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Abstract.
The turbulent E×B advection of charged test particles with large gyroradii is

investigated. To this aim, a recently developed theory – the so-called decorrelation
trajectory method – is used together with direct numerical simulations and
analytical calculations. It is found that for Kubo numbers larger than about
unity, the particle diffusivity is almost independent of the gyroradius as long as
the latter does not exceed the correlation length of the electrostatic potential.
The underlying physical mechanisms leading to this surprising and initially
counterintuitive behavior are identified.

1. Introduction

The quest to understand the turbulent transport of particles, momentum, and energy
in magnetized plasmas may be considered as one of the key challenges in present-day
plasma physics. While a lot of progress could be achieved in this area of research
over the last few decades, many basic issues are still relatively poorly understood.
One such issue is the turbulent E×B advection of charged test particles with large
gyroradii which has important applications both in plasma astrophysics as well as
in fusion research. In the latter case, e.g., one is interested in the interaction of α
particles or impurities with the background turbulence. To be able to address such
topics, a thorough understanding of the dependence of the particle diffusivity on the
gyroradius is required. It is the main goal of the present paper to shed new light
on this old question, thereby revealing novel insights and allowing for more accurate
descriptions of such physical systems.

Provided that the temporal changes of the background potential are slow
compared to the gyration period and that the potential amplitudes are not too large,
the particles’ dynamics may be treated in the spirit of gyrokinetic theory.[1] This means
that a gyrating particle is simply replaced by a charged ring. This ’quasiparticle’ drifts
with an E×B velocity which is computed from a gyroorbit-averaged potential. Since
this process of gyroaveraging always reduces the effective drift velocity, one would
naively expect that the resulting particle diffusivity is also reduced. It is one of the
key findings of the present work, however, that this conclusion is not justified. In fact,
we will be able to show that in a strong turbulence situation, the diffusivity is more or
less independent of the gyroradius as long as the latter does not exceed the correlation
length of the electrostatic potential. Moreover, the underlying physical mechanisms
leading to this initially counterintuitive behavior will be identified.
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The present work was inspired, in part, by two recent papers by M. Vlad and
co-workers [2, 3] in which they extended the so-called decorrelation trajectory (DCT)
method [4, 5] for computing diffusivities from the autocorrelation function of the
potential to the case of particles with finite gyroradii. And the results they got were
very surprising. In particular, they observed that for sufficiently large Kubo numbers
(i.e., for relatively strong turbulence), the diffusivity may increase with increasing
gyroradius by up to several orders of magnitude. Obviously, this finding is in stark
contrast to the usual physical picture sketched above. Therefore, it motivated us to
revisit the problem of turbulent E×B advection of charged test particles with large
gyroradii, using both the DCT method and other approaches.

In this paper, we will restrict our studies to a rather simple situation, namely the
two-dimensional dynamics of test particles in a homogeneous, static magnetic field
and a prescribed electrostatic potential which is stochastic in space and time. Such
models have been used in many previous investigations (see, e.g., Ref. [7] and references
therein) mainly due to their accessibility in terms of numerical and analytical methods.
Although the relation between the diffusivity obtained from the dispersion of test
particles and the diffusion coefficient inferred from the self-consistent turbulent flux is
not easy to establish [8, 9], the study of test particle dynamics is still considered quite
useful, especially if one is dealing with trace species at low density. It is our main
goal in the present paper to study the fundamental physical processes in a fairly clean
environment. Specific applications to various situations in fusion research or plasma
astrophysics, possibly including additional effects, are left for future work.

The dependence of the diffusivity of test particles on the gyroradius ρ has also
been the subject of several previous studies beyond the ones already mentioned. E.g.,
in Refs. [10, 11, 12], finite Larmor radius (FLR) effects were studied for test particles in
Hasegawa-Mima turbulence using the gyrokinetic approximation. Here, it was found
that “FLR effects strongly inhibit stochastic diffusion” [10], and that the diffusivities
drop roughly as ρ−1 and ρ−0.5 (or ρ−0.35) in the low and high Kubo number regimes,
respectively.[11] These results are in agreement with naive expectations and shall also
be confirmed in the present, more systematic study. Moreover, in a fairly recent
investigation of the same basic type, an additional observation was made. Here, the
authors find that “as long as ρ is smaller than or similar to the typical size of the
[turbulent] structures, FLR effects are irrelevant.”[12] In other words, a significant
FLR reduction of the diffusivity requires the gyroradius to exceed the correlation
length of the potential. While very interesting, this result was not discussed any
further, however. In particular, no explanation was given in terms of the underlying
physical mechanisms which lead to this behavior, and no mention was made about a
possible Kubo number dependence on this effect. In fact, Refs. [11] and [12] seem to
contradict each other with respect to the existence of a reduction threshold in ρ. In
contrast, the present study offers a much more detailed and systematic investigation
of these issues, including the identification of the physical mechanisms at work.

The remainder of this paper is organized as follows. In Section 2, a brief review
of the DCT method and its extension to particles with finite gyroradii (as found
in the literature) is given. In Section 3, we put forward a modified version of this
DCT approach which leads to (even qualitatively) different mechanisms and results.
In Section 4, the DCT method itself is compared – for the first time – with direct
numerical simulations based on prescribed random potentials. We find that for
large Kubo numbers, the effect of particle trapping is generally overestimated by
the DCT method, leading to significant discrepancies. In Section 5, a large number
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of direct numerical simulations are presented and their dependence on Kubo number
and gyroradius is studied. In the limit of small/large Kubo numbers and small/large
gyroradii, analytical expressions for the ratio Dρ/D0 are derived which agree very
favorably with the simulation results. We close with some conclusions in Section 6.

