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Abstract

A system of plasma particle and parallel momentum balance equations is derived appropriate
for understanding the role of drifts in the edge and for edge modelling, particularly in the
scrape-off layer (SOL) of tokamaks, stellarators and other magnetic confinement devices.
The formulation allows for strong collisionality — but also covers the case of weak
collisionality and strong drifts, a combination often encountered in the SOL. The most
important terms are identified by assessing the magnitude of characteristic velocities and
fluxes for the plasma edge region. Explanations of the physical nature of each term are
provided. A number of terms that are sometimes not included in edge modelling, has been
included in the parallel momentum balance equation after detailed analysis of the parallel
component of the gradient of the total pressure-stress tensor. This includes terms related to
curvature and divergence of the field lines, as well as further contributions coming from
viscous forces related mainly to the ion centrifugal drift. All these terms are shown to be
roughly of the same order of magnitude as convective momentum fluxes related to drifts, and
therefore should be included in the momentum balance equation.



1. Introduction

Cross-field drift flows play an important role in influencing plasma parameters in the scrape-
off layer (SOL) and divertor of tokamaks [1]. They are believed to be responsible for changes
in the in-out asymmetries caused by the reversal of the toroidal field direction, observed in
many experiments, thereby affecting particle and power exhaust in the divertor/target (see
e.g. [2-9]), including the tendency for the inner divertor to be detached for the ‘standard’ field
direction (ion VB-drift toward the divertor in single-null configuration). The drifts are also
believed to make a significant impact on the plasma parallel flows in the main SOL, far away
from the divertor/target, where the influence of the interaction with neutrals on the plasma
transport is not critical [10-15].

Attempts to quantitatively relate measured asymmetries and parallel flows to theoretical
cross-field drifts using code-modelling have met with only limited success to date and it is
not clear that all of the controlling physics has been identified and included in the code-
modelling: some basic physical effect(s) other than drifts may also be playing an important
role. The identification of any such additional effects requires that the theoretical cross-field
drifts be fully and correctly described in the code-modelling. In the present paper the particle
and momentum conservation equations are re-derived with the aim of more completely and
correctly identifying the non-collisional drift terms, including the effects of curvature and
divergence of the magnetic field. Fast parallel flows and divertor asymmetries appear to have
a number of important practical implications for magnetic fusion devices, including the
transfer of impurities such as carbon to the usually cooler inner divertor region, resulting in
co-deposition trapping of trittum in a non-saturating process [16-21]. The motivation for
improved understanding and modelling is therefore strong. Extensive theoretical and
modelling effort in recent years have confirmed the significant role of drifts in both in-out
asymmetries and parallel flows [22-39]. Ref. [39] however, presents a convincing
demonstration that present-day 2D edge codes are failing to predict the large parallel ion
flows widely measured in the SOL. Whether this is due to improper implementation of drifts
into the codes, the result of poloidal variations in turbulent transport coefficients, or caused
by other, unknown reasons, is at present unclear.

Proper accounting of the drift effects in theories and code modelling, however, has proven to
be a difficult job, to a large extent because of the need for correct averaging of drift velocities
of individual particles and their various products in order to obtain fluid equations for
macroscopic plasma parameters. At the edge of the plasma, and in particular in the SOL,
derivation of transport equations which include drifts is aggravated by difficulties associated
with the presence of divertors/limiters that introduce poloidal asymmetries, large mean
parallel velocity (especially in the SOL, with Mach numbers ~1), and also because of the
effect of neutrals on the plasma.

The usual practice in modelling of the edge, and in particular, the SOL plasma, is to assume
anomalous perpendicular coefficients, sometimes poloidally dependent, for particle, heat and
momentum transport, typically diffusion coefficients. This assumption is required in order to
make the modelling results consistent with experimental observations where plasma
turbulence is seen to determine perpendicular transport which greatly exceeds classical (and
sometimes even neoclassical) transport. At the same time, drift fluxes, as already pointed out,
play an important role in edge transport. In order to account for the most important
contributions to the plasma transport, and for the sake of clarity of the analysis and the
results, particle and parallel momentum balance equations in the present paper will be



formulated in a way which clearly separates (a) guiding centre drifts, (b) parallel transport
including parallel viscous forces, and (c) perpendicular anomalous particle and momentum
fluxes. In addition, the effects of classical collisional perpendicular transport considered e.g.
in [40] have to be added separately. They, as well as other collisional perpendicular transport,
e.g. fast ion scattering, will not be evaluated in this paper.

Particle and parallel momentum balance equations for the edge plasma in the Pfirsch-Schliiter
regime of frequent collisions that include drifts, adapted for the use in numerical codes, can
be found in various sources (see e.g. [22,26,28,29,31,35]). References [26,31,35] describe the
main equations used in numerical codes in magnetic configurations with poloidal divertors:
EDGE2D, UEDGE and B2.5, respectively. The SOL of magnetically-confined plasmas is
often only weakly collisional, while at the same time, drift effects can be strong. We have
therefore in Sec. 2 employed a new method for ‘opening’ the total pressure-stress tensor
which avoids the standard small perturbation analysis assumption of Chapman and Cowling,
Braginskii, Spitzer, etc.

Here we will follow the practice adopted in the implementation of drifts in EDGE2D [26],
namely, to formulate transport equations in such a way that clearly separates guiding centre
drifts from Larmor rotation. In the most important terms describing perpendicular transport of
both particles and momentum, contributions by the Larmor rotation, which numerically are
the largest, can then be eliminated from the equations, as a result of a certain cancellation.
This cancellation has been explicitly demonstrated for the particle equation [40] and is also
claimed to hold for the momentum equation [41]. In a separate study we will explicitly
demonstrate this cancellation for the momentum equation ([42], to be submitted for
publication). This cancellation has proven to greatly improve the stability of numerical codes.
The fluid parallel momentum balance equation is thus effectively reduced to the parallel
momentum balance equation for guiding centres of Larmor orbits. The analysis performed in
the present paper is more rigorous than that in Ref. [26] and we find a number of important
terms that have not been included in this earlier work. Some of these terms can also be found
in a later paper [35, as discussed in Sec. 7]. In this paper we analyse only particle and parallel
momentum balance equations, leaving to future work the formulation of the complete set of
particle, momentum and energy balance equations.

The general form of the particle and momentum plasma fluid equations is presented below:

I Y (V)=
ot ()
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This equation is applied to each plasma species. The notations are conventional and are
explained in Sec. 2 where the total pressure-stress tensor, 13:nm(vv>, in the fluid

momentum conservation equation is ‘opened’, i.e. re-written in terms of the basic fluid
variables, n, V, p. and p; (or T, and 7)) and/or their gradients, also involving terms

specifying the divergence and curvature of the magnetic field. P is opened directly,
permitting direct insertion of classical drift velocities, v ;., which are calculated from

individual particle motion given in Sec. 3. (Collisional perpendicular drift velocities, v .,y

could also be inserted directly, but that is not done here.) The expression obtained in Sec. 2



for the opened P allows for arbitrary magnetic geometry and for arbitrary levels of
collisionality. In Sec. 4 the expressions for v, ;. taken from Sec. 3 are inserted into the

opened expression for P. Here capital letter V indicates fluid velocity and small letter v,
individual particle velocity.

In Sec. 5 we focus attention on a particular drift-term resulting from opening P, namely
Fy, = —V-(nm(vHV 1)), which includes terms of the form (\7||V 1), the viscous terms. The

random V| that is involved here is not the Larmor velocity v 1.1, but rather perpendicular

drifts which include a random component due to a dependence of the drift speed on the
magnitude of v and v, , where here the latter (with bar above v) indicate the velocities of the

individual particle averaged over a Larmor orbit, see Eq. (24).

In Sec. 6 we address the critical issue of closure of the fluid equations, including
approximations for the parallel viscous stress, I1j, which is often introduced as part of the
closure process. Up until the point of closing the set of equations, the particle and momentum
equations here are fully general as to the degree of collisionality. Closure, however, requires
that a specific level of collisionality be assumed.

Finally, the summary of the results and comparison with earlier formulations are presented in
Sec. 7.

2. Opening the parallel component of the gradient of the total pressure-stress tensor

The general form of the particle and momentum plasma fluid equations, Eq. (1), are obtained
by assuming a distribution of particle velocities f{¢, r, v) which is given by the Boltzmann
kinetic equation. The Boltzmann equation is then multiplied by 1 and mv and integrated over
individual particle velocity v to give Eq. (1) for ions: (see e.g. [40] (Eq. (1.12)), [43] (Egs.
(2.13) and (2.15 ))). Here V and V| are mean total (vector) and parallel fluid velocities,

respectively, averaged over the distribution function, S is the particle source, P = nm(vv) is
the total pressure-stress tensor, v is individual particle velocity, (...) denotes averaging over

the distribution function, R is parallel friction force between ions and electrons and £ stands
for all other forces (including forces arising from interaction with neutrals and external
forces, as well as any momentum introduced in association with particle source S); other
notations are conventional. There is a similar momentum equation for the electrons.

The objective in this paper is to ‘open’ P = nm(vv) - specifically (v : P)H - 1.e. to re-write it
in a form where the expressions for perpendicular drift velocities — in particular the non-
collisional ones - can be directly inserted, allowing for arbitrary levels of collisionality, and
also allowing for arbitrary magnetic geometry. In order to accommodate arbitrary levels of
collisionality, the ion momentum equation is formulated in terms of two pressures, parallel
and perpendicular.

Different approaches have been employed to open (V- 13)”, governed by the method chosen

to close the set of fluid equations. The closure method is chosen on the basis of the degree of
(ee, ii, ei) collisionality. Perhaps the best known approach is that of Chapman and Cowling,



Spitzer, Braginskii [40], etc., which is appropriate for strong collisionality. In this approach
the individual particle velocity is divided into two components — a mean velocity V and a
random velocity V= v — V, where A" w111 be identified with the fluid velocity, thus

(V- P)H =(V- (nmVV)) + (V- P)H, where P =nm{VV) is the pressure-stress tensor (as

distinct from P, the total pressure-stress tensor, which includes V). P includes both ordinary
static pressure and viscous terms. Consistent with the assumption of strong collisionality, a
single isotropic pressure p is assumed. The convective component is retained on the left hand
side (LHS) of the equation and is combined with the time derivative to form the so-called
substantive derivative, while the second term is moved to the right hand side (RHS).
Consistent with the strong collisionality assumption, this approach employs a small
perturbation analysis, starting from a Maxwellian distribution perturbed by the existence of
gradients of density, temperature and velocity and with relaxation due to self-collisions It is

therefore appropriate that Braginskii etc. then define a viscosity tensor I1=P- p I, where I

is the unit matrix and p is the single, static, isotropic pressure, p = nm(v )/ 3, since for the
unperturbed (Maxwellian, possibly drifting, as occurs in the limit of infinitely strong
collisionality) velocity distribution P= pI and I1 = 0, and so all of the perturbing effects are
isolated in IT = nm(¥V—1v2/3). (The general practice, following Braginskii, is to call IT
the ‘stress tensor’, but to avoid confusion it will be called the ‘viscosity tensor’ here.)
Braginskii etc. include a third fluid conservation equation — for energy — one each for
electrons and ions, thus providing equations for p.; but this does not close the set of

equations since there are a number of quantities that still need to be related to the primary
dependant variables n, V,; and p,; given by the 5 fluid conservation equations, namely, some

specific quantities that appear in the momentum equations, (a) Ry (= - Ryjie), (b) Il.;,as well
as some specific quantities that appear in the energy equations, (c) q.;, the heat flux density
and (d) Q.. heat gained by electrons and ions as a result of ei collisions. From rudimentary
kinetic theory one can roughly estimate all these latter quantities as transport coefficients, e.g.
q) ~ -nvaMdT/ds)), which depends on collisionality through the mean free path A, thus
closing the equation set. For better estimates one can use the Chapman and Cowling,
Braginskii, etc., method of employing small perturbation analysis, that is these quantities are
related to gradients of the primary fluid variables n, V. ; and p.; (or T,;) using an expansion of
the distribution function about a Maxwellian in the parameter A/L, where A is the collisional
mean free path and L is the scale length of the gradients of n, V.; and p,.;. This analysis is
therefore valid in the limit of strong collisionality. (As an aside, one may note that by adding
the electron and ion momentum (also energy) equations together, the need to estimate R
and Q. can be avoided since the e and i terms cancel.)

