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Abstract 
A system of plasma particle and parallel momentum balance equations is derived appropriate 
for understanding the role of drifts in the edge and for edge modelling, particularly in the 
scrape-off layer (SOL) of tokamaks, stellarators and other magnetic confinement devices. 
The formulation allows for strong collisionality – but also covers the case of weak 
collisionality and strong drifts, a combination often encountered in the SOL. The most 
important terms are identified by assessing the magnitude of characteristic velocities and 
fluxes for the plasma edge region. Explanations of the physical nature of each term are 
provided. A number of terms that are sometimes not included in edge modelling, has been 
included in the parallel momentum balance equation after detailed analysis of the parallel 
component of the gradient of the total pressure-stress tensor. This includes terms related to 
curvature and divergence of the field lines, as well as further contributions coming from 
viscous forces related mainly to the ion centrifugal drift. All these terms are shown to be 
roughly of the same order of magnitude as convective momentum fluxes related to drifts, and 
therefore should be included in the momentum balance equation.  
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1. Introduction 
 
Cross-field drift flows play an important role in influencing plasma parameters in the scrape-
off layer (SOL) and divertor of tokamaks [1]. They are believed to be responsible for changes 
in the in-out asymmetries caused by the reversal of the toroidal field direction, observed in 
many experiments, thereby affecting particle and power exhaust in the divertor/target (see 
e.g. [2-9]), including the tendency for the inner divertor to be detached for the ‘standard’ field 
direction (