2. A brief review of the decorrelation trajectory (DCT) method

In a series of papers over the last few years, M. Vlad and colleagues developed a novel
theory describing the diffusion of charged particles in prescribed electromagnetic fields
which has been named decorrelation trajectory (DCT) method.[4, 5] Recently, the
DCT approach has been applied to the E×B drift motion of ions with large gyroradii,
yielding very surprising and counterintuitive results.[2, 3] The goal of this section is
to briefly review the DCT theory, in particular in relation to the latter problem, thus
providing a starting point for a modified DCT approach which will be presented and
discussed in the next section. For details, the reader is referred to the original papers.

2.1. The DCT method for E×B drift motion

In the following, we shall assume the existence of a strong, homogeneous, static
magnetic field which points in the z direction, and consider the motion of a charged
test particle in a given perpendicular plane. Neglecting finite gyroradius effects, a
fluctuating electrostatic potential φ(x, t) then leads to an E×B drift velocity which
can be written as

vdr
i (x, t) = −εij

∂φ(x, t)

∂xj
(1)

in dimensionless units. Here, we have used Einstein’s summation convention and the
notation (x1, x2) = (x, y) = x. Moreover, εij denotes an antisymmetric tensor of rank
two with ε12 = −ε21 = 1 and ε11 = ε22 = 0. Particles subject to this kind of dynamics
will generally exhibit diffusive motion in the x-y plane. According to the formula by
Taylor [13], the corresponding diffusion coefficient in one dimension can be expressed
as

Dx(t) ≡ 1

2

d

dt
〈x(t)2〉 =

∫ t

0

dτ Lxx(τ) (2)

where

Lxx(t) ≡ 〈vdr
x (x(0), 0) vdr

x (x(t), t)〉 (3)

and the angular brackets denote ensemble averaging over realizations of the
(prescribed) electrostatic potential. In other words, the time dependent diffusion
coefficient Dx(t) is the time integral over the Lagrangian correlation function Lxx(t)
of the particle’s drift velocity.

The DCT method developed by M. Vlad and co-workers [4, 5, 2, 3] offers a
possibility to calculate the Lagrangian correlation function from the corresponding
Eulerian correlation function. Here, in contrast to previous attempts to connect these
two types of correlations, particle trapping effects are retained. Assuming that the
Eulerian autocorrelation function of the potential is given by

E(x, t) ≡ 〈φ(0, 0)φ(x, t)〉 , (4)
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one obtains

Eφj(x, t) ≡ 〈φ(0, 0) vdr
j (x, t)〉 = −εjn

∂E(x, t)

∂xn
(5)

and

Eij(x, t) ≡ 〈vdr
i (0, 0) vdr

j (x, t)〉 = −εinεjm
∂2E(x, t)

∂xn∂xm
. (6)

The Eulerian correlation function Eij(x, t) defined by Eq. (6) can be used to determine
a key quantity characterizing the potential fluctuations, namely the so-called Kubo
number [14]

K ≡ V τc
λc

=
τc
τfl
. (7)

Here, τc and λc denote, respectively, the autocorrelation time and length of the
electrostatic potential, V is the mean drift velocity which can be calculated as

V =

(
−∂

2E(0, 0)

∂x2

)1/2

, (8)

and τfl is the mean time of flight for a distance of one correlation length. The limits
K→∞ and K→0 correspond to static and fast fluctuations, respectively. Sometimes,
the regime of K <∼ 1 is labeled ’weak turbulence’ or ’quasilinear,’ while the K >∼ 1
regime is denoted as ’strong turbulence’ or ’nonlinear.’ The Kubo number will play
an important role in the remainder of this paper.

The fundamental idea of the DCT method is to subdivide the total collection
of realizations of φ into sets of subensembles S(φ0,v0) for each of which the initial
conditions φ(x(0), 0) = φ0 and vdr

i (x(0), 0) = v0
i are satisfied. Assuming that the

corresponding probability distribution function P1(φ0,v0) is known, the Lagrangian
correlation of the velocity components can be written as

Lij(t) ≡ 〈vdr
i (x(0), 0) vdr

j (x(t), t)〉 =

=

∫∫
dφ0 dv0 P1(φ0,v0) 〈vdr

i (x(0), 0) vdr
j (x(t), t)〉S =

=

∫∫
dφ0 dv0 P1(φ0,v0) v0

i 〈 vdr
j (x(t), t)〉S =

=

∫∫
dφ0 dv0 P1(φ0,v0) v0

i V
L
j (t;S) (9)

where

V Lj (t;S) ≡ 〈 vdr
j (x(t), t)〉S (10)

is the mean Lagrangian drift velocity in the subensemble S at time t.
On the other hand, the average Eulerian drift velocity in the subensemble S is

given by [7]

V Ej (x, t;S) ≡ 〈vdr
j (x, t)〉S

= φ0 Eφj(x, t)

E(0, 0)
+ v0

1

E1j(x, t)

E11(0, 0)
+ v0

2

E2j(x, t)

E22(0, 0)
, (11)

provided that P1(φ0,v0) is a Gaussian distribution. For the average potential in the
subensemble S, a similar expression can be found:

Φ(x, t;S) ≡ 〈φ(x, t)〉S

= φ0 E(x, t)

E(0, 0)
+ v0

1

E1φ(x, t)

E11(0, 0)
+ v0

2

E2φ(x, t)

E22(0, 0)
. (12)
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Therefore the mean potential and the mean drift velocity in a given subensemble are
connected via

V Ei (x, t;S) = −εij
∂Φ(x, t;S)