A completely different approach — and one which we will broadly follow here — was
employed by Zawaideh, Najamabadi, and Conn, [44], which applies to the full range of
collisionality, from strong to weak. In a strong magnetic field the anisotropy of the velocity
distribution is not necessarily small, unless collisionality is very strong, and it is therefore
desirable to avoid any a priori assumption of small perturbations from a Maxwellian. We are
also particularly interested in the effect of perpendicular drifts, which may also result in

strong anisotropy. In this approach one does not introduce IT = P- pI, but instead directly
expands P, which includes both average, V, and random (thermal) velocities, V= A "N)H)’

and which results in the appearance of two pressures, p; and p| in the momentum equation.
The existence of two pressures p, and pj, is the most basic consequence of not assuming that



collisionality is necessarily strong. Since IT does not appear in the momentum equation now,
and since one can add the electron and ion momentum equations together, thus eliminating
Ryjei, then in this approach the first two conservation equations are general as to the degree of
collisionality. The closure problem is relegated to the energy equation(s); now two energy
equations are required, one for p; and one for p| (for electrons and ions each). In this
approach, and after adding the e and i momentum equations, collisionality makes its first
explicit appearance in the energy equations in simple, transparently clear terms, e.g. (p. -
D))/ TGi, [44]’s Eq. (29), greatly facilitating the identification of appropriate equation sets for
different degrees of collisionality: by taking z,— 0, [44] recovered the principal terms in the
strong collisionality equations of Braginskii, while taking 7;— o they recovered the zero
collisionality equations of Chew, Goldberger and Low, see Sec. 6. The [44] analysis does not
include drifts or any other cross-field transport — therefore, when applied to the strong
collisionality case, it recovers the collisional Braginskii transport coefficient estimate for I

(i.e. I1,,) only; however, as shown by Braginskii, the other (collisional) components of IT are
often smaller and so less important.

If 1s often preferred to avoid the additional computational effort involved with two energy
equations, in which case p and Il can be used, rather than p, and p|; however, then some
transport coefficient estimate is needed for Il in the momentum equation, which can be
derived in various ways, see Sec 6. The standard approximations used to obtain an estimate,
Hﬁ” , however, are only valid when collisionality is strong. The approach based on (p, Hﬁ”)

is taken, for example, in the major codes used for modelling the boundary region of
magnetically-confined devices, e.g. EDGE2D [26], UEDGE [30], and B2.5 [35]. Weakly
collisional plasmas are typical of the boundary region of present day, strongly heated

tokamaks, however, and the values of Hﬁ” often become unphysically large, requiring

imposition of ad hoc ‘kinetic limit factors’, see Sec. 6. Continuing progress toward
achievement of fusion power in devices such as the ITER tokamak motivates better
approximations for the momentum equation, as can be achieved by using two pressures, 1.e.
allowing for the possibility of strong anisotropy of the ion distribution, the approach taken
here.

We choose here to generally follow the approach of Zaweideh et al [44], since our principal
interest is in drifts, which are a non-collisional effect, and so it is preferable to delay the
introduction of collisionality assumptions into the analysis as long as possible. We differ
from [44] in including the effect on the parallel momentum equation of non-parallel transport
caused by drifts, anomalous cross-field transport and Larmor rotation. In common with [44]
we will not assume that B is necessarily spatially constant, but in contrast with [44] we do
assume B constant in time. Here, in order to bring out more explicitly and clearly the
contribution of drifts, we will insert expressions for drift velocities given by Eq. (24) below —

directly into the total pressure-stress tensor P = nm(vv) in Section 4.

The direct approach to opening P requires identification of the spatial variation of the
components of the individual particle velocity vector,v=(v  ,v, ,v), where ‘I is the

direction parallel to the magnetic field. The v, -direction and v -directions are both

perpendicular to B and to each other. Any pair of consistently defined perpendicular
directions can be used and the results of the analysis here do not depend on any specific
choice for them; however, here for the sake of concreteness (and familiarity) we will use ‘r’



in place of v, and ‘d’ in place of v, . In tokamak configurations, etc., r’ is generally taken

to be the ‘radial’ direction, i.e. perpendicular to the magnetic flux surface, while ‘d’ is the
‘diamagnetic’ direction, i.e. perpendicular to B, but lying within the magnetic flux surface
(less accurately this 3" direction is often called the ‘poloidal’ direction, which in tokamaks is
often close to the diamagnetic direction due to smallness of the ratio of the poloidal to the
total magnetic field). As noted, the results of the following analysis do not depend on any
specific magnetic configuration, such as that of the tokamak, nor on the particular choice of
the perpendicular coordinate pair (L;,1,). The perpendicular velocity (by which we here
understand the whole part of the velocity perpendicular to the magnetic field,
i.e.v, =(v,,v;)), can also be split into four distinct parts:

Vi=Vir + V1ar + V1 anom + V1 coll (2)

In this paper, we denote individual particle velocities with small letters v and v. Here v, ;

describes fast Larmor rotation about the ‘drifting’ guiding centre of the Larmor orbit. As
noted, we will drop this term. v ;. describes the perpendicular component of the guiding

centre drift in a quasi-stationary electromagnetic field (see Eq. (24) below), v, ., is the

perpendicular anomalous velocity due to e.g. the fluctuating electromagnetic field (which is
usually characterized by much smaller frequencies than the frequency of the Larmor rotation)
leading to anomalous turbulent transport, and v, .,; gives the deviation from the Larmor

rotation due to Coulomb collisions.

We defer to subsequent analysis inclusion of v .,;, the most basic effects of which are

covered by Braginskii’s analysis; the resulting terms are small unless w7 is very small, where
w = eB/m and 7 is the self-collisional time. Collisionality can vary significantly within the
same plasma. For example, collisionality varies greatly in the edge of magnetic confinement
devices, ranging from almost collisionless conditions that sometimes exist far from solid
surfaces to extremely collisional conditions near tokamak divertor targets when plasma
detachment [1] occurs and the role of v ., can therefore be very important in tokamak

edge modelling. In the extreme case of very cold, strongly collisional plasmas, the role of
drifts in general is expected to be small, however, and the transport is dominated by parallel
flow [5] and plasma-neutral interaction — therefore a natural separation of regimes often
exists, to some degree.

The well known v, ;. -terms, i.e. the ExB, BXVB (or simply ‘VB’) and centrifugal guiding
centre drifts, are key contributors tov (all contributions can be found in Eq. (24) below).
Before inserting these v, ;. -terms into P = nm(vv) , which is done in Sec. 4, we must first
carry out a coordinate transformation from rectangular coordinates to curvilinear (r, d, |)

coordinates, in order to express P =nm(vv) in a form appropriate for arbitrary magnetic
geometry.

Our aim in this section is to provide a straightforward derivation in a convenient, physically
clear form of the parallel component of the gradient of the total pressure-stress tensor. We
take here a quite basic and general approach. The derivation involves operations with unit
vectors of local (related to the direction of the local magnetic field) coordinate system, and it



does not require use of tensor algebra, nor operations with metric coefficients. Such an
approach doesn’t require any specific assumptions about the magnetic geometry, e.g. any
assumption about toroidal symmetry of the magnetic configuration. Although this overall
undertaking was motivated by the specific application of the tokamak edge, the analysis here
should be applicable to a wide range of conditions in magnetic confinement, space and
astrophysical plasmas. The magnetic field is analyzed locally and is therefore independent of
the overall magnetic structure and whether it is nested or not, toroidally symmetrical or not,
reconnected or not, open or closed, etc. It is also precise in accounting for all convective and
viscous terms involved (including averages of products of parallel and perpendicular
velocities), since the derivation is based on the transformation of individual particle parallel
and perpendicular velocity from one coordinate system to the other. Finally, the derivation is
general as to the assumed degree of collisionality.

In a simple case of a Cartesian system of coordinates with unit direction vectors iy, i, i., and
with the direction of the magnetic field B along i., and field lines being straight and parallel

to each other, the parallel component of the gradient of the tensor (V - f’)H can be simplified
by using the identity (note that vv is the dyadic product of 2 vectors, a dyad):

(V-P), =(V-(nm(vv))), =V - (nm{v,v)) 3)

We will also substitute the parallel direction ||’ for ‘z’. Terms with parallel and perpendicular
components of the velocity can then be easily separated. In the more general case of a
curvilinear geometry, where parallel and perpendicular (with respect to the magnetic field)
directions change in space, expressing the above quantity in terms of local parallel and
perpendicular velocities is not so trivial. Eq. (3) still holds, but one cannot replace z-
subscripts with the ‘|| sign.

We wish to open the tensor at some general point O, see Fig.1. Gradients such as (f) ar
involved, where f is a quantity dependant on x,yz and {H =

. J(x=Av)- f(x=0)
m

Al; 0 Ax |y’z constant > CtC- Thus we need to evaluate f at some point
incrementally displaced from O, call it Q, Fig. 1, i.e. fix = Ax) = fo and F(f) = lim —f QA_xf 0
Ax— 0

The coordinates of Q are (x,y,z). However, to emphasize that we need only consider
incrementally small x, y and z, we indicate them here as (Ax, Ay, Az). v is the velocity at O
(thus also at €, since we will take the limit Ax—0, etc.). We need to specify v in two
different, orthogonal coordinate systems (see Fig. 1):

(a) local coordinate system, origin O (but also € since we take the limit Ax—0, etc.),
with unit direction vectors i, ig, ijj where i is parallel to B, i, is perpendicular B, and iy
is perpendicular to both B and i,. In this coordinate system the location of any general
point is given by r = (s, s4, 5|) = S/, + Sqiq + 5 i and velocity v = (v, vz, v)).

(b) a Cartesian, or rectangular, coordinate system with unit direction vectors iy, i, i.. Here

r=(x,y,z)and v= (Vo vy,v2). The origin of this coordinate system is point O. At

point O, the Cartesian and local coordinate systems are identical



We may also note that since increments are involved which — 0, then F, =F., F, = F;and F .
=K.

We define b = B/ B and at point O, b = b, and i || b,.

We want to express (v : f))H =(V- (nm(vv)))” ultimately in local velocity coordinates v = (v,

vz, v|), and we start by opening it in the Cartesian coordinate system using Eq. (3) (|| and z
directions, of course, coincide at the origin, point O):

& (nm(vv))) = az(nm<v22)) +0, (nmv,v,)) + 0, (nm(v,v,)) 4)

We now relate v, ,v,,v. to v,

by relating (x,y,2) to (s,, 54, 5)) . While a state variable like » is evaluated at (s, = 0, 54 =0, s =
0), in order to evaluate the velocities v,, v;, v, which are small spatial increments divided by

, Vg, v| by specifying the transformation of coordinates, i.e.

a small time increment, we need to consider a location incrementally removed from €, i.e.
non-zero increments s,, sq, and s. In order to express the velocity consider the trajectory in
time of some particle whose location is r;. In the Cartesian coordinates r; = (xz, v, zz) and in

. ox
local coordinates r; = (syz, Sz , S||), also vy = a—L , etc. Then:
t

xp = A+ (i -,)s, + (i ig)sg + (0, s,
yp =8+ (@, 08, + 1), ig)sq + 1y, s, (5)

zp = Az + (i, -,)s, (0 -dg)sg + (0 -dp)s).

Time differentiation of Eq. (5) gives the relation between (v, vy, v:) and (v, v, v)), also

involving, however, the (time-independent) directional cosines such as i, -i,., which can

| )
themselves depend on (Ax, Ay, Az) and which we must now evaluate. Quantities Ax, Ay and
Az are not functions of time 7.

Each unit vector of a local coordinate system, e.g. i,, can be expressed as a sum of its value at
the origin (i, for the case of the vector i,) and an incremental change caused by the spatial
displacement from O to €. The latter can in turn be expressed through spatial derivatives:

i, :ix+Ax8,,i,+Ay8di,+Aza||i, (6)
In the limit Fi,, F4. and Fji, in Eq. (6) coincide with F,, Fi. and Ei..

An important feature of small angle rotations of the coordinate system, which we will be
using extensively below, is that an incremental change in each unit vector, e.g. (i, - i), is
almost perpendicular to the initial vector (i;). The direction cosine (i,i,) can be expressed
through a (small) rotational angle & as cosa = (1—0{2/ 2), hence cosa =1 to first order.

