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Abstract: A general method for the design of diagnostics by means of Bayesian probability 

theory is outlined. Case studies are discussed for two diagnostics planned for 

Wendelstein 7-X. First, line of sight optimization for interferometry meeting with physical 

optimization targets is investigated. The filter transmission bandwidth for Thomson scattering in 

W7-X is discussed as a second example.  

 

 

 
I. PRINCIPLE OF DIAGNOSTIC DESIGN 

The set of ”start-up” diagnostics for Wendelstein 7-X is oriented to resolve physical issues of 

stellarator optimization [1]. The diagnostics philosophy of W7-X aims at extendable setups which 

are to be supplemented along the operation of the device. Planning diagnostics directly lead to the 

requirement to optimize their respective outcome. In many cases, the optimization is much 

restricted by technical constraints. But even in those cases, figures of robustness of the chosen 

design settings are beneficial for the diagnostic strategy. 

 

In this paper a framework for diagnostic design is presented employing the Bayesian 

probability theory. (For an introduction to the field of Bayesian theory see, e.g., [2].) Part 

of the approach can be regarded as a virtual diagnostic, which describes the future experimental 

unit including its error statistics and is able to produce ”artificial data”. The virtual diagnostic is 

fed with mock-up quantities of interest and hence it enables the designer to compare the outcome 

of the virtual diagnostic with its input. 



 

For the design of diagnostics in fusion experiments several figures of merit are possible, 

depending on the optimization goal. Here physical questions like estimation of the density 

distribution or the density gradient are possible optimization targets as well as technical issues as 

the robustness of density measurements, e.g, for controlling purposes. Also the estimation of 

derived quantities - like gradients needed for modeling of the bootstrap current or of the radial 

electric field - might be considered to be the goal of a diagnostic design. 

 
A. Bayesian Experimental Design 

The figure of merit for the optimization is called the utility function U(D, η). It depends on 

the data D and the design parameters η. The data represent the expected data which are to be 

derived from  

1. the expected range of quantities of interest φ (such as a expected density range) and their 

respective relevance (by means of a ’weight function’ allowing to put special interest, 

e.g., on large density values) – and  

2. a diagnostics model which contains the forward function 

           D = f(φ, η) 

      and the error statistics of all quantities. 

 

Then, an integration over the range of expected data, where the evidence of the data is 

represented by the probability density function P(D|η), yields the expected utility function 

EU: 

 

∫= )1(),,()|()( ηηη DUDPdDEU  
which remains to be a function of the design parameters only. 

Diagnostic optimization is the maximization of the expected utility with respect to the design 

parameters η. 

 

A possible utility function is provided by information theory (see [3]): The so called 

Kullback–Leibler distance is an absolute information measure which expresses the information 

gain from the knowledge (or better ignorance) about the parameters of interest φ before a 



measurement P(φ) to the knowledge on the parameter after a measurement P(φ|D, η). It is 

measured in bits, if the base-2 logarithm is used. 
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The functions P(φ) and P(φ|D, η) are probability density functions encoding the uncertainty of the 

quantity to be inferred. The term P(φ) is the prior probability density, and in data analysis it 

describes the prior knowledge of the parameter of interest φ (e.g. the density distribution) before 

the measurement. For the design process the prior probability density function is used to define 

the range of interest of φ (e.g. densities from 1019 − 5·1020 m−3). 

 

The posterior distribution, P(φ|D, η), is the inference for a set of given data. From eqs. (1) and (2) 

follows 
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P(φ|D, η), which is unknown, can be replaced by Bayes theorem 
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∫∫= )5(.
)|(
),|(log)(),|()(

η
ηϕϕηϕϕη

DP
DPPDPddDEU  

 
Here the likelihood P(D|φ, η) is the error statistics of a measurement for a given quantity 

of interest. The term P(D|η) is called prior predictive value or evidence of the data. It is 

given by 
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For the design of diagnostics, only the prior P(φ) and the likelihood P(D|φ, η) are necessary. 