∂xj
(13)

which is the subensemble analogue of Eq. (1).
At this point, the key concept of a ’decorrelation trajectory’ is introduced. By

the latter, one means the solution X(t;S) of the equation

dXi

dt
= V Ei (X, t;S) = −εij

∂Φ(X, t;S)

∂Xj
(14)

for appropriate initial conditions. Decorrelation trajectories are then used in order to
express V Lj (t;S) in terms of V Ej (x, t;S) via the Ansatz

V Lj (t;S) ∼= V Ej (X(t;S), t;S) . (15)

Using this assumption, Eqs. (2) and (9) can be rewritten as

Dx(t) =

∫∫
dφ0 dv0 P1(φ0,v0) v0

xX(t;S) . (16)

In practice, Eq. (16) is evaluated numerically, approximating the integral by a sum
over a discrete number of subensembles. Since the subensemble-averaged potential Φ
tends to be much smoother than a real potential φ, and it typically decays to zero
for large distances or times (i.e., when the correlation functions vanish), it is often
sufficient to retain a fairly limited number of decorrelation trajectories. This may be
considered the main advantage of the DCT method. However, its drawback is that
Eq. (15) cannot be derived from first principles. In Ref. [4], the authors state that it
is justified indirectly since the DCT approach is able to reproduce some characteristic
features like the ‘percolation scaling’ for high Kubo numbers.[17] And in Ref. [6],
the usual DCT method is refined by introducing subensembles which differ in higher
order derivatives of the electrostatic potential. Only small corrections for the diffusion
coefficient are found, leading to the claim that the results of the DCT method are thus
– in some sense – validated. Nevertheless, a test of the DCT method via comparisons
with direct numerical simulations has not yet been done. This gap will be closed in
Section 4.

2.2. The extension of the DCT method to particles with finite gyroradii

As is obvious from the above derivation, the DCT method makes use of the fact
that the particle’s velocity is given by the E×B drift. However, in Ref. [2] the
authors postulate the possibility of an extension of the DCT approach to particles with
finite gyroradii by solving the exact Lorentz equation using the subensemble-averaged
potential. They define the average position of the gyrocenter in the subensemble,
Ξ(t;S) ≡ 〈ξ(t)〉S , and the average gyroradius in the subensemble, Π(t;S) ≡ 〈ρ(t)〉S .
Then they define new decorrelation trajectories by solving the Lorentz differential
equation

dΞi
dt

= − εij
∂Φ(Ξ + Π, t;S)

∂Ξj
,

dΠi

dt
= εij

[
∂Φ(Ξ + Π, t;S)

∂Ξj
+ Πj

]
. (17)
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Here, the initial conditions

Π1(0) = ρ cosϕ , Π2(0) = ρ sinϕ , Ξi(0) = −Πi(0) (18)

are used. They imply that the particles start at the origin. The diffusion coefficient
is calculated by replacing X(t;S) by Ξx(t;S) in Eq. (16) and additionally varying the
angle ϕ.

Solving these equations, a strong increase of the diffusion coefficient with
increasing gyroradius has been found for high Kubo numbers.[2, 3] This result is very
surprising and counterintuitive. Particles with finite gyroradii ’see’ a gyroaveraged –
and therefore reduced – effective potential, and this should lead to a reduced effective
E×B drift, associated with lower diffusivities. This apparent contradiction has been
a key motivation for the present work. We will approach the present problem in two
consecutive steps. First, we will reconsider the DCT-based approach that was just
described (Section 3). Then, we will perform and examine direct numerical simulations
of particles with finite gyroradii in prescribed time-dependent electrostatic potentials
(Section 4 and 5). At the end of this dual task, a coherent picture will have emerged
which corrects both the naive expectations and the previous DCT-based results.

3. A modified DCT approach for particles with finite gyroradii

Let us start the discussion and modification of the above DCT approach for particles
with finite gyroradii by pointing out again that Eq. (17) is simply an ad hoc Ansatz
which has not been derived from first principles. Moreover, the use of the subensemble-
averaged potential Φ in the Lorentz differential equation seems hard to justify since it
is based on the assumption of vanishing gyroradii. These facts indicate that it is worth
reinvestigating the DCT approach outlined above. In the following, we will show that
it actually should be corrected, and how.

3.1. Two ways of gyroaveraging

As is shown in Ref. [3], the Lorentz approach based on Eq. (17) can be replaced by an
alternative, ’gyrokinetic’ approach. Here, the subensemble potential is averaged over
the gyroorbit of the particle, so that

Ψ(Ξ, ρ, t;S) ≡ 1

2π

∫ 2π

0

dϕΦ(Ξ + ρ(ϕ), t;S) (19)

is employed in lieu of Φ. Using Eq. (12), it then follows that this amounts to replacing
the Eulerian correlation function E(x, t) by its gyroaverage,

Eeff,A(x, ρ, t) ≡ 1

2π

∫ 2π

0

dϕE(x + ρ(ϕ), t) . (20)

The DCT method can then be applied to this new effective autocorrelation function as
shown in the last section. The denominators in Eq. (12) are not affected since they are
constants. In Ref. [3], it has been demonstrated that there is good agreement between
the original DCT method based on the Lorentz differential equation and the present
gyrokinetic approximation. For later use, we also provide the following representation
of Eeff,A as a Fourier integral:

Eeff,A(x, ρ) =
1

(2π)2

∫ ∞

−∞
dk eik·xE(k) J0(kρ) . (21)
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Here, the time dependence has been suppressed, E(k) ≡ F{E(x)} denotes the Fourier
transform of E(x), and J0 is the Bessel function of order zero. In the following, we
will derive a different type of effective autocorrelation function, however, which is in
line with the physical principles underlying the E×B advection of particles with finite
gyroradii.