Thus in the limit (i,i,) = 1, i.e. ¢, and thus also Ax, Ay, and Az, are only involved at 2™ and
higher orders. By multiplying Eq. (6) by i, and taking into account (a) that (i-i) = 1



identically, (b) that the relation between i, and iy, namely Eq. (6), involves Ax, Ay, and Az to
1* order and (c) that Ax, Ay, and Az are independent variables, one then also obtains that:

i, 0,d, =i, 94, =i, )i, =0 (7)

which we use below. Similar relations can be obtained for iy and i unit vectors (although it
should be noted that i, -d,i, #0, for example, because d,i, =sino.= o and so is first order in

o, and thus also in Ax, Ay, and Az). In the Eq. (5) one can therefore assume for all ‘diagonal’
direction cosines:

(ix'ir)a (iy'id)s (izi”) =~ 1 (8)

Thus i =(b.by.b)= (b by 1), B =(,-ini i.i-i)= (I, C D), i

=(iy-iy,i4-1,,i;-1,)= (E, I, F) where the unit vector b=B/B. The quantities C, D, E, F are

of order by, b, and can be found by using i, = izx i and iy = i) X i.. One can therefore obtain: i,
= (1, C, -by), ia = (-C, 1, -b,), where C cannot be simply expressed in terms of b, and b,
(which turns out not to be needed anyway, below), resulting in:

(i i) = by, (i iy) = by,

(i 1) = - (i k) = -by, ©)
(iz- iq) = - (i iy) = -by

As just noted, the remaining two direction cosines: (i,-i.) and (i-iz), have equal absolute
values but opposite signs. Using the relations for the direction cosines obtained earlier the

transformation of velocity components which follows directly from Eq. (5) can be cast into
the form:

Ve =V, + (i -ig)vg + by
v, = (i, -i,)v. +vg +byy (10)

v, ==bv, —b,vg +v

Using Eq. (6) one can express i, through i,. Taking the dot product of i; and i, from Eq. (6)
and taking into account that (i-i;) = 0 one obtains:

(ix-id)z-Axid-ari,-Ayid-adir-Azid-BHir (11)
Similarly, for the other direction cosine in Eq. (10) one can obtain:

(i,-i,)=-Axi,-0,i,-Mi, 9d,i,-Azi, di, (12)
We now substitute (10), (11) and (12) into (4), neglecting in the limit all terms containing b,,

b, Ax, Ay, and Az, but retaining their gradients, and taking into account that F.Ax = FAy =1
and F.Ay=F.Az=F,Ax=F,Az= 0 to obtain:

10



(V- ) =0 (nmvf)) - 2nm{vpy, )(0..b, ) - 2nm{v)(0.b,) + 9, (nm{vy,.))
- nm{v,v)(9 ,b,) - nm(v,v4)(9,b,) + 9, (nm{vvy)) + nm(v”2 - Vfl)(ayby) (13)

+nm(v] - Vv7)(©,by) = nm{yvy )iy - 0,4,) = nm{vy, (i, - D gig)

In the above equation all x, y and z — derivatives can be replaced with corresponding r, d and
| - derivatives, as already noted. Such a replacement will make this equation be fully written
in local coordinates, except for the components of the unit vector b which must, of course, be
defined in the Cartesian system of coordinates. In the above equation F.b, and F.b, can be
replaced with Fb, and Fb,, respectively.

Up to this point in the analysis, v, and v, are general and include all components of the
perpendicular velocity v =V 4+ V] gnom T Vicon Where v, = (v, va). With little

significant loss of generality, however, we may take it that all the terms with velocities
squared on the RHS of equation (13) are large compared to other terms, since their averaging

over the distribution function gives pressures, to a good approximation. Averages <vr2 ) and
(vf,} can be represented by sums of the corresponding random and mean parts, e.g.:
(v L) v )+ VL) and we may, with little loss of generality, assume that (Vv L) (v ) =~ vtzh,
since thermal speeds, vy, greatly exceed all other v, speeds, typically. The first part accounts

for chaotic (thermal) energy, and it coincides with (\73). The second part is much smaller,
involving ExB, VB, etc. drifts. We will be neglecting terms Vrz, de compared with some

other terms that we will retain. The terms (vrz ) and (vczl) can therefore be considered equal
to each other and both can be expressed as (vi)/ 2. Other terms that can be neglected are the
ones with(v,v;). In this average, the main, chaotic parts are uncorrelated (particles have
random distributions of their Larmor rotation phases), so it can be roughly estimated as V,V;,

with both velocities in this product being much smaller than thermal velocities, as shown
above.

After neglecting small terms, replacing (vrz ) and (vﬁ) with (vi)/ 2, re-arranging positions

of individual terms and replacing x, y and z — derivatives with r, d and || - derivatives, where
appropriate, Eq. (13) becomes:

(v . f’)u = BH (nm(v”z>) + nm(vH2 -v] /2)(d.b, + d,b,)+ ar(nm<vHv,,>) + 8d(nm<v“vd )
- 2nm(vv,)(9b,) - 2nm(vv,)(9;b,) — nm{vyv,)(i, - 9,i,) —nm{vv,)(i, - d,i,)
(14)

We wish to re-write this equation further to bring out the significance of the various terms
and to make the equation more compact. We start with the 2™ term on the RHS of Eq. (14)
the quantity (0,b,+0,b,). Since b, can be expressed

as,/l b -by =(1-b7/2-b;/2)=1, then 9.b,=0 and (3,b,+9,b) gives the full
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divergence of the unit vector b, divb. Using divB = div(Bb) = VB-b+Bdivb =0, one
obtains: divb=-b-VB/B=-0,B/B.

Next we consider the 5™ and 6™ terms on the RHS of Eq. (14) and the quantities d,b,and
a”by. From elementary theory for vector functions and 3D space curves, one of the Fermat-

Serret formulas gives dT/ds| = kN where T is the unit tangent vector, k is the curvature (k =
1/R. where R. is the radius of curvature) and N is the unit normal vector, N=-R_./R,

where —R . points toward the centre of curvature. The curvature vector k=kN = —R_ /RC2 .
Here T = b thus d b =k . Therefore d b, can be expressed as d;(b-i,) =i -d;b (sinceiisa
unit vector constant in space) and further as i, -k =k, which is the same as &, at the origin
of the Cartesian coordinate system. Similarly, d,b, can be replaced with k,= kq.

We will now group a sub-set of the terms in Eq. (14) into a quantity we will call —Fj;,,
which we will then show is simply V. (nm(v|v 1 )). The term ar(nm<vHvr)) can be combined
with half of the 5™ term on the RHS of Eq. (14), —nm(v”vr>k, , to give
[ar(nm(v”vr>)—nm(v”vr)kr]. Handling y terms in the same way, one can obtain a similar
combination, [d,(nm(vv,))—nm{vyv,)k,]. The sum of these two combinations, plus the
last two terms in the Eq. (14), is:

= Fypy = 0, (nm{vv,.)) = nm{yv,. ) k,. + 9 g (nm{vvg)) — nm{vvy Yk,

(15)

—nm(yvg)(iq - 9,d,) —nm{v,)(i, - dgiq)

We note, without derivation, that a similar analysis of the particle equation gives for the
divergence term there:

V- (nV)=0,(nV,)+0,4(nVy)+0)(n¥))—nV, -k —nV|(V B/ B)

(16)
—nVy(iyg-0,i,)—nV.(i,-d4i;)

It can be shown that the above expression for Fj;, represents the full divergence of the
nm(v| v ) momentum flux: —F, :v-(nm(vuv 1)) Indeed, by writing the full gradient

operator as V = (ij0) +i,9, +i49,), the full perpendicular velocity as v, =(i,v, +i;zv,) and
performing scalar multiplications of individual vector terms, V - (nm{v v )) can be expanded
into the sum of the following six terms:

iy - 9y i, nm(v, ),
iH ~8H(idnm(v||vd>) ,
i, -ar(irnm<VHV,,>) ,

i, -0, (ignm{yyy))
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ig-dy(i,nm(vyv,)).

The first term here can be further expanded into the sum:

where the first part is equal to zero, while the second part can be transformed by using
i, i=0, thus i -di, =—i,-dyij and remembering that ij=b (in our local coordinate
system) and db=k into —nm(v|v, )k, , which is the second term on the RHS of Eq. (15).

Similarly, the second term, i -E)H(i anmVvg)) » will contribute the fourth term on the RHS in

this equation. The third term, i, -d,.(i,nm(yv,)) , can be expanded into:
[ar(nm(v”vr>) +1i, -nm(v‘|vr>8,ir] (19)

While the first part of this expression coincides with the first term on the RHS of Eq. (15), the
second part is zero since i, - 9,1, is zero (Eq. (7)).

Similarly, the fourth term, i, -d4(igznm(v)v,;)), will only contribute the third term on the
RHS of Eq. (15). The fifth term, i, -ar(idnm<v”vd>) , can be expanded into the sum:

[i, 149, (m{yy, ) +i, - (rm(yvg))d,i (20)

where the first part is zero while the second part, after taking into account that
i,-0,i; =—i;-0,i,, becomes identical to the fifth term on the RHS of Eq. (15). Similarly,

the sixth term, i, - d, (i,nm(yv,)) , after the expansion into:
liy -i,9,4 ((nm{vv,)) +1ig - (nm(v‘|vr>)8dir] (21)
and using i, -d,i, = —1i, -d i , coincides with the last term in Eq. (15).

The remaining terms (halves of the fifth and sixth terms in Eq. (14)) can also be written as
- (nm(v”v,)kr + nm(vHvd>kd) and, in the vector form, as:

-F

cury

= _nm<V\|V¢> 'k (22)

Finally, by replacing nm(vi)/ 2 with p, and splitting nm(v”2> into parts nm V”2 and P> Eq.

(14) can be cast into the following form:
(V-P) =V (umV + p) = (nmV> + py = p )V B/ B=F g, = Frppy (23)

where F;, = —?-(nm(vﬂvﬁ), Foyy =nm{yv)-k and V, =0,.
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It may be noted that v, and v; do not appear in Eq. (23) and therefore this result is general and
independent of the specific choice of perpendicular coordinate pair (L;,L,). Eq. (23) is also
general as to the level of collisionality.

One may note that since the fotal pressure-stress tensor is involved here, there are both
convective components as well as viscous ones in (?-P)W Some of the convective

components are already explicit, i.e. the V| terms — while others are implicit in the last two
terms since vy =V +y and v, =V, +V .

Eq. (23) does not contain the traditional viscous term proportional to the second derivative of
the parallel velocity with respect to the parallel coordinate. Therefore well-developed
methods for the integration of equations of the second order are not applicable here.

We now discuss the physical meaning of different terms in Eq. (23). The first term,
Vv, (an”2 +py), is obvious and follows from a 1D equilibrium along the field lines in a

simple geometry, and with neglect of perpendicular gradients of the plasma parameters. The
second term, — (nm VH2 +p,— p,)V,B/B, can be found e.g. in Refs. [44] (Eq. (17)) and [45]
(Egs. (1.27) and (1.28)). The physical interpretation of this term has been given in Ref. [45]
by considering the force balance of an ensemble of Larmor circles along a flux tube with
variable cross-section. The part — (nm VH2 + p)V,B/B comes from the difference in cross-

sections S of a flux tube at its ends, which is inversely proportional to the magnetic field:
S$~1/B (hence, the appearance of V,B/B), whereas p, V B/B comes from the projection of

the volume force — VB exerted on each Larmor circle inside the tube (= mvi /2B is the
magnetic moment of a Larmor circle) on the parallel direction.

The next term, V - (nm(vHv 1)), accounts for perpendicular flux of parallel momentum across

the flux tube’s lateral sides. Any actual computation, of course, requires an expansion of this

compact expression and this is given by Eq. (15). It includes both the terms ai(nm(vwr))
SV

and a—(nm(vHvd )), which are intuitively clear contributions and the only ones present in the
Sd

rectangular coordinate system, as well as four other terms appearing due to operations with
the unit vectors of an arbitrary curvilinear coordinate system. Two of the latter involve
curvature k but, being due to divergence of the flow field, have a different origin than the last
term Feyn = nm(v v, ) -k, considered next.

The parallel force nm(v|v )k is a volume force exerted on each particle within the flux

tube. Similar to the pVB force acting on a Larmor circle (where parallel energy is
transformed into perpendicular energy and vice versa, leading to conservation of the
magnetic moment 1) whose parallel projection accelerates the Larmor circle along the field
lines, it accounts for mutual transformation between parallel and perpendicular energies in
the curvilinear magnetic geometry. However, whereas this transformation in the case of the
UVB force is related to convergence (or divergence) of the field lines and is expressed via
divb, the nm(vjv ) -k force originates due to the bending of the field lines, described by
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their curvature k. From simple geometrical considerations, it is readily shown that the rate of
change of parallel momentum due to curvature k = 1/R. 1s —mvvi/R..

3. Drift fluxes calculated from individual particle analysis

In this section we will obtain expressions for v | ;. from single particle analysis for insertion

into P = nm(vv), opened in the previous section.