The expected utility must fulfill some simple properties in the limiting cases (a) no data 

available, (b) data is totally uninformative about the parameters φ, and (c) exact knowledge about 

the parameters [4]. Without data, the posterior P(φ|D, η) is equal the prior P(φ), which leads to 

EU(η) = 0 according to (3). In other words, there is no information gain without data. In case of 

(b), the experiment is totally ignorant about the chosen parameters φ, so the likelihood P(D|φ, η) 

is equal to the evidence P(D|η), the expected utility is zero again. Finally, exact knowledge of the 

parameters (case c) means P(φ) = P(φ|D, η), which also results in EU(η) = 0, according to (3), 

because no information was gained by the measurement. 

 
II. CASE STUDIES 

A. Single chord interferometry 

First design studies were performed for a single-chord interferometer. Different geometries of the 

plasma shape, from a simple circular to the complex W7–X profile, were used to analyze the 

performance of the design algorithm and to study limiting cases. 

 

The virtual interferometer was fed with a parameterized electron density function 

 

)7(,

1

2.01
),( 20

2
2

2

2

121

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⋅−
⋅=

ϕ

ϕϕϕ
eff

eff
e

r

r
n

 

 
representing a typical parametric profile function for W7-AS. One parameter was changed 

according to Fig. 1, respectively. The resulting phase shift  was 

deteriorated by normally distributed noise with a constant standard deviation σ. The dependence 

on the design criterion was investigated for two different criteria: estimation of the density 

amplitude and of the position of the density edge. 
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As an example, the effect of the choice of the line of sight was investigated; results are 

shown in Fig. 2. For parametrization of the line of sight, two angles representing the start 

θ1 and end point θ2 of the chord on a circumventing circle span up a plane on which the 



expected utility is determined (cf. Fig 2 lower panels). θ1 and θ2 are exchangeable resulting in a 

symmetric plot of the expected utility. For beams which do not cross the plasma, the expected 

utility is zero. 

 

As a first limiting case, the reconstruction of the density amplitude was examined (see 

Fig. 1 (left)). A practical application of this case is the use of the interferometer for 

density control. Figure 2 shows the density distribution for a circular, elliptical and W7–X 

shaped plasma (upper row). The plot of the expected utility function (lower row) shows a 

maximum which corresponds to the chords traversing the center of the plasma, as shown for the 

circular, elliptical and W7–X plasma profile. Provided a constant background noise the highest 

accuracy to estimate the density amplitude is the chord with the highest signal-to-noise ratio. 

Obviously, this corresponds to the longest possible way through the plasma, crossing the most 

dense regions, which are located in the plasma center. In addition, the shape of expected utility 

plot offers estimates for the effect of alignment on the measurement. 

 

Figure 3 shows the design result for the estimation of the position of the largest density gradient 

that is of relevance for modeling of, e.g., the bootstrap current or the radial electric field. 

The best estimation of the parameter of interest is given with a beam through the edge of the 

plasma, i.e. the region of the gradient position as expected from the profile according to Fig. 1 

(right). In addition to the radial position, the largest expected utility is attained for chords which 

maximize the length of the line of sight in the plasma edge region.  

 
Effect of error statistics 

Different types of error statistics result in different experimental designs. To study the 

effect of the error statistics on the design, the density amplitude was chosen as parameter of 

interest. Three different cases for measurement errors were analyzed: first, a constant background 

noise was assumed, i.e. the standard deviation σ was independent from the data value, second, a 

counting experiment was assumed with a standard deviation D∝σ , and third, a constant 

signal-to-noise ratio (SNR) with standard deviation D∝σ . 

 
Figure 4 shows the results for the expected utility for the estimation of the density 

amplitude for three different uncertainties. For a constant σ a distinct maximum appears, 



corresponding to a chord transversing the plasma center (fig. 2 right). For D∝σ , on the 

other hand, the expected utility is constant as long as the line of sight crosses the plasma. 