The standard gyrokinetic approach consists in first gyroaveraging the potential
and then computing the corresponding E×B drift velocity from this new effective
potential. This means, it is possible to bring the finite gyroradius problem into the
form of the zero gyroradius one if the original potential is replaced by

〈φ〉(x) ≡ 1

(2π)2

∫ ∞

−∞
dk eik·x φ(k) J0(kρ) (22)

where φ(k) ≡ F{φ(x)}. The corresponding Eulerian autocorrelation function Eeff,B

then reads

Eeff,B(x, ρ) =
1

(2π)2

∫ ∞

−∞
dk eik·xE(k) J2

0 (kρ) (23)

where we have used the well-known convolution theorem. We note that we employ
an index ’B’ for this new effective autocorrelation function and an index ’A’ for the
effective autocorrelation function expressed by Eq. (21). These two methods differ in
that the Bessel functions enter, respectively, squared and linearly. In this context, it is
crucial to point out once again that method B is in line with the standard gyrokinetic
approach while method A is not.

Given the above effective Eulerian correlations, the DCT method can then be
applied as usual. One only has to take into account that the denominators of Eq. (12)
must be replaced by the corresponding effective values. Moreover, using method B, the
starting points for the gyrocenters are at the origin. According to method A, however,
they lie on a circle of radius ρ around the origin since the particles themselves start
at the origin.

3.2. Comparison of the two methods

Next, we compare these two methods of calculating the diffusion coefficient for finite
gyroradii by assuming a simple autocorrelation function of the form

E(x, t) = Ae−x
2

e−(t/τc)
2

. (24)

Here, distances are expressed in units of the correlation length λc, and τc denotes
the correlation time (time is still expressed in units of gyration periods). The Kubo
number K can be controlled by varying τc. Choosing the form of Eq. (24) for E(x, t)
has two main advantages. First, due to spatial isotropy, one can save one dimension
in the integral over the subensembles in Eq. (16). Second, due to the factorization of
space and time correlations, it is possible to relate the two quantities D(t,K→∞)
and D(t→∞,K) to each other as is shown in Ref. [5]. In other words, the long-time
limit of the diffusivity for different Kubo numbers can be computed from the time-
dependent diffusivity in a static potential. It is thus possible to obtain continuous
curves of the quantity D(K) ≡ D(t→∞,K). Some examples are shown in Fig. 1.
Here, the underlying equations of motion have been solved numerically via a fourth-
order Runge-Kutta method. The number of subensembles has been chosen such that
the curves are sufficiently smooth. Only in the high Kubo number regime, small
oscillations can be observed in some of the curves, reflecting the limited number of
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Figure 1. Diffusion coefficient D for t→∞ as a function of the Kubo number
K for different gyroradii ρ (normalized to the correlation length of the potential).
The solid/dashed and dotted lines represent numerical calculations with the DCT
method using, respectively, Eeff,B and Eeff,A.

subensembles. The D(K) curves have been computed for gyroradii of 0, 0.3, 1, 3 and
10 times the correlation length of the potential. Dashed lines represent the diffusion
coefficient calculated with the effective correlation Eeff,B, whereas dotted lines denote
the diffusion coefficient using Eeff,A. The results for method A are practically identical
to those published in Ref. [3] although the time dependence of the correlation function
is somewhat different. In particular, one observes huge enhancements of the maximum
diffusivity with increasing gyroradii. This surprising and very counterintuitive finding
is modified in a significant fashion when method B is employed instead. While for
low Kubo numbers, both methods agree, the increase of the diffusion coefficient with
increasing gyroradii in the high K regime is still existent but much more moderate.
Moreover, while this increase of the diffusion coefficient is due to the extension of the
’linear regime’ to larger K for method A, it is rather due to a more moderate decay
of D(K) with increasing K for method B. In the next subsection, we will give an
explanation for these findings.

3.3. D(K) curves and effective correlation functions

The spatial part of the effective autocorrelation function Eeff,A for different gyroradii
ρ (normalized to the correlation length of the potential) is shown in Fig. 2. Due to
spatial isotropy, one obtains the respective two-dimensional surfaces by rotating these
curves around the symmetry axis. The maxima of the effective correlation functions
lie on a ring with radius ρ. This is because to obtain Eeff,A, the original correlation
function for ρ = 0, which has its maximum in the center, is gyroaveraged. Thus for
x = ρ, the ’ring’ over which the gyroaverage is calculated goes straight through the
maximum of the latter. As mentioned in Section 2, the decorrelation trajectories start
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Figure 2. Spatial part of the effective autocorrelation function Eeff,A for different
gyroradii ρ (normalized to the correlation length of the potential).

at a distance ρ from the origin, i.e., at the maximum of the correlaton function. Since
the average subensemble potential is constructed as a superposition of Eeff,A and its
derivatives [see Eq. (12)], it can be shown that shape of the equipotential lines and
therefore the shape of the decorrelation trajectories is similar to the ring structure of
Eeff,A. Therefore the drastic increase of the diffusivity results from the fact that the
effective correlation function supports much wider trajectories than the original one.
On the other hand, the absolute values of Eeff,A are reduced, leading to a reduced
particle velocity and therefore to the extension of the linear regime to higher values
of K. A similar explanation was given in Ref. [3]. There it was also shown that the
effective time of flight over a distance of one correlation length scales like τ eff

fl ∝ ρ2.
Since the diffusion coefficient takes on its maximum value at τfl = τc, it follows that
the position of the maximum of D(K) moves towards larger K like ρ2.