In the drift approximation particle orbits are described as a superposition of Larmor rotation
and the motion of the Larmor circle’s centre (‘guiding centre’). The guiding centre velocity in
a quasi-stationary electromagnetic field (which we will refer to as ‘drift velocity’) is
calculated from analysis of individual particle motion, smoothed or averaged over the
Larmor rotation, and is given by (see e.g. Eq. (5.4) of [40], also Eq. (6.1) of [46]):

moj

2 =2
myy E><B+l MV B VB4

B? 2 ZeB3 ZeB>

Bx(B-Vb) (24)

ZeB

\ 3 =b(\7| +% b-curlbj+

where b =B/ B is the unit vector along the magnetic field and other notations are standard.

Often the notation v, . is used for this guiding centre (g.c.) drift velocity. We will, however,

reserve Vv, . to mean the time-averaged guiding centre velocity which also includes

anomalous transport (which in turn includes drift velocity due to fluctuating electric fields),
while v, will be understood here to be the guiding centre drift velocity in the quasi-

stationary electromagnetic field (see Eq. (2)). In Eq. (24), v and v, are not instant particle

parallel and perpendicular velocities, but, as noted, their values averaged over the period of
the Larmor rotation (with v, being essentially the Larmor rotation velocity, v, ;, see

below).

Components of the drift velocity are projected onto the magnetic field direction at the Larmor
guiding centre, rather than at its direction at the particle’s actual location. This explains the
appearance of the term with (b-curlb) in Eq. (24). In most practical cases this term can be

neglected for edge plasmas compared with v (unless supra-thermal highly accelerated

particles are considered). The ratio of the two terms is of order V_—Lf—’, a very small number,
I

where p, is the Larmor radius and L is the scale size of spatial variation of the magnetic

field structure. In the more approximate Eq. (5.5) of [46], for example, this term is neglected.
We will, however, retain this term. We note that it is a parallel drift. The second, third and
fourth terms on the RHS of Eq. (24) are the well known perpendicular drifts - the ExB
BxVB (or simply VB) and centrifugal drifts - respectively. In Eq. (24) Vf can, to within a
good approximation (of order of a square of the ratio of drift velocity to thermal velocity, as

can be easily demonstrated), be replaced with Vi 1, owing to smallness of the drift velocity

compared to the Larmor velocity, which is of the order of thermal velocity vy.
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From Eq. (24) we can anticipate two different types of perpendicular drift contribution to the
total pressure-stress tensor P = nm(vv), namely convective ones, which involve products of

V) and simple averages of the velocities of the 3 perpendicular drifts - and viscous ones. To
calculate the latter it is necessary to take into account that each individual particle has an
individual value of (Larmor-orbit-averaged) parallel speed V| and an individual (Larmor-

orbit-averaged) perpendicular drift speed v, , and to then construct averages of the product of
the two speeds over the distribution of the speeds. From Eq. (24) it is clear that ExB drifts
will not contribute to the viscous part of P but the other 2 drifts will, since each individual
ion has an individual value of \7“2 and v, thus an individual value for each of these drift
speeds. While v, =v, ; can thus appear in the viscous part of P it is not because of any
direct presence of Larmor rotation velocity in (vv), as will be demonstrated in [42], but only
because v, appears within the expression for one of the perpendicular drift speeds, namely
1 me
2 ZeB®
B, v, ; will not appear at all in the expression for P, even indirectly.

Bx VB, and the latter does appear directly in (vv). Therefore for straight, constant

In the standard neoclassical theory, developed for the core region (see e.g. [43,47]), the three
main (perpendicular) drift velocities figuring in Eq. (24) are all roughly of the same order,
assuming equal ion and electron temperatures, radial electric field E, to be of order 7/er, and
considering minor radius » and major radius R to be of the same order. In the d-expansion
(expansion in the ratio of the Larmor radius to either the scale size of spatial variation of the
plasma parameters, or the Lp size mentioned above), parallel velocities appear to be first
order in J (unless large toroidal momentum is introduced into the plasma by e.g. neutral beam
injection, which is a separate issue not covered by the standard theory). At the plasma edge,
and in particular in the SOL, the situation is quite different in several respects. For example,
individual drifts of Eq. (24) are quite different from each other as to their magnitude (e.g. VB
drift velocity is much smaller then the ExB drift velocity). In Appendix A simple estimates
are made for typical values of the drifts in the SOL of magnetically-confined devices such as
tokamaks.

To summarize the findings from this section and Appendix A, we conclude that some
technical procedures and conclusions of the standard neoclassical theory may prove to be
incorrect for the plasma edge region. In the remainder of the paper, we will carry out the
analysis by using terms with the best possible practical accuracy, comparing them with each
other on a one-by-one basis, before making simplifications and drawing conclusions. This is
particularly important in simplifying the expression for the gradient of the total pressure-
stress tensor that enters the parallel momentum balance equations, considered in the next
section.

4. Formulation of particle and parallel momentum fluid equations

Eq. (23) gives the expression for the opened total pressure-stress tensor, where
| =nm((vH2)—VH2) and p lznm(vb/ 2 are parallel and perpendicular pressures,

respectively, V|=d/ds; is the scalar gradient along the parallel direction,
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Fu, = -v. (nmvv 1)), Feyn =nm(vv )-K, and Kk is the curvature of the magnetic field

lines. The physical meaning of individual terms in this equation is given in Sec. 2. The last
two terms on the RHS of Eq. (23) are comparable in magnitude. Indeed, by substituting v, in
the Fgy term with the VB drift velocity Vyg ~v; ;X p; /R (Eq. (A2)) and replacing the

gradient sign with the inverse SOL width, 1/4s0;, (see discussion following Eq. (A2), noting
that Iy 5 has a significant component perpendicular to the magnetic surface) one obtains the

estimate Fa ~ nmVv; ;X p; (AgorR) for this term (a similar contribution comes from

including Vg« in vy, taking into consideration that Vg may be predominately in the poloidal
direction). Turning to F¢,-, since the poloidal ExB drift velocity is much greater than the
poloidal VB drift velocity, the latter can be neglected and, by estimating the absolute value of
the curvature k as 1/R and using Viyp g ~ v; 4 X p; / Asor,  (Eq. (A1)) for v, in this term, one

obtains the same estimate nmV)v; 5, X p; (Asor R) for Fun.

Turning now to the term —(anH2 +p|—p.)V|B/B, which for the simplest case of

isotropic ion pressure reduces to —nm VHZV”B/ B. By equating ¥} to Vg (see Eq. (A4); we
note, however, that experimental values of V>V have been reported), and using
VHB /B~ &/gR, this term can be estimated, again, similar to the two above mentioned terms

as: nmV|v; , X p; (Agor R) . Hence, all the three terms can be roughly of the same order.

Comparison between the above drift-related terms and the main, pressure gradient term in Eq.
(23), is difficult in the general case, as much depends on the poloidal distribution of plasma
parameters and location (‘main SOL’ region, or the region near the divertor target). A
maximum self-consistent estimate for the effect of drifts can, however, be made if one allows
for very large pressure (and hence, electric potential) variations, of order of the pressure
itself, over certain parallel distance /| (which does not necessarily coincide with gR). The
parallel force due to the pressure gradient is then VH p~p/ l” . The radial velocity caused by

the radial EXB driftis ~ Vg, =T,/eBly, where the poloidal length is related to the parallel
length via Iy =1 By /B . The radial divergence of the momentum flux is ~ nm;}VyV, / Asop -

For an upper estimate for the ion parallel velocity of order the ion thermal velocity,
Vil ~ Vi, one can then obtain for the divergence of the momentum flux the estimate

Fy) ~ pPio () Asor ) » where pig is ion poloidal gyroradius. For the ratio of the two forces,

one then obtains:

F,, :

dr) _ Pie (25)
Vip  Asor
A similar estimate was obtained for the maximum contribution of drifts to the particle flux
(both parallel and perpendicular) in the SOL in [5], and it shows that the contribution of drift-

related terms to the parallel momentum balance equation can potentially be rather large.

We may follow the common procedure of introducing parallel viscous stress as a way of
avoiding the presence of two pressures - pj and p, - in the momentum equation, with (? . IS)H
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given by Eq. (23). Unless this is done, two energy equations are required for closing the
hierarchy of conservation equations, one for parallel energy and one for perpendicular
energy, which is wusually avoided for computational reasons. By introducing total
pressure p = (p| +2p, )/3, the term VH py in Eq. (23) can be replaced with the combination

2 :
(VHP +V”H”) , where Iy =(p | - p) = E(pH — p ) is the parallel viscous stress. In order to

close the equations, one then has to introduce an estimate for IT; in terms of already defined

quantities, as will be discussed in Sec. 6. For weakly collisional conditions, which often occur
in the SOL, however, the estimates for II|are only very rough approximations and it can be

more accurate to retain the two pressures, together with suitable approximations for the
parallel and perpendicular energy equations. To date, SOL fluid modelling has not followed
this approach but as hotter, less collisional SOL plasmas are encountered in more powerful
devices, such as ITER, this may change.

We next consider the term F;,. By splitting particle velocity into random v and mean V
parts, so that (V) =0, this term can be written as:

Fyiy ==V -(nmVV )=V - (nm(%¥ | )) (26)

The last term in this equation is the perpendicular viscous force —V-TI L and
I, =nm(v|V,) is the perpendicular viscous stress. In the literature of the field, the

perpendicular viscosity term has proven to be one of the most difficult terms to analyse. It has
a number of sources. In particular, perpendicular velocity v, is affected by Coulomb
collisions and the electromagnetic Ze(E+ v xB) force. The former is usually ignored —
although Braginskii gives estimates for the terms involved but the latter can be especially
large in the presence of plasma turbulence which e.g. may result in large radial velocity due
to E o xB drifts caused by fluctuating poloidal electric fields —i.e. ‘anomalous viscosity’.

One contribution to the viscosity comes from fast Larmor rotation (gyration) of particles with
thermal velocities, in the quasi-stationary electromagnetic field which enters via products
proportional to vy v;, ;. However, as noted earlier, it is possible to almost entirely eliminate

the contribution of the Larmor rotation from the sum -(Fy, +F,,,) in the parallel

momentum balance equation. The elimination of Larmor rotation is therefore general,
covering both the convective as well as the viscous terms. Note however, that this elimination
only applies to the momentum balance equation when formulated in terms of parallel and
perpendicular pressures as independent variables. 1t does not apply to the formulation of this
equation in terms of the total pressure and parallel viscous stress as the two independent
variables, at least not when the standard approximations for Il are used, since the latter

does, in fact, include Larmor rotation contributions, see Sec. 6.

As noted in Section 2, the perpendicular velocity can be split into four parts, see Eq. (2).
Owing to the elimination of the Larmor rotation from the parallel momentum equation, in

both terms, convective, V. (nm VHV 1), as well as viscous, V. (nm(ﬁﬁ 1)), elimination of the
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"L’ components allows one to replace v, with v, , ., where the guiding centre velocity can

be defined as the sum of drift v, ;. and anomalous v, ,,,, velocities:

_ =2
ExB 1 mv? _ o my
VL,g.c. = VJ_,dr + VJ_,anom = +—= ~—BxVB+ ”3 Bx (B vV b) + V1 anom (27)

B> 2 ZeB? ZeB

(The contribution of the velocity v, .,; caused by the Coulomb collisions, to the momentum

balance equation is usually neglected; as noted, this contribution, however, is included in
Braginskii’s collisional analysis). One can therefore express the term F;, through parallel and
guiding centre velocities as:

Fdiv = _v ’ (nm VHVJ_,g.c.) - v ’ (nm<‘7||vj_,g.c,>) (28)

The second — viscous — term in Fy;, requires further analysis, Sec. 5. The anomalous part
V| anom Of the guiding centre velocity v, ,. under most common conditions is a time-

dependent quantity, since it accounts for turbulent transport. Strictly speaking, therefore, one
has to specify whether the whole expression given by Eq. (28) is to be evaluated at each
particular instant or it is a time-averaged value. This cannot cause any problems when the
anomalous velocity figures by itself as a term in an equation, as in the case of Eq. (27), since
the result of the time-averaging is straightforward, and both v, .. and v, ,,,, can be

considered either as instantaneous or time-averaged quantities. In the products such as
(7”? Lge.)» however, the clear definition between the two possibilities must be made. We

will be assuming that all such products are averages over time, but, in order not to complicate
the expressions, will defer the explicit notations for the time-averaging until Sec. 5, when the
products involving v ., specifically will be considered.

