEST case (dashed line).
Ion temperature Ti profile is also plotted (dotted line). The ion temperature is nomalized to the value T0 ≡ T (ρ0 =
0.5).

Figure 2 (Color online): ψ, ψ0 and ψ0corr as a function of time for a given tracer on unperturbed trajectories.
Output from ORB5.

Figure 3 (Color online): Effective initial profiles for the TEST case. Effective temperature, density and parallel
flow are plotted as a function of the normalized radius s = ρ/a. The different curves on each plot represents results
from runs with different initial distribution functions: Canonical Maxwellian (CM), Local Maxwellian and Canonical
Maxwellian with correction to ψ0.

Figure 4 (Color online): Energy of the n = 0 mode (dashed line) and of the turbulence (solid line) as function
of time. Results from the TEST case with standard-δf scheme, Local Maxwellian as equilibrium function and the

df0/dt|0 term included in the δf equation. The strong radial electric field hinders the turbulent modes already in the
early phase.

Figure 5 (Color online): Energy of the n = 0 mode (dashed line) and of the turbulence (solid line) as function of
time. Results from the TEST case with standard-δf scheme, Local Maxwellian as initial function and neglecting the

df0/dt|0 term in the δf equation. The radial n = 0 mode is linearly stable and the turbulence can develop freely.
Figure 6 (Color online): Energy of the n = 0 mode (dotted line) and of the turbulence (solid line) as function of

time. Results from the TEST case with direct-δf scheme, Canonical Maxwellian as equilibrium function and Local
Maxwellian as control variate function. The strong radial electric field hinders the turbulent modes even in the early
linear phase.

Figure 7 (Color online): Energy of the n = 0 mode (dotted line) and of the turbulence (solid line) as function
of time. Results from the TCV case with direct-δf scheme and Canonical Maxwellian as equilibrium function and
control variate function. The initial electron density n0e (ψ) is optained from direct integration of the drift-kinetic ion
distribution function. No spurious axisymmetric electric field is present, and the turbulence develops freely.

Figure 8 (Color online): Simulation of toroidal ITG turbulence in the TCV case: standard-δf (solid line) vs. direct-

δf (dot line) scheme. The control variate function is an equilibrium distribution f0 = feq. In order to compare the
two schemes, we plot the electric field energy, the averaged heat flux and the energy variation. Ef is the electric field
energy and ∆Ekin is the variation of the total particle kinetic energy.
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