Now we turn to the effective autocorrelation function Eeff,B which is plotted in
Fig. 3. We note that its shape differs completely from that of Eeff,A. While the main
maximum remains at the origin, additional side maxima occur at |x| = 2ρ. This
behavior becomes clear if we recall that gyroaveraged potentials are used to calculate
the autocorrelation function. Since the gyroaveraging is done over rings with radius
ρ around certain points, it is obvious that the autocorrelation is maximal if the two
rings are tangent to each other, i.e., for |x| = 2ρ. In this case, the correlated area
increases along with the autocorrelation. [According to method B, the decorrelation
trajectories start at the origin.]

Although the maximum value of Eeff,B decreases with increasing gyroradius, the
diffusivity is again observed to increase – at least moderately (see Fig. 1). However,
the underlying physical mechanism is completely different from the one identified for
method A. In case B, it is the widening of the effective autocorrelation function which
is responsible for the increase of the diffusive transport. Although the average drift
velocity is reduced, the autocorrelation Eeff,B as well as its derivatives remain nonzero
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Figure 3. Spatial part of the effective autocorrelation function Eeff,B for different
gyroradii ρ (normalized to the correlation length of the potential).

over a larger area in space, leading to larger excursions of the equipotential lines
and therefore to more extended decorrelation trajectories. This is in line with the
finding that a more moderate decay of the autocorrelation in space leads to a slower
reduction of the diffusion coefficient for large and growing Kubo numbers.[5] Due to
this widening effect, the curves for different gyroradii in Fig. 1 are actually able to
intersect.

As can be inferred from Fig. 3, the correlation length – defined here as the e-folding
length of Eeff – stays approximately the same for ρ >∼ 1. Moreover, the envelope of the
Bessel function J0(kρ) is given by (πkρ/2)−1/2 for kρ � 1, and therefore the mean

drift velocity V eff =
√
Eeff
ii (0, 0) scales like ρ−1/2. Consequently, the effective time

of flight scales like τ eff
fl ∝ ρ1/2τfl, and the maxima of the curves D(K) move to the

right like ρ1/2. This prediction is confirmed by Fig. 1. The ρ1/2 dependence of the
position of the maxima is much weaker than the ρ2 dependence obtained for method
A. This is why the extension of the linear regime is weaker and therefore the maxima
of D(K) are reduced compared to method A. The fact that one still finds an increase
of transport in the high Kubo number regime for method B has to do with the reduced
decrease of D(K) rather than with the displacement of the maximum.

Finally, it is also possible to explain why both methods lead to the same results
for K <∼ 1. In this regime, the decorrelation of the particles is temporal. Therefore, in
the language of the DCT method, the particles are not able to explore large regions
of the subensemble potential before being decorrelated. Consequently, the dynamics
of the particles is dominated by the behavior of Eeff around the origin. And it can be
shown that Eeff,A(|ρ|) = Eeff,B(0). This means that the differences between method
A and B only appear if the particles can travel sufficiently far away from the origin,
i.e., for high Kubo numbers.

In summary, we have shown in this section that the diffusion of particles with
finite gyroradii needs to be treated in the framework of a DCT approach which is
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based on autocorrelation functions of gyroaveraged potentials. Such a theory leads to
a significant reduction of the maximum diffusivities compared to the results presented
in Refs. [2] and [3]. Nevertheless, in the high Kubo number regime, the diffusion
coefficient still increases with increasing gyroradii. The underlying physical mechanism
for this effect could be identified as the broadening of the autocorrelation function due
to the gyroaveraging of the potential. This is in contrast to Ref. [3] where the peculiar
shape of the autocorrelation function has been made responsible for the increase.
While the new method put forth in the present paper is compatible with the standard
gyrokinetic way of working with gyroaveraged potentials, the previously published
method is not.

4. Comparison of the DCT method with direct numerical simulations

4.1. General remarks

Given the fact that the DCT method is based on the ad hoc assumption expressed
by Eq. (15), its validity can only be demonstrated a posteriori via comparisons with
direct numerical simulations. However, no such attempt can be found in the literature.
And the reason seems to be that the electrostatic potentials used for direct numerical
simulations in the past either had autocorrelations that were too complicated for an
efficient use of the DCT method or they did not satisfy the applicability conditions
of the DCT method. The latter require that the statistics of the potential be
homogeneous, stationary, and Gaussian. Such a potential can be generated by means
of a superposition of a sufficiently large number of harmonic waves:

φ(x, t) =

N∑

i=1

Ai sin(ki · x + ωit+ ϕi) . (25)

Its Gaussianity can be demonstrated with the help of the central limit theorem,
regarding the characteristic numbers of the harmonic waves as a set of independent
random variables. The autocorrelation function of such a potential is then easily
shown to be

E(x, t) =

N∑

i=1

A2
i

2
cos(ki · x + ωit) . (26)

Moreover, the effective correlations Eeff,A and Eeff,B are simply obtained by
multiplying the individual Fourier components of E by J0(kiρ) and J2

0 (kiρ),
respectively.

As indicated above, an efficient use of the DCT method requires further that the
autocorrelation be sufficiently smooth in space, i.e., it should not exhibit large spatial
fluctuations. This is because the decorrelation trajectories X(t;S) of neighboring
subensembles should be similar in order to ensure convergence in the numerical
solution of the integral in Eq. (16). As we have already mentioned, the advantage
of the DCT method lies in replacing real chaotic trajectories by new deterministic
decorrelation trajectories. However, for heavily oscillating autocorrelations, the latter
become chaotic themselves. In this case, Eq. (16) cannot be solved any more since
the number of subensembles is limited in practice. We are thus forced to employ
a sufficiently large number of partial waves. We ended up using N = 105 waves
with a Gaussian amplitude spectrum of the form Ai = Amax exp(−k2

i /8). The wave
numbers and frequencies are randomly and homogeneously distributed within the
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Figure 4. Time-dependent diffusivity D(t) for K = 0.18: direct numerical
simulation (−−−−−−) and DCT method B (−−−).

intervals 0 ≤ |ki| ≤ kmax and 0 ≤ ωi ≤ ωmax. We note in passing that random
distributions of wave numbers lead to much smoother autocorrelations than regular
lattices in wave number space (see, e.g., Ref. [15]) and are therefore to be preferred.
The Kubo number is controlled by varying ωmax. Due to this large number of partial
waves, the autocorrelation function is fitted almost perfectly by a Gaussian of the form
E(x) ∝ exp(−x2). Isotropy leads to an important increase in efficiency by reducing
the dimensionality of the subensemble space over which one has to integrate by one.