We now turn to the term F,,,,

=nm(v|v)-k in Eq. (23). From the estimates made in App.
A (related to the small value of curvature, ~ 1/R), it is clear that only relatively large
contributions to the perpendicular velocity v, compared with the poloidal ExB drift velocity,
need be included. Since VB and centrifugal drifts, as well as radial ExB drift, are much
smaller than the poloidal ExB drift velocity, the latter is the only drift that needs to be

included in v,. Anomalous/turbulent flux velocity v ,,,, is also typically smaller than the

ExB drift velocity Vg, z =EXB/B 2, Finally, the diamagnetic velocity is mainly caused by
the superposition of Larmor rotations of individual particles, as was pointed out earlier, and,
due to the elimination of the Larmor rotation from the terms containing products vjv, in the

parallel momentum balance equation, this velocity also is not to be included in the term F,;,.
Therefore, it is sufficient to include only the ExB drift velocity in this term and, since this
velocity is the same for all particles, no viscous contributions arise, so we can write:

Frry =nm(vv )k = nmV)V g - K = —nmV Vg - R/ R? (29)
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In the particle balance equation of the system (1), by integrating Eq. (24) over the particle
distribution and neglecting a small term p—;b(bcurlb) (a discussion of this parallel drift
e

will be presented in [42]), the perpendicular macroscopic drift flux is obtained:

(py +nmV)

nVL,drzéExB+p—L3BxVB+ BxB-Vb (30)

ZeB ZeB®
Finally, nV =nV, . +curlM/Ze (see, e.g. [40, 1]). The last term here, being the curl of a

vector, is automatically divergence-free. Hence one can replace nV  with
an.c_ = nVH +nV 1.dr +nV L anom in the particle balance equation of the system (1) (also

neglecting V, .,;7).

The system (1), which, as noted, is applicable to each particle species, can now be written as:

on =
Z4+V-nV, =S
ot (n g.c.)
olm¥y) \Y V2= (nmV? —p W,B/B+V-(nmV,V 31
> +V(p +nmV") = (nmV|" + p —p)V| +V-(nmVVyg.)+ (31)
Ve (nmWV | g0 ) —nmV|Vpyp -k —eZnE| = R +F

Usually, the particle balance equation is only written for ions, with an addition of a separate
equation for electric currents. The momentum balance equations for ions and electrons can,
however, be summed together. This eliminates contributions from the parallel electric field
and ion-electron friction forces. Also, since the ion mass is much greater than the electron
mass, we can then neglect contributions from electrons in all terms except for the pressure
terms, resulting in:

d(nm;Vy)

> +V(p + nmiViﬁ) - (nmiVH2 +p —pL)VB/B+ V. (nmVy Vi gc)+

(32)
V- (nm; <‘7i|\;il,g.c.>) —nmVy Vg -k =F

where parallel pressure p| and external force F) are sums of ion plus electron, parallel
pressure and total external force. It may be noted that Eq. (32) is general, independent of the
degree of collisionality.

Evaluation of the Fj, convective term V-(nml-Vl-”V

ilge) I Eq. (32) is straightforward,

however, the Fy, viscous term V - (nmi(ﬁHV ) requires further analysis, which we turn

il,g.c.
to next.

5. Perpendicular convective and perpendicular viscous terms in the parallel momentum
balance equation
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We now consider further the drift-term Fj, containing the average over the particle
distribution, n(\7,-||Vl- 1.4r) » Which requires an estimate in terms of the basic fluid variables. As

explained in the previous section, splitting particle velocity into random vV and mean V parts
allows one to separate averages of the products v, into mean, (V|V, )=VV,, and

random, (\7HV 1), parts. The contributions of the former to the momentum balance equation

are called convective, the latter, viscous. Viscous contributions are always caused by
deviations of the distribution function from Maxwellian, resulting in viscous stresses

(described e.g. by vector IT, for the parallel momentum equation). It is important to note,
however, that viscous forces originate not only due to these stresses, but they also require

spatial changes, being described by gradients, — V..

We will follow below the standard procedure of splitting terms into convective and viscous,
as they are often presented in equations for edge modelling. Some of these terms, e.g.
anomalous viscous contributions, usually include coefficients which are not well-defined, see
below.

The convective term V - (nm;Vy Vi ¢.) in Eq. (32) can be split into drift V. (nmVy Vit a)

and anomalous V - (nm;Vy V;| 4nom) components. The viscous term V - (nm;(vy v )) can

il,g.c.
also be split into drift V(nml.<§,.|ﬁ,.m>) and anomalous V-(nmi(ﬁ‘ﬁu,anm))

components, where the bar m denotes time-averaging. It turns out that the drift component
of the viscous term contains a relatively large contribution from the ion centrifugal drift,
comparable to the contribution of this drift to the convective term V - (nmVy Vi g.). This

contribution must therefore be dealt with separately, and it can later be added to the
convective drift term. The anomalous convective term includes the average ion velocity

Vil .anom Which, unlike other quantities in this paper, has to be represented by double

averaging, over the distribution function as well as time: V = (ViLanom? » 8 it involves

il,anom
time-averaging of a fluctuating perpendicular velocity. The same applies to the anomalous
viscous term.

The anomalous viscous term has to be represented with some empirical-based ansatz,
involving an arbitrary coefficient of perpendicular viscosity, for example. The viscous drift
term needs to be related to the basic fluid variables, such as pressure and heat flux density,
and to the drift velocities. We will now derive the needed expressions for the viscous drift
flux, n(?iHV,- 1ar)- It will be found that a particularly simple expression holds for the

approximation of the actual velocity distribution by a drifting Maxwellian, Eq. (34). For the
more realistic case it will be found necessary to add some further terms, Eq. (35), an
approximation for which is given in Sec. 6.

From Eq. (24) for the ion component, by neglecting the first term on its RHS one obtains:

~ 2 ~ 2
”mi<"i|\"ij_> nmi(viHviH>

BxVB+

1 . 7 Bx(B- Vb) (33)
2 ZeB ZeB

ViVl ar) =
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Since the particle parallel velocity is almost independent of the gyro-phase, ﬂﬁ can be

replaced with viﬁ .

Note that the ExXB drift doesn’t contribute to the above equation since it
has a constant value for all particles (i.e. there is no dependence on v; or v;, ), resulting in
<‘7i||VE>< 5> =0 (generally, one can add any constant to the second component of the averaged
product of \7,-” with that component without changing the result; for this reason, the full
expression for ion VB and centrifugal drifts is used in Eq. (33), as there is no need to
calculate their random part(s)). In the first term on the RHS of this equation, v;;, can be
replaced with the perpendicular velocity of an individual Larmor circle: v = vii 1 . For the
approximation given by a drifting ion Maxwellian distribution function (the more realistic
case is considered below) with mean parallel velocity 7y, <‘~’il\‘7ii> =0, and the first term on
the RHS of Eq. (33) disappears. Also (\Z”vii) = 2VZ-H<\7iﬁ>, and we have taken into account
that (17,~‘|Viﬁ) = (ﬁﬁ> =0. By replacing nmi(\Nziﬁ Y with p;, the last term in Eq. (33) can be

. . %
expressed in the "convective’ form as nV; V;, ,, where we define:

BxB-Vb (34)

Therefore, for the special (approximate) case of a drifting ion Maxwellian distribution
function the viscous flux n(vyV,| 4) is reduced to nV;V; , . Comparing this flux with the

expression for the part of the convective flux nV;V;, 4. associated with the ion centrifugal
2
(P +rmV")

3
ZeB
concludes that the contribution of the ion centrifugal drift to the viscous term

drift (by replacing nV;, 4 with BxB-Vb, as follows from Eq. (30)), one

V. (nm;(vyV; | 4)) (which corresponds to the last term of Eq. (33)) is significant: it is almost
twice as large as its contribution to the convective term v-(nml-Vl-”V,- 1.qr) under (quite

typical) conditions when the ion parallel convective energy flux nml-Viﬁ is much less than the

parallel ion pressure.

Since one of the main points in this section is the interpretation of the role of the centrifugal
drift, for the sake of clarity it is useful here to present a compact expansion in parallel
velocity that results in both convective and viscous forces. The contribution of each
individual particle to the parallel momentum transport related by this drift is proportional to

VH3’ where v is the parallel velocity of the particle. Splitting it into average (for a particular
species) and the deviation from this average (which can also be called ‘chaotic’), expanding
and then averaging over the distribution function, one obtains: <v||3 ) =L +\7H)3 )=

<VH3 +3V”2\7H +3V||\7||2 +\7”3). The 1% and part of the 3™ term, namely (I/”\7H2), on the RHS

correspond to the convective momentum transport, while (2V||\7||2> and the last term — to the
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viscous contribution. The 2™ term is equal to zero, while the last term is zero only for a
Maxwellian distribution. It will be considered in more detail below.

Of course, the existence of a (drifting) Maxwellian distribution implies extremely strong
collisionality, which would also result in p| = p1 = p (and II = 0). Thus we can use p; in Eq.
(34) in the case of extremely high collisionality. We will, however, retain the version of Eq.
(34) that depends on p| for the general case, considered next.

In the general case of an arbitrary (i.e. not necessarily drifting Maxwellian) and more realistic
ion distribution function, a viscous term V-1, 1.VB+cent Das to be added to the LHS of Eq.

(32), where ﬁiJ_,VB+cent is defined by:

2 2
HzJ_ VB+cent — <v1\|sz_> BX VB + <Vz||> BX(B Vb) (35)
ZZeB

We need to relate the two averages over the velocity distribution, (\7,-”\7,-2L> and(?ziﬁ ), to the
basic fluid variables, which is done in Sec 6, using estimates obtained in the closure
procedure. Here we obtain a first rough estimate by taking (;i|‘\7l~i> ~ (Viﬁ > ~ Vipi; a better

estimate in terms of ion parallel heat flux density, g;, will be given in Sec. 6. Also, in most
cases the difference between BxVB and BXxB-Vb vectors can also be neglected, as both
are approximately equal to &,,,,B%/R with the unit vector &,,,, pointing vertically in the
direction of the ion VB drift. The convective particle flux due to the sum of the ion VB and
2p;

ZeBR vert
the parallel momentum transport described by the combined convective term

centrifugal drifts can then be expressed as nV; | g con = - Under these conditions,
v-(nmiVi”Vi L VB+cent) 18 effectively doubled due to the contribution made by the ion

centrifugal drift to the viscous term V - (nm, Vi ViLar) -

Using the above results, and by splitting both convective and viscous momentum transport
terms into the drift and anomalous contributions (see above), the system of particle and
parallel momentum balance equations given by Eq. (31) can be finally cast into the following
form:

on
E + V (anH + anJ_ ar T anJ_ anom) S

at +V|(pH +nm; VH) (nm Vl” +pH pJ_)V|B/B+V (nm VH(VZJ_dr-i_VJ_anom))-l_

V. (nszlHsz_,pH) +V- 1:[iJ_,VB+cent +V. l:[iJ_,anom - nmiVHVExB k= Fh

(36)
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In this system of equations p denotes the sum, ion plus electron, pressure, nV;; ;. is ion

perpendicular drift flux given by Eq. (30), nV,, ,,,, is ion perpendicular anomalous flux,

nV;'L p| 18 given by Eq. (34), I, L VB+cent 18 the ion perpendicular viscous stress caused by

viscous effects given by Eq. (35) in the perpendicular momentum transport caused by the ion
VB and centrifugal drifts: namely, by the deviation of the ion distribution function from the
drifting Maxwellian (for the latter, both terms on the RHS of Eq. (35) are zero, as stated
earlier);

HiJ_,anom = nm; <viH ViJ_,anom> (37)

is the ion perpendicular anomalous viscous stress. Finally, F stands for all other forces,
including forces arising from interaction with neutrals.

In the numerical modelling, anomalous viscosity is usually introduced via an anomalous
perpendicular viscosity diffusion coefficient 7,1 snom, Which in turn is often related to the
anomalous perpendicular particle diffusion coefficient by using a constant numerical
coefficient « of order unity, so that 7 mom =0mmDii anom- In a simplest rectangular

geometry, this results in Il
_aHiJ_,anom
I_‘J_,anom =-D

corresponding parallel force —d(m;I'| 40,,V;)/ds, . The ion perpendicular anomalous

iLanom =il anomOVy /05, and a parallel viscous force

/ds,. The anomalous perpendicular particle flux will then be equal to

iLanomOn/0s |, creating convective momentum flux m;I'| ,.,,Vy and the

viscous stress is generally non-zero, in particular because the phasing of ;i\l and V| snom

fluctuations doesn’t have to be orthogonal. The part of the non-zero viscous stress I1; Lanom

attributed to time-averaging is known as the Reynolds stress. According to [48], this stress,
by way of a corresponding phasing of the two velocity perturbations, can make a significant
contribution to the parallel momentum balance equation.

The anomalous perpendicular particle flux is equal to T'} 5, = =D;} 4nomOn/ s , creating
convective momentum flux  m;I"y .,V and the corresponding parallel force

—9(m;T'| guomV;)/9s | . As noted above, a proper calculation of the perpendicular viscous

stress I, L.VB+cen: TEQuires knowledge of the averages (\7,“\7&) and (\Zﬁ> . This is addressed

in Sec. 6 as part of the process of closing the set of equations.