For the case D∝σ  a maximum similar to a constant standard deviation appears, but 

the expected utility distribution is less peaked, which indicates that the choice of the line 

of sight is less critical than in the case σ = const. The most prominent peak in the EU 

distribution is given for the case σ = const. For D∝σ  the SNR is proportional to D , 

whereas for D∝σ  the SNR and, hence, the expected utility is constant. 

 

The calculations show a significant impact of the type of measurement error on the 

expected utility distribution. This indicates the relevance of error statistics on the design. 

 

B. Thomson scattering 

The measurement of electron temperature and density by a polychromator Thomson scattering 

set-up is investigated as a second example [5]. The scattering function is detected by four spectral 

filters. The design of the spectral filters is discussed by the choice of the cut–off wavelengths λ1 

and λ2 of two spectral filters as shown in Figure 5. 

Figure 6 shows results for different expected temperature intervals. The maxima of Figs. 

6 (upper row) depend on the range of Te and resemble the wavelength range covered by 

significant scattering intensity. The results itself can be used to study the robustness of the design. 

The lower row of Fig. 6 shows that the error statistics has substantial impact on the expected 

utility as well. It is the different influence of σ on the optimum expected signal-to-noise ratio for 

a given temperature range which leads not only to different maxima for the same expected Te 

range (cf. Fig. 6 lower row left and center) but even to a qualitatively different behavior. For a 

constant noise (Fig. 6 lower row right) it appears that the optimum corresponds to λ1 = λ2 or λ1,2 = 

λLaser or, in other words, to remove one filter. 

 

III. SUMMARY AND OUTLOOK 

Bayesian probability theory offers general methods for diagnostic design. The approach 

reveals aspects which could be missed otherwise. For example, the analysis shows that the 

expected noise behavior of the signal can affect the choice of sightlines for a single chord 

interferometer. The design of filter band-widths for a Thomson scattering system depends on a 

correct description of the error statistics as well. 



 

The case studies will be completed towards a virtual multi-chord interferometer for Wendelstein 

7-X and compared to traditional design approaches [6]. The results attained indicate the impact of 

the specific design goal and the error statistics both for the optimum design and the shape of the 

expected utility function, where the latter can be interpreted as a figure of robustness of the 

design chosen. 
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FIG. 1: Density distribution: (left) amplitude φ1 of density distribution changed; (right) position of density 

edge φ2 changed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
FIG. 2: Density distribution and expected utility for the estimation of the density amplitude, calculated for 

circular-shaped (left), elliptical-shaped (middle) and W7–X shaped (right, toroidal angle 194°) plasma. 

The interferometer beam chords in the upper panels correspond to the symbols (star) in the lower panels, 

respectively. The angles θ1 and θ2 parametrize the lines of sight. In regions of EU = 0 the beam does not 

enter the plasma. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
FIG. 3: Estimation of the gradient position with one chord: density plot (left), expected utility (right) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
FIG. 4: Expected utility for the estimation of the density amplitude for three different uncertainties: σ = 

const  (left), D∝σ  (middle), and D∝σ  (right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
FIG. 5: Transmission curves of spectral filters of a polychromator detector and expected Thomson 

scattering functions Te = 1eV −10keV . Left: Set of filters as used for W7–AS Thomson scattering, right: 

model filters. λ1 and λ2 are the cut-off wavelengths of filters allowed to vary for design studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
FIG. 6: Expected utility as a function of the cut–off wavelengths λ1 and λ2. The upper row shows the 

dependence on the choice of the parameter range of temperature with the same error statistics ( D∝σ ): 

Te = 0.01 − 0.25keV (left); Te = 0.25 − 1keV (middle); Te = 1 − 10keV (right). The lower row shows the 

dependence on error statistics with the same expected range of temperatures (Te = 1 − 10keV ): D∝σ  

(left); D∝σ  (center); σ = const (right). The right plot in the upper row is repeated as left plot in the 

lower row for completeness. 