Given the large number of partial waves, it is not feasible any more to compute
the potential or the autocorrelation anew for every time step of the numerical
simulation. Instead, their values and those of the required derivatives are saved as
three-dimensional arrays, e.g., φ(xi, yj , tk). The values at intermediate space-time
points are then recovered by means of cubic interpolations based on the well-known
Lagrange formula. For solving the differential equations, a fourth-order Runge-Kutta
method is used. The diffusivities are computed according to the definition given in
Eq. (2). In order to obtain comparatively smooth curves, the ensemble average is
calculated averaging a large number of different particle trajectories. Here, a number
of some thousand trajectories has been found to be sufficient. A further improvement
is obtained via the ’time average’ method described in Ref. [15]. Here, the present
positions of the particles are saved and reused as new starting points.

4.2. Numerical results

In Fig. 4, the time-dependent diffusion coefficientD(t) is shown forK = 0.18 and ρ = 0
as well as ρ = 3. Length scales are again normalized with respect to the correlation
length of the potential which is independent of the Kubo number. The DCT method
B and the direct numerical numerical simulation agree fairly well in this low K regime.
Moreover, in the finite gyroradius DCT case, both method B and method A lead to
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Figure 5. Time-dependent diffusivity D(t) for K = 180 and ρ = 0:
direct numerical simulation (−−−−−−), DCT method B (−−−), and Corrsin
approximation (− · − · −).

the same result (not shown). Of course, for K < 1, trapping effects are absent and the
particles decorrelate temporary before they can explore the structure of the potential.
Therefore the real question is how the DCT method performs at high Kubo numbers.

The behavior of the diffusivity for K = 180 and ρ = 0 is displayed in Fig. 5. Here,
it is obvious that trapping effects influence the time evolution of the diffusion coefficient
quite strongly. Interestingly, the curves obtained by direct numerical simulation and
via the DCT method differ by more than one order of magnitude for large times.
Indeed, the effect of trapping seems to be taken into account too strongly by the DCT
method. As a further reference, the diffusion coefficient calculated with the Corrsin
approximation [16] – a widely used approximation method which neglects trapping
effects altogether – is also shown. The direct numerical simulation result is roughly
half-way between those of the Corrsin approximation and the DCT method. The
oscillations observed in the DCT curve for large times reflect once more the limited
number of subensembles.

A comparison between direct numerical simulation and the DCT methods A and
B for finite gyroradii (ρ = 3) is shown in Fig. 6. Method B again underestimates
the transport level while method A greatly overpredicts it. While both DCT results
deviate significantly from the exact one, this figure seems to suggest that the value
obtained via the DCT method B is at least in the right ballpark while method A yields
a number which is too large by about 1 1/2 orders of magnitude for this particular case.
For large gyroradii and Kubo numbers, this difference increases further. Thus, the
DCT approach A for particles with finite gyroradii must be discarded for two reasons:
first, it is not in line with the physical principles underlying the E×B advection of
particles with finite gyroradii, and second, it grossly overpredicts the transport levels
in the high Kubo number regime. While surely not perfect, the DCT method B avoids
this first drawback and also agrees much better with the direct numerical simulations.
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Figure 6. Time-dependent diffusivity D(t) for K = 180 and ρ = 3: direct
numerical simulation (−−−−−−), DCT method B (−−−), and DCT method A
(· · · · ··).

Figure 7. Time-dependent diffusivity D(t) in a static potential, i.e., for K →∞:
direct simulation (−−−−−−), DCT method B (−−−), and DCT method A (· · · · ··).

This impression is confirmed in Fig. 7 which shows the time-dependent diffusivity for
ρ = 0 and ρ = 3 in a static potential, i.e., for K → ∞. The diffusion is subdiffusive
in this case, with the direct numerical simulation and the DCT method B differing in
their decay exponent in the large-time limit. [As mentioned before, this D(t) curve
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Figure 8. Time-dependent diffusivity D(t) in a static potential, i.e., for K →∞,
for different gyroradii ρ (normalized to the correlation length of the potential).

is related to D(t→∞,K).] Again, the DCT method A yields anomalous results for
ρ > 0.

We thus have to conclude that while the DCT method B works for small Kubo
numbers, K <∼ 1, it leads to quantitatively wrong results for K >∼ 1, i.e., in the
nonlinear trapping regime. In contrast to the Corrsin approximation which is not able
to describe the effect of particle trapping at all, the DCT method considers this effect
too strongly. The reason for this behavior must lie in Eq. (15) which is the only major
assumption in the DCT approach.

This finding leads us to consider direct numerical simulations of test particles
with finite gyroradii in more detail in the following section. In this context we will
find that despite its limits, the DCT method still provides both basic physical insight
and some qualitative results which carry over to the exact treatment of this system. In
particular, it will turn out that (1) a key effect at large Kubo numbers is the widening
of the particle trajectories, and that (2) the narrowing of the gap between curves for
different gyroradii in the high K regime [as observed in Fig. 7] persists.