Finally, we may note that Eq. (36) is still explicitly independent of the degree of
collisionality; however, there are a number of quantities which are averages over the velocity

distribution — namely py=nm((v{)=V[), py =nm(vi)/2, (%) and (53). The
treatment of these quantities is governed by the process of closing the set of fluid equations,
to which we turn next, Sec. 6. In one approach — appropriate for strongly collisional
conditions — estimates are made for these 4 quantities in terms of the basic fluid variables, 7,
V, p (or T) and their gradients. For weakly collisional conditions it can be appropriate to
employ two energy equations, for p; and pj, together with assumptions such as the neglect of

o -
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6. Closing the Fluid Equations. Collisionality. Parallel Viscosity.

While this paper only deals explicitly with the first two fluid conservation equations, it is not
possible to entirely avoid consideration of the third — energy — equation because of the
important issue of how to close the set of fluid equations. Closing the set of equations in turn
is intimately related to the degree of collisionality which, in turn, dictates how to deal with
the presence of two different pressures in the momentum equation - p; and p| - and the
question of when it is appropriate to replace them with a single pressure by introducing ITj;.
The choice between using the two individual pressures or introducing the parallel stress is
one of the principal issues involved in closing the equation set.

The simplest case is the limit of infinitely strong collisionality, which makes the velocity
distribution a (perhaps drifting) Maxwellian, and thus p| = p, = p = nT (thus II = 0), also

Fyvin) =0, and (Gyvi) =2V, (Vi) = 2Vypilnm;.

At the other extreme - for weak collisionality — as noted above, it is appropriate to retain the
two pressures in the momentum equation, necessitating two energy equations. Closure is then
dealt with by invoking various assumptions in the energy equations such as the neglect of
parallel heat conduction, see discussion in [44] and also below.

For strong collisionality it is appropriate and convenient to work with p and IIj, which
requires an estimate for Il in terms of the basic fluid variables and their gradients. In order to
close the equation set, similar estimates can be made for the other non-basic variables
appearing in the momentum and energy equation, such as heat conduction; first estimates for
these transport coefficients can be made using simple kinetic theory. Better estimates can be
obtained using the Chapman and Cowling, Spitzer, Braginskii, etc. small perturbation
method.

The focus of the present paper is on the effect of drifts, arbitrary magnetic geometry and
Larmor rotation. We do not attempt here to make any original contribution to the methods for
estimating I1j. For completeness, however, we now briefly review some of the results in the
literature.

Before addressing the main issue — the ion I - we will first consider Ily. The contribution
from electrons to ITy =TI, +1II, (note however that we often omit the subscript “/” in II;jin

this paper where it cannot cause confusion) is usually ignored due to their much higher
collision rates compared to the ions, as was stated earlier. Further, in strongly collisional
plasmas maxwellianization of both ions and electrons is rather strong, and any correction
even to the ion (drifting) Maxwellian distribution due to e.g. the presence of parallel ion heat
flux, comes only as first order corrections in the expansion in the ratio of the ion mean free
path to the parallel system size (or characteristic parallel length describing changes of the
plasma parameters), A, / L. Quite often, however, modelling has to be extended to plasmas

which, in certain domains of the computational grid, are much less collisional, with A
approaching, or sometimes even exceeding L. Under these circumstances, rather than

abandoning altogether modelling attempts using collisional codes, it is often possible to
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extend the collisional model by including kinetic effects via the introduction of various flux
limits (see e.g. [1 (p.656), 44, 49]). Such limits are typically introduced for ion and electron
parallel heat flows and for the ion parallel viscosity. In extreme cases it is also possible that
electron kinetic effects can become so strong that electron parallel and perpendicular chaotic
energies can be different resulting in a difference between p.; and p,. Therefore, for
generality, we will retain terms with II, in the equation, even though under typical
conditions electron parallel viscous stress can be neglected, as stated above.

Turning now to the main closure issue, Il;: the method employed by Zawaideh et al [44] for
estimating ITj is particularly simple and illuminating. We start from the simplest-case version
of their two energy equations for p, and p:

dpi” dVl” 2(nkTu_ 'nkT;H) 2(piJ_ 'piH) '3Hi||
VL4 3py — =0, | = = = 38
i < le ds QI’J‘_>” T T;; Ty ( )
dp: dv. nkT. -nkT. (=D 311,
v, P i il _ s = _( i i) _ (P - Py _ i (39)
ds ds ’ T Tii 27

ii il ii

assuming steady-state, 1D, constant and straight B, no sources, no heat conduction, and no ei
heat transfer. The ion-ion collision time in the above equations is the pressure anisotropy

f 3/2
15 ml- Teff

relaxation time 7; = ————"—— used in [44]. The factor 2 in the definition of the energy
8\/;nl-e4 In A

transfer term Q; 1 reflects the two degrees of freedom in the L-direction compared with one

in the ||-direction. Subtracting these two equations and neglecting terms involving derivatives

of Il and the product of Iy with dV;/ds as being small — as implied by the strong

collisionality assumption of small A/L which makes all gradients, as well as ITjj, small — one

obtains:

4_ 4
Iy :'gfﬁpi s (40)

This is identical with the lead term in Braginskii’s estimate, considered next. Zawaideh’s
approach [44] makes the basic physical concept underlying I particularly clear: acceleration
of a flow tends to cool it — reducing 7 in the first instance as parallel random energy is
converted to parallel flow energy. This tends to cause 7| and T, to diverge, i.e. for [II| to
increase, an effect which is opposed by the collisional heat transfer between the L and || ‘heat
reservoirs’. Thus [IT}| increases with |dV;/ds| and with 7;. Although not included in the results
of [44] or [40], one can readily show that other processes, e.g. heat transport, can also cause
T and T to diverge. For example, it is readily shown that including the contributions of heat

dq“ dat
conduction to the two energy equations adds terms 2d—lH and %to the RHS of Egs. (38)
S S
2 2
i [ | R AT
and (39) respectively, where q;) = fi 5 vidv and gjj = | f; 5 v|dv are components of
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2
m;v
the parallel ion heat flux density ¢ i = yfl lTdeV. This then adds a component to II; of

g ds 9" ds
then needed to close the equations. From simple kinetic theory one obtains
q; ~ —(nT;z;; /m;)V|T;. An improved estimate is obtained from the perturbation approach of

| — g
2 dQqy—qif) 2 dg iy . . .
Rt EU 7 . A collision-based transport coefficient estimate for g;| is

nl.t; )
L1 VHTi, where 7 is the angle
m;

3ym T3
4z At Zin,

has further generalized Eqs. (38, 39), resulting in more complete expressions for IT;, and
explicitly bringing out the transition from strong to weak collisionality.

Chapman and Cowling, Spitzer, Braginski, etc., of g; =-3.9

scattering ion-ion collisional time given by 7; = . Recently Fundamenski [50]

This method of estimating I also makes clear the effect of the transition from strong to weak
collisionality and also indicates the need for placing a ‘kinetic limit’ factor on any estimate,
such as Eq. (40), obtained assuming strong collisionality: For very low collisionalities, as
7;dV; /ds — oo, then [ITj| — oo also, which is unphysical since I} = p| - p, and so at the

extreme where pj — 0, IT) — -p, i.e. [[Ij| cannot exceed p. More detailed considerations
indicate a limit of about -1/2 p for IT [49]. At the other extreme, where p| = p., IT = 0, of
course. Similarly a kinetic correction factor can be applied to the above collisional transport
coefficients for g, see discussion in Chap. 26 of [1] (see also [50]).

We quote next Braginskii’s well-known estimate for the parallel ion viscous stress which has
been frequently used in theories and numerical codes, as given by his Chapman and Cowling
type transport-coefficient, small-perturbation analysis, appropriate in the strong collisionality
limit, and where he also allows for 3D ion fluid velocity [40]:

T 8r0g = —M, 2V Vi —(2/3)divV,) (41)

where né =0.96n,T;7; is the parallel ion viscosity coefficient (note that the ion-ion collision

time 7 is used). The absence of plasma (ion) density multiplier inside the divergence operator
(which would have otherwise created particle flux nV,, in which the contribution of the
Larmor rotation, described by the cur/ of a vector, could then be immediately eliminated)
implies that the Larmor rotation contribution cannot be eliminated from the parallel viscous
force. We note here that such an elimination does however occur if, instead of using full ion

pressure inside the term V”( p+nm,~V,~ﬁ), one uses parallel pressure pj, as in the original

expression for the parallel component of the gradient of the stress tensor Eq. (23) and in Egs.
(31,32,36), since divF; does not appear in any expression. That is, the replacement of pj and
p1 with p and 1Ty modifies the otherwise simple result that Larmor rotation contributions are
absent from the particle and momentum equations.

It can be readily shown that the contribution of Larmor rotation, i.e. of the ion diamagnetic
velocity, to divV; is generally significant compared to V,V;, by considering the poloidal

divergence of the ion diamagnetic velocity Bx?pi / enB* owing to the B- and R-variation.
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Pfirsch-Schliiter flow is a result of the divergence of poloidal diamagnetic and ExB flows.
The latter two are roughly the same, so we can expect parallel divergence of the Pfirsch-
Schliiter flow (particle flux density) to be similar to the poloidal divergence of the ion
diamagnetic flow. We also know that the plasma density tends to be fairly constant poloidally
in the ‘main SOL’, due to the tendency of the plasma pressure to reach equilibrium and
relatively poloidally constant 7.,7;. Hence, the above conclusion can also be applied to
divergences of ion poloidal and parallel velocities.

In the models and numerical codes where drift contributions are not included, the
contribution of the perpendicular ion flux in Eq. (41) is often ignored, and only the parallel
ion velocity is left (although, as just shown, it is arguable that this can be justified in most
experimental conditions, where perpendicular drift and anomalous flux usually play an
important role in divV;). The expression for the parallel viscous stress given by Eq. (41) can
then be simplified and adapted for an arbitrary magnetic geometry. Let’s assume a parallel
plasma flow inside a flux tube of a variable cross-section. For parallel velocities V; and V>
(with V= V,=F) at the ends of a flux tube with cross-sections S; and S, (where S,= S,=S) and
with a small distance between the tube ends A/, divV can be expressed as
(V5S, — VlSl)/(Al”S) , or, in a differential form, as (V”V + VV”S/S). Since the cross-section

of the flux tube is inversely proportional to the magnetic field B, divV = (V' -VV|B/B).

Hence, we arrive at the following expression:
=2 vy vy S8 42
il = =37\ VIV +Vi =g (42)

This equation is often used in numerical codes which don’t include drifts. It coincides with
Eq. (50) of [44], apart from a slightly different numerical coefficient (—(4/9)p;7;;, Eq. (42),

but note the difference between the ion-ion relaxation times, with 7; being larger by a factor
of 2.5 than 7). Thus, as noted earlier, the main part of Braginskii’s estimate for ITj; coincides
with the high collisionality limit of Zawaideh’s estimate [44] - even including the main part
of the effect of a spatially varying field.

i

The expression Eq. (41) has usually been taken to be the largest contribution to the parallel
ion viscous stress within the framework of the Chapman and Cowling (Braginskii) approach
for transport equations of a strongly collisional plasma. This corresponds to a situation where
the principal effect causing 7 (thus p)) to diverge from 7'\ (thus p.) along the parallel
direction, is the cooling caused by acceleration of the flow, which is o= V| }|. As already
noted, in principle, many other effects, such as parallel gradients of parallel heat flux, can
also cause p| and p, to diverge. In all estimates, the Chapman and Cowling type of
formulation assumes strong (of order of 100%) variation of plasma parameters along the field
lines over the collisional mean free path. Under these conditions, other viscous contributions,
e.g. those arising from the parallel gradients of parallel ion heat flux, NTiVHqu (see below),

are only ~A;/ Ly of the main term ~nf,VHV,-” given by Eq. (41) and therefore can be

neglected. It was later realized, however [41], that such an assumption is not adequate for a
range of experimental conditions where some special relations between perturbations of
various plasma parameters occur. Consider, for example, the case of parallel ion particle and
heat fluxes arising in the main tokamak SOL (far away from the divertor) due to the
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divergence of corresponding poloidal particle and heat fluxes of order V;y =V ,.p;/eB and

q;9 ~ p;V,T;/eB, respectively. Assuming V ,.p, ~nV _.T;, these particle and heat fluxes will

r-io
be related as gq;9 ~V,gp;. Since both vary by ~¢ over the flux surface, their poloidal
divergencies result in parallel fluxes of amplitudes (and changing signs over ~gR) of
qi| ~ Vyp;- The two contributions to the parallel ion viscous stress will then become

comparable: 7,V q; ~ ni,VHV,-” [41].

Recently, further advance in the Chapman and Cowling type of derivation of the parallel ion
viscous stress has been made by including contributions that arise from the full nonlinear
form of the collision operator, giving rise to terms proportional to the square of the heat flux
which can be of the same order as terms ~7;;V,g; [51]. The expression for the parallel ion

viscous stress that follows from [51] (see p.95 of this Ref) is quoted next:

qu|| 0.7131

I =-0.0426— 1" ML 0993 1 g 6398 2 V-V, -3b-VV,)- a V7, +

lpl Tlpl Vl ivi (43)
0.0419 0.1573 = _
(V q; —3b- VH‘L) (V q; —3b- VquH) ( i - Vp;i =34y 'Vpi)

i i ivi

0.4133

Here q; and q; are full and parallel ion heat fluxes, respectively, V; is the inverse Braginskii
ion-ion collision time, 1/7. The 3™ term on the RHS of the above equation corresponds to
Braginskii’s viscous stress, and it matches Eq. (42) for the case of simple rectangular
magnetic geometry. This term, however, as well as the whole expression given by Eq. (43),

applies for an arbitrary curvilinear magnetic geometry. When q; ~ q; and V- V” the sum

of the 5™ and 6™ terms in Eq. (43), proportional to the gradient of the heat flux density, are
within ~20% of the simple estimate above. All terms in Eq. (43) (except, perhaps, for the 6"
term on the RHS, which may be numerically small) can be of the same order and should be
kept in this equation, as was pointed out in [51].

The pressure difference term —(p —p, )VHB/B in the momentum balance equation Eq.
(36) for ions directly follows from Eq. (43) and (pl-” - D)= 3Hi\| /2.

As noted above, when employing the standard strong-collisionality approach it is necessary
to include kinetic flux limiters in any expression for I1, even for refined estimates such as Eq.
(43), in order to prevent V|II| from becoming unphysically large when A;/Lj is large
[49,1,51]. Such kinetic correction factors are, however, only rough estimates. One can also
obtain approximations for Il;; using two-pressure (p;1, p;) formulations, such as Eqs. (38,
39), but this requires making simplifications for the energy equations for p;; and p;, such as
neglecting the effect of sources, as in [44, 50]. Therefore, any momentum equation based on
(28 Hﬁ“ ) is, in principle, inferior to employing a two-pressure (p;1, pij) set of equations that

includes complete energy equations for p;\ and pj,.

Sources are potentially important causes of divergence between p, and p|, i.e. are potentially
a strong influence on I1;;. The main source of ions in the edge is ionization of neutrals which
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have recycled from the solid surfaces on which the ions recombined. The recycling neutral
velocity distribution is generally quite anisotropic, and is governed by various factors such as
the angle between B and the solid surface from which the neutrals recycled. Thus at the
instant of creation of the ions it is likely that p;, and p;| differ significantly and in a way for
which no simple generalizations are possible. An appropriate way to address this aspect is to
use a two-pressure (p;1, p;) formulation, taking the source terms from a neutral Monte Carlo
code such as EIRENE, and employing the specific detailed geometry of the solid structures at
the edge.

There is one further matter to deal with in order to close the equations: as noted in Sec. 5,

calculation of the perpendicular viscous stress I, yp. ., requires knowledge of the

averages <\7i‘|\7i2l> and <17iﬁ ), le. qiﬁ andql.‘”. The sum of the two averages, (171-”171-2L> and

(Viﬁ Y, 1s equal to (\7i||\7i2> which can be estimated — for strong collisionality - from the well
known Spitzer, etc. expression for the heat flux: g; = nmi<\7,~“\7,~2>/ 2=—xyVT;, with

nT;7;

X =39 . Since, however, in Eq. (35) they are present with different weightings, they

m;

have to be calculated separately. For purposes of a rough estimate, however, we may simply
m;q,
ZeB®

(usually) small difference between the directions of the VB and centrifugal drifts and
expressed both terms through the direction of the former.

take 2q1.|H + qiﬁ = g, to give: I, LVB+cent ™~ Bx VB, where we have also neglected the

A more refined estimate can be obtained from Braginskii’s analysis, see App. B (which is
however then dependant on the validity of his small perturbation assumption, i.e. the

assumption of strong collisionality): the ratios (\Zﬁ )/ (\7i||\71-2> and (Viuvi)/ (\7,-H\7,-2) are equal

to 3/5 and 2/5, respectively which introduces a factor 8/5 in front of the RHS of the above
expression:

HiJ_,VB+cent = EZ;Bl_q,

BxVB (44)

We will use the estimate of Eq. (44) rather than the rough estimate in terms of p; obtained in
2p; .

Sec. 5, where nV;| ypycon = Ze—BIRevm'
An estimate for the relative importance of the viscous force associated with this term can now
be made by comparing it with e.g. the part of the ion viscous force related to parallel gradient

of the ion parallel velocity nT;z;Vy / Lﬁ . The divergence V - I, L VB+cen: Can be estimated as

= : Iit; = : :
I} vareent ! Asor - Using g ~ nml VT, BxVB~B?/R and making maximum

1

estimates for the ion temperature gradient V|T; ~7;/qR, and for the viscous term
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V'I_IiJ_,VB+cent - qp; :LX Pig
VI Asor R Agop
this viscous term doesn’t appear to be a dominant viscous contribution to the parallel
momentum balance equation. We note, however, that we used here the maximum possible
estimate for V[T, , by assuming variation of the parallel ion velocity of order ion thermal

VI ~ nTitviy, /(gR)*, one can obtain: . Therefore,

il>
velocity over the distance gR, which is unlikely to be realized in the main SOL plasma. At the
same time, the estimate for the V-1, 1 VB+cen term, which used V|T; ~T;/gR, is fairly

realistic. This viscous term may therefore become quite an important contribution under
certain plasma conditions.

It is computationally convenient to use the (p;, Hﬁ“’) (with the latter being an estimate for the

parallel viscosity, for example one that assumes strong collisionality) form of the momentum
equation rather than the (pi1, pj) form with two complete energy equations. For conditions
other than collision-dominated, however, this results in two deficiencies: (a) the values of
[T are of uncertain validity, and (b) a false dependence on Larmor rotation is introduced to
the momentum equation. Ongoing progress toward achievement of fusion power in devices
such as tokamaks is resulting in hotter, less collisional boundary plasmas, motivating better
approximations for the momentum equation based on two pressures — and employing
complete energy equations for p;1 and p;).

This completes the process of closing the set of particle and momentum equations.

7. Summary

The system of particle and parallel momentum balance equations for plasma edge modelling
derived in this paper is presented by Eq. (36), followed by expressions for the individual
terms. For the most typical case of well Maxwellianized electrons, electron pressure is
isotropic, so one can neglect the difference (p, —p,., )and the total pressure anisotropy is

due entirely to the ion component. While keeping parallel and perpendicular ion pressure as
separate parameters represents a more general approach, a complete formulation then requires
that the (two) energy equations be considered, a subject that we defer to a follow-on study.
Therefore in the rest of this paper we will follow the standard approach and replace Vp;

with VH( p; +11 iH)’ therefore formally introducing parallel ion viscous stress Il i into the

equations. This is also necessary in order for us to be able to make direct comparisons with
earlier formulations in the literature. The system Eq. (36) can then be formulated as follows:

on =

5 +V. (anH + nViJ_,dr + nViJ_,anom) =S

ArmiVy) | V2Y  (nm.y 2 —p; )V B/B

— T |(Pe + i +nmVi) = (nmVif + py = piy )V B/ B+ (45)

Ve (mmVy (Vitar + Vit anom) + V- (nmVy Vi 0+
VHHl” +V- 1:’[iJ_,VB+cent +V- ﬁiJ_,anom - nmiVHVEXB k= FH
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Expressions for the averaged ion drift flux nV,; ;, and extra flux ”V;l, p| Which is only

present in the momentum balance equation, are given by Eqgs. (30) and (34), respectively,
while ‘anom’ stands for anomalous contributions originating by e.g. fluctuating
electromagnetic fields. Pressures p. and p; are full electron and ion pressures, respectively.
The ion pressure anisotropy figures in the 3™ and 6™ terms on the LHS of the momentum
balance equation Eq. (45). The pressure difference (pi| — Pi 1) 1n the 3" term can be

expressed as 311, /2 through the ion parallel viscous stress II; given by Eq. (43) (while the

i i

parallel ion pressure itself, needed to calculate ”ViHVi*L, e is given by Py =p; +11 through

i

the total ion pressure). The gradient V|II; can also be replaced with 2V (p; —p;1)/3,

i
where p;| and p;; are considered independent quantities but this would then require two
separate energy conservation equations for ion parallel and perpendicular pressures, as noted

earlier.

The term V-, 1.VB+cen: describes a force (taken with the opposite sign) that originates from

viscous effects involving ion VB and centrifugal drifts related to the deviation of the ion
distribution function from the drifting Maxwellian, with the corresponding ion viscous stress
given by Eq. (35). It can typically be simplified (see Eq. (44)). Anomalous viscous force is

introduced separately by the term V-II which, together with the perpendicular

il,anom
particle anomalous flux nV; ,.,,, is usually defined arbitrarily using a prescribed

coefficient (see Sec. 5). The last term on the LHS of the momentum balance equation Eq.

(45) accounts for the main part of the ‘curvature force’ for ions £; ., = nm;(vy v, )-k (kis

curvature of magnetic field lines) which was derived in Sec. 2 and for which approximate
expressions are given by Eq. (29) (without specifying the charged particle species). Finally, S
and F) stand for particle source and all external forces acting on the plasma, including forces
arising from interaction with neutrals. Perpendicular particle fluxes and forces arising due to
Coulomb collisions have not been considered in the present paper due to their secondary
importance. They can however be added separately to the equations, e.g. from Braginskii’s
analysis.

In deriving the above equations, effort has been made to include the most important terms
and to explain their physical meaning. The importance of the terms is assessed by making
order of magnitude estimates that take into account characteristic velocities, fluxes etc.
present at the plasma edge, in particular in the SOL region of tokamaks. This system of
equations, or its simplified (reduced) versions can be used in analytical theories and as well in
sophisticated numerical codes.

One of the main motivations in deriving the present system of equations was the desire to
clearly separate terms that have different origins, in particular: (a) guiding centre parallel and
perpendicular (drift) velocities in quasi-stationary electro-magnetic fields and associated
fluxes of parallel momentum, including viscous guiding centre drift effects, (b) perpendicular
(radial) guiding centre anomalous fluxes and associated anomalous convective and viscous
momentum fluxes, (c) pressure-related terms and parallel viscosity in the parallel momentum
balance equations. Perpendicular classical diffusive fluxes originating from the distortion of
Larmor orbits by the Coulomb collisions have not been included in the set of equations,
however, they can in principal be added separately when these fluxes become particularly
large.
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More detailed analysis of the parallel component of the gradient of the total pressure-stress
tensor has identified a number of important terms that are sometimes not included in the set
of particle and momentum balance equations for the edge plasma. One of them is the term

—(nm VH2 +p—p L)V”B/ B due to the spatial divergence of the magnetic field lines, while

the other: — nm(vHV -k, 1s due to the bending of the field lines described by their curvature

k. At the same time, more detailed analysis of convective and viscous terms in the parallel
momentum balance equation has led to the appearance of an extra term in the parallel
momentum balance equation required to correctly account for the momentum transport by the
ion centrifugal drift, namely, a significant contribution by the ion centrifugal drift to the

viscous term V-(nmi(ﬁ‘ﬁ[ Ldr)), comparable to the contribution of this drift to the
convective transport term V - (nm;Vy Vi g.), has been identified. For the drifting Maxwellian

ion distribution function, the new term can be described by the expression V - (nm,-Vl-HV;l o)

having similar form to ordinary convective terms, with the nVil p| flux given by Eq. (34).

This term is twice as large as the contribution of the random part of the ion centrifugal drift
(described by the term with p in Eq. (30)) to the convective momentum transport term. In

situations where the ion parallel convective energy flux nmiViﬁ can be neglected compared

with the ion pressure, and the pressure is isotropic, the presence of the new term effectively
doubles parallel momentum transport described by the combined convective term

v-(nml-V,-”Vl- LVB+cens) due to the ion VB and centrifugal drifts. In addition, an extra

perpendicular viscous term V-II, L. VB+cens Tor a general ion distribution function (not

necessarily drifting Maxwellian, for which this term is zero), originating from the ion VB and
centrifugal drifts, with the vector IT i1 VB+cent iven by Egs. (35) (more precise form) and

(44) (more approximate form), must be taken into account. Such a significant contribution of
the ion centrifugal drift to the parallel momentum balance equation ultimately stems from the

2
i >

fact that the centrifugal drift velocity is proportional to vj, thereby causing strongly non-

linear, ~ vf|’| , contributions of this drift to the parallel momentum balance equation.