5. Direct numerical simulations and analytical results for finite gyroradii

5.1. Results of direct numerical simulations

In the present section, we will concentrate on direct numerical simulations performed
in a self-generated electrostatic potential described by Eq. (25). The time-dependent
diffusion coefficient D(t) for a static potential and for a set of different gyroradii is
shown in Fig. 8. Here, the curves for ρ = 0 and ρ = 3 are the same as those in
Fig. 7. Given the correspondence between D(t,K → ∞) and D(t → ∞,K) which
has been mentioned several times already, one can expect the K-dependent long-time
diffusivities to take on similar characteristics. This is indeed the case as can be inferred
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Figure 9. Long-time limit of the diffusivity D as a function of the Kubo number
K for different gyroradii ρ (normalized to the correlation length of the potential).

from Fig. 9. Here, we plotted D(t→∞,K) for several values of ρ (normalized, again,
with respect to the correlation length of the potential). From Figs. 8 and 9, one
can extract the scalings D(t) ∝ t and D(K) ∝ K for small times and small Kubo
numbers, respectively, whereas for large times and large K, one finds D(t) ∝ t−0.4

and D(K) ∝ K−0.25. The latter scaling – which has a large error bar since it is based
on only two points – is very close to Isichenko’s estimate of D(K) ∝ K−0.3 which is
based on percolation theory [17] (for numerical confirmations of this theory, see, e.g.,
Refs. [15, 18]). For small Kubo numbers, the transport is significantly reduced with
increasing gyroradius even for ρ <∼ 1. This behavior is in agreement with numerical
simulations found in the literature (see, e.g., Ref. [10]). For larger Kubo numbers,
K >∼ 1, the system’s behavior is completely different, however. For ρ <∼ 1, i.e.,
for gyroradii up to the correlation length, the transport is practically constant or
even slightly increased with increasing ρ. In addition, the transport reduction with
increasing ρ for ρ >∼ 1 is much slower than in the low Kubo number regime. These
are key results of the present paper. They correct both the naive expectations and the
previous DCT-based results. In the following, we shall develop an analytical approach
which helps us to understand these findings both qualitatively and even quantitatively.

5.2. An analytical approach

As we have seen above, the DCT method tends to overemphasize trapping effects in
the high Kubo number regime. Therefore the analytical description of the gyroradius
dependence of the diffusivity which we are about to develop will be based directly on
the effective autocorrelation function. From the latter, one can infer drift velocities
and correlation lengths (as well as correlation times, of course) as a function of ρ. This
information can in turn be used together with the well-known Kubo number scalings
in the low and high K regimes to derive expressions for the gyroradius dependence of
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the diffusivity. The formulas obtained this way will be shown to be in good agreement
with the results from direct numerical simulations.

Qualitatively speaking, we will find the following scenarios in the case of small and
large Kubo numbers. For K <∼ 1, the situation is rather simple. The gyroaveraging
merely smoothes out the potential and therefore reduces the effective drift velocity,
leading to a significant reduction of the diffusion coefficient. For K >∼ 1, on the other
hand, the presence of trapping effects introduces a new aspect. While the drift velocity
is of course still reduced with increasing gyroradii, the gyroaveraging simultaneously
enlarges the scales of the equipotential lines. Consequently, the gyrocenter trajectories
become more extended, counteracting the reduction of the drift velocity. [A similar
effect has been discussed before in the context of the DCT method.]

Starting from these ideas, the goal is to find analytical expressions for both the
effective drift velocity V eff and the average extension of a drift trajectory which will
be assumed to scale like the correlation length λeff

c . An expression for the effective
autocorrelation of the gyroaveraged potential has already been given in Eq. (23). For
spatially isotropic autocorrelation functions as we are dealing with here, the angle
between x and k can be integrated out, yielding

Eeff
ρ (x) =

1

2π

∫ ∞

0

dk k E(k) J2
0 (kρ) J0(kx) . (27)

Assuming a Gaussian spatial autocorrelation of the form

E(x) = Ae−x
2

, (28)

which is in accordance with Eq. (26), we find

Eeff
ρ (x) =

A

2

∫ ∞

0

dk k e−k
2/4 J2

0 (kρ) J0(kx) . (29)

Unfortunately, this integral cannot be solved analytically. However, the factor J 2
0 (kρ)

can be approximated in the limits of small and large arguments. E.g., for kρ <∼ 1, we
find

J2
0 (kρ) = 1− (kρ)2/2 + 3 (kρ)4/32− 5 (kρ)6/576 +O(ρ8) (30)

by means of a Taylor expansion. In this case, Eq. (29) yields

Eeff
small ρ(x) = Ae−x

2 − 2Aρ2 (1− x2) e−x
2

+
3Aρ4

2
(2− 4x2 + x4) e−x

2

− 5Aρ6

9
(6− 18x2 + 9x4 − x6) e−x

2

+O(ρ8) . (31)

Using this expression, we then obtain

V eff
small ρ = V

[
1− 2ρ2 + 5ρ4/2− 5ρ6/3 + 5ρ8/8 +O(ρ10)

]
(32)

for the effective drift velocity. Moreover, a perturbative calculation yields

λeff
small ρ = λc

[
1 + ρ2 + ρ4/4 +O(ρ6)

]
(33)

for the effective correlation length. The factor J2
0 (kρ) in Eq. (27) suppresses shorter

wavelengths and leads to an increase of the effective λc.
For kρ� 1, on the other hand, the squared Bessel function is known to oscillate

strongly. In this case, we thus approximate it by half of its envelope, i.e., we set

J2
0 (kρ) ≈ 1/(πkρ) . (34)
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Eq. (29) then yields

Eeff
large ρ(x) =

A

2
√
πρ

e−x
2/2 I0

(
x2/2

)

=
A

2
√
πρ

e−x
2/2
[
1 + x4/16 + x8/1024 +O(x12)

]
(35)

where I0 denotes the modified Bessel function of the first kind. From this expression,
we obtain

V eff
large ρ = V (4

√
πρ)−1/2 . (36)

Since the gyroradius ρ enters Eq. (35) just a prefactor, the effective correlation length
is independent of it. The latter can be determined numerically to be

λeff
large ρ ≈ 1.73 . (37)

For large gyroradii, the term J2
0 (kρ) in Eq. (27) reduces practically the entire k

spectrum of the potential in the same way. Therefore the effective correlation length
does not increase any more.

With the help of the above expressions for V eff and λeff
c we are now able to

estimate the resulting transport levels. In the limit of small Kubo numbers, K <∼ 1,
the diffusion coefficient is known to scale like D ∝ λc V K = τc V

2.[15, 18] Since the
correlation time τc is not affected by the gyroaveraging, one only has to replace V by
V eff to obtain the corresponding diffusion coefficient for finite gyroradii. In the limit of
large Kubo numbers, K >∼ 1, one has D ∝ λc V Kγ−1 = λ2−γV γ/τ1−γ

c instead.[15, 18]
Due to trapping effects, one finds γ < 1. In Ref. [17], a consideration based on
percolation theory suggests γ = 0.7, whereas we observe γ ≈ 0.75 in our numerical
simulations. It should be pointed out that in the large Kubo number regime, both the
drift velocity and the correlation length are affected, namely in such a way that these
two effects tend to cancel each other out. Employing the above formulas for V eff and
λeff
c , we finally obtain

Dρ/D0 ≈ 1 + [2− 3γ] ρ2 +

[
3

2
− 21

4
γ +

9

2
γ2

]
ρ4

+

[
1

2
− 29

12
γ +

27

4
γ2 − 9

2
γ3

]
ρ6 for ρ <∼ 1 (38)

and

Dρ/D0 ≈ 1.732−γ (4
√
πρ)−γ/2 for ρ� 1 (39)

where γ = 2 for K <∼ 1 and γ ≈ 0.75 for K >∼ 1. It is interesting to note that for
γ = 2/3, the second and fourth order terms in Eq. (38) vanish exactly, i.e., Dρ/D0 is
constant for small values of ρ up to sixth order corrections. Since this critical value for
γ is pretty close to both ours (γ ≈ 0.75) and Isichenko’s (γ = 0.7) in the large Kubo
number regime, the diffusivity depends only weakly on the gyroradius in this case as
long as it is smaller than or comparable to the correlation length. This confirms our
simulation results in the K � 1 limit. In the low K regime, we find Dρ/D0 ≈ 1−4 ρ2

instead, and for large gyroradii, the transport is reduced with increasing ρ like ρ−1

or ρ−γ/2 for K <∼ 1 or K >∼ 1, respectively. The simulation results shown in Fig. 9
are compared to the analytical approximations in Fig. 10. In general, we find fairly
good agreement for both small and large gyroradii. Only for K = 180 and ρ = 10,
the numerical value is somewhat smaller than the analytical one. In this case, the
nonlinear regime is not fully established yet due to the strongly reduced drift velocity.
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Figure 10. Comparison between the numerically determined diffusion coefficients
and the analytical formulas, Eqs. (38) and (39). Here, D0 and Dρ denote,
respectively, the diffusivity for vanishing and finite gyroradius.

6. Conclusions

In summary, we have used a modified decorrelation trajectory (DCT) approach,
direct numerical simulations, and analytical analysis to establish a rather detailed
and coherent picture of the turbulent advection of test particles with finite gyroradii.
Our results correct both the naive expectations and the previously published DCT-
based results.[2, 3] While in the low Kubo number (weak turbulence) regime, the
diffusivity falls off rapidly with increasing gyroradius, it is more or less constant in
the high Kubo number (strong turbulence) regime as long as the gyroradius does not
exceed the correlation length of the electrostatic potential. The physical mechanisms
underlying these results were identified and discussed. In particular, we found that for
K >∼ 1, the decrease of the average drift velocity with increasing gyroradius tends to
be balanced by an increase of the effective correlation length. Thus the particles are
able to travel larger distances, and the diffusivity is practically left unchanged. If the
gyroradius clearly exceeds the correlation length, on the other hand, the diffusivity
falls off as ρ−γ/2 with γ = 2 for K <∼ 1 and γ ≈ 0.75 for K >∼ 1. This is consistent
with previous studies of test particle diffusion in Hasegawa-Mima turbulence.[11]

While the main purpose of the present paper was to investigate the fundamental
physical processes responsible for the gyroradius dependence of the diffusivity under
various circumstances, it is easy to envision possible applications both in fusion
research and in plasma astrophysics. Although additional effects might enter in
these cases, the basic mechanisms discussed in this paper are expected to remain
relevant. E.g., to assess the interaction of fusion α particles with the background
microturbulence in future burning plasma experiments, one requires the insights and
results presented in Sections 3-5. Based on simulations with the nonlinear gyrokinetic
code gene [19, 20], we expect the Kubo numbers under realistic experimental
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conditions to be of the order of unity or even slightly larger. At the same time, the
gyroradii of the energetic α particles will probably not exceed the correlation length
of the electrostatic potential. Consequently, it is reasonable to expect that the finite
Larmor radius reduction of the turbulent diffusion is rendered ineffective, suggesting
a significant impact of the turbulence on the α particle transport.
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