The terms mentioned above are, as was shown earlier (see discussion following Eq. (24)),
generally of the same order of magnitude as the convective momentum transport term

attributed to drifts, ?-(nmiVl-HVi 1ar), hence their inclusion in the parallel momentum

balance equation is equally important as the inclusion of this straightforward convective term.
There are a number of similarities between the present results and the results of an earlier
study [35] - that is, over and above the inclusion of obvious pressure gradient, anomalous
viscosity and convective momentum terms. First, the effect of roughly doubling of the

convective momentum flux V - (nmVy Vi) 4 ) attributable to the combination of the ion VB

and centrifugal drifts, due to the presence of the term ?-(nmiViHVi’p”). Second, both

formulations effectively contain what is here referred to as the ‘curvature force’, with its
main part being nm;VVg,p -k in [35], this contribution is contained as part of the term

dubbed the ‘Coriolis force’ F (see Egs. (7) and (8) of [35] (although calling it ‘Coriolis’ is
confusing since the true Coriolis force differs by a factor of 2)). The term
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— (nmiVl-ﬁ + D~ PiL )VHB/ B, however, was neglected in [35] as small. Also not included in

[35] is the viscous term V-II, 1. VB+cent> 88 the analysis there implicitly assumes the ion

distribution function to be a drifting Maxwellian. Finally, in this paper we presented a more
complete expression for parallel viscosity, Eq. (43) [51], by including recent additions (note
however, that viscous terms of [35] (contained inside the Eq. (7) of the Ref.) are also lacking
radial (‘y’, according to the nomenclature adopted in [35]) gradients, an omission).
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Fig. 1. Cartesian (i, iy, i,) and local (ig, , iqq, iqy) orthogonal systems of coordinates

used for opening the parallel component of the gradient of the stress tensor, (V - f’)H .
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Appendix A: Estimates of the magnitude of drifts in the tokamak SOL

In the simple SOL (sheath-limited) case, characteristic of low density operation, 7, is
constant (along B) right up to the target surface, E, is determined by the potential drop of ~
3T,/e in the Debye sheath between the plasma and the target [1]. Due to sharp radial gradients
of T., a significant radial electric field E, =37T,/eAgy; is formed in the SOL. In the other
extreme case of very high plasma density, high recycling divertor conditions cause plasma
detachment from the target, with 7, decreasing strongly (along B) towards the target and
another effect becomes largely responsible for the formation of the E,, namely the parallel
thermo-force —0.711n9d7T, / as” (for singly charged ions, see e.g. [40]) that is nearly balanced

by the parallel electric field force enEj, resulting in E, = 0.71xT,/elg; , assuming absence of
extremely high electron currents along the SOL. In either case the radial electric field in the
SOL E, ~T,/eigo; . By assuming T, = T;, expressing ion temperature through ion thermal

velocity as T; ~mivi21h, and introducing the ion Larmor radius as p; =v;,/ow;, where

w; =eB/m; is ion gyrofrequency, one can obtain the following estimate for poloidal ExB
drift velocity in the SOL:

VixB.o ~ Vi X Pi’%soL (A1)

By replacing m\7H2 and mv f in the 4™ and 5™ terms on the RHS of Eq. (24) with 7} and using

similar derivations as above, one obtains for the VB and centrifugal drift velocities, which are
of the same order and which in the rest of the paper will be approximately denoted as Vyj,

the estimate:
Vog ~ Vi X pi/R (A2)

The ratio of the two drift velocities, Vig.p ,0/Vyp is of order R/Agy, >>1. A similar

(upper) estimate can be made for the radial component of the ExB drift, by allowing for a
maximum potential variation of ~ T,/e along the flux surface creating a radial ExB drift

velocity V, ~ T,/erB. By assuming 7, ~ m,-v,-z,,h , this velocity can be expressed as:

VEXB,r,max ~ Vi,th X pi/r (A3)

This drift velocity is much smaller than the typical poloidal ExB drift velocity, Eq. (A1), but
is of the same order as VB and centrifugal drift velocities, Eq. (A2). In some circumstances
this allows one to neglect the VB and centrifugal drifts compared with the ExB drift velocity
which is predominantly in the poloidal direction (more correctly the direction perpendicular
to B and within the flux surface, i.e. in the ‘diamagnetic’ direction — but in this paper we will
often follow the usual custom and call this the ‘poloidal’ direction). However in some other
circumstances VB and centrifugal drifts, as well as radial component of the ExB drift, may
have comparable effects to that of the poloidal ExB drift, when these drift velocities appear in
the derivative expressions. Indeed, the large magnitude of the poloidal ExB drift is
compensated by small changes, on the scale of minor radius , in plasma density, resulting in
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the particle source/sink V-Vn of order Vg, g gn/r ~ nv; 4, X p;/rigo, . At the same time, VB

and centrifugal drifts, being mostly in the vertical direction, have a large component across
the field, i.e. perpendicular to the magnetic flux surface, i.e. in the ‘radial’ cross-field
direction, and therefore may substantially influence the plasma through sharp radial gradients
of n,, T,; at the edge. The correspondent particle source/sink is of order
Vygn/ Asor ~ nv; g X p;/Rigor » which is only by a factor of the aspect ratio R/r smaller than

similar estimate for the poloidal ExB drift, while effect of the (maximum) radial electric field
is the same as that of the poloidal EXB drift. In any case, the notion of the ‘plasma size’ used
in the standard neoclassical theory, which figures in the denominator of the expression for o,
becomes poorly defined for the SOL.

In addition to the above mentioned drift fluxes/velocities, there exist the diamagnetic flux

which is equal to nV,, =-Vp, xB/(ZeB*). lts largest component is in the poloidal

direction, Vi, 9~ kT/eBAso, and can be estimated similarly to an estimate Eq. (A1) given for
the poloidal ExB drift. Its radial component can be given an upper estimate, similar to the
estimate Eq. (A3) for the radial ExXB drift velocity, by assuming large poloidal pressure
gradients ~ p/r. This estimate, however, does not typically reflect the real experimental
situation in the plasma, since plasma pressure, as well as electric potential, tend to be rather
uniform along flux surfaces. The diamagnetic velocity, however, should not be called a ‘drift’
velocity, in the sense used in the present paper. We are reserving this term to mean the drift of
the guiding centres of Larmor circles. It can be shown that the major part of the diamagnetic
flux is due to the superposition of Larmor rotations which is given by nV, ; = curlM/Ze,

where M=-p, B/ B? is the magnetization flux [40,5]. The normalized difference between
nV, and curlM/Ze can be shown to be small, of order Agy; /R, the ion pressure decay
length divided by major radius, i.e. the difference between nV,, and curlM/Ze is of order
Vyp (seee.g.[40,5]).

Another major difference with the core plasma, as has already been pointed out in the
Introduction, is the possibility of large ion parallel velocity in the SOL, especially near the

target (or limiter), where it reaches of order the plasma sound speed ¢, =/(7, +T;)/m; due

to the strong sink action of the target surface. Hence, the equations will include some parallel
velocity terms which are neglected in the standard neoclassical theory, developed for
configurations with closed field lines, on the basis of the J - ordering. If one considers flows
driven by ionization sources only then the near target region in the divertor with v; ~ ¢, may

occupy a relatively small volume of the plasma and one might expect that in the ‘main SOL’
(upstream of the entrance to the divertor) V| <<c¢,. However, even in the main SOL region,

far away from the divertor/target, there is a possibility of a strong parallel flow in the SOL
which is driven by - and can compensate for - the effect of the poloidal ExB drift (a ‘return
parallel flow’ considered in [23] and also found in the modelling with EDGE2D [36] and
B2.5 [35] codes. The complete compensation of the poloidal EXB drift is achieved when the

B
poloidal projection of the parallel velocity of the return parallel flow ngEaH compensates
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By, E E
the drift velocity %?’", L.e. approximately Vg = B—’ This flow is in the direction of the
[

main plasma current. By making a similar estimate as above, one can obtain:

E B ; ;
Ve)=—- ~Vz'zh><—><—pl = Vi X Pio
T B ’ B, A ’
0 o AsoL

(A4)
Asor

where p;y is ion poloidal Larmor radius. This substantial velocity is typically below the ion

sound velocity ¢, but may approach it in extreme cases. Such a return parallel flow also
exists in the private region. Due to shorter parallel connection length there and, hence, shorter
radial decay length (shorter than Agso.), the parallel velocity can even be larger in the private
region than in the SOL.

The foregoing return parallel flow can occur in either cylindrical or toroidal configurations.
In toroidal configurations, a different contribution to the parallel return flow occurs — the so-
called Pfirsch-Schliter flow, attributable to the existence of both radial electric field and ion
pressure gradient in the SOL, has been previously considered [12]. Due to surface area
variation (~ R) and variation in the magnetic field (~1/R), the combined ExB and ion
diamagnetic poloidal flow is significantly non-divergence-free, resulting in a compensating
parallel flow which in a simple circular geometry with nested concentric surfaces, and

2q (dp;
assuming & = /R <<1, is given by Ves) = -sin H—CIB(%-enErj, where ¢ is the safety
en r
factor and @ poloidal angle measured from the bottom, see p. 561 of [1]. By replacing dp/dr
with nT//Asor and making other order of magnitude estimates as above, one obtains for the
velocity of the ion Pfirsch-Schliiter parallel flow:

qpi r
Ves) ™ Vi Xi—l = Vi XX (A5)

SOL R Zsor
This velocity is larger than the poloidal ExXB drift velocity by a factor of ¢, but smaller than
the velocity of the (possible) ‘return parallel flow’ mentioned earlier, Eq. (A4), by a factor 1/&
(however, since it contains two contributions, one due to the radial electric field, and the
other due to radial pressure gradient, numerically these two parallel flows can be close).

It is thus clear that quite fast parallel flow, driven by cross-field drifts, can occur in the SOL —
including locations far from the targets.

Appendix B: Calculation of averages (\ZvaL) and (\71~ﬁ>

Braginskii’s strong collisionality, perturbation analysis, which evaluates the departure of the
velocity distribution from Maxwellian, shows, [40] (Eq. (4.17)), that the ion distribution
function in the presence of parallel temperature gradient can be expressed in the form:

1 :f,.M{1+A(v2)vH} (B1)
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where £ is a non-shifted Maxwellian distribution function, v and v are particle full and
parallel velocities, respectively, and the term with A(vz)vH describes a small correction to

f,-M : A(vz)v” <<1. In order to calculate parallel ion heat flux, the function A(vz) must
satisfy the criterion: V| = % jfiv|dv = % §f1M A(vz)vH2 dv=0 (i.e., giving a zero net parallel
ion flow).

Parallel ion heat flux can then be written as:

2
m;v
q = jﬁ' 12

2
m;v

2

VHdV = j‘flMA(Vz) VszV (B2)

The solution for the heat flux Eq. (B2) is well known from the literature and can, for
example, be taken from Braginskii. Using the notations adopted in the main text of the
present paper, this heat flux can be equated to nm; (\7,.”17,.2)/2, since the v’s in the above
equations are random velocities. For the purpose of calculating (\7l-ﬁ y it will be sufficient to

find the relation between the (newly defined) flux

2

I= (7, i
g iy

2
m:v
vjdv = f M A(vz)lT|v|2dV (B3)

and Eq. (B2). The calculation of the ratio of the fluxes qH and q is very simple, and it

doesn’t depend on any details of the Maxwellian distribution, apart from its dependence on
the full velocity v. In the integration, the velocity space element can be taken as
dv =[2zv(sin)vda]dv , where o = arccos(v) /v) (after the integration over ¢, the velocity

T
space volume becomes I[Zﬂv(sina)vda]dvz47z‘v2dv). Since v| can be represented as
0

vecosa, the difference between Egs. (B2) and (B3) caused by the presence of v2 in the
former and vHZ in the latter, can be reduced to different integrations over ¢, whereas within

each velocity space volume 4zv2dy the ratios between the integrals over ¢« are the same.
Integration over v is therefore not required for the purpose of finding the ratio qH / q)-

V4
Eq. (B2) contains the following integral over ¢ : jcosz asinado =2/3, while Eq. (B3) has:

0
T
Jcos4 asnada=2/5. Hence, <\7iﬁ> /(\71-H\7i2 ) =q|‘|‘ /q=3/5. Noting that
0

(Tyvi) + i) = yv72) , leads to (yv? ) /(597 = g/ q=2/5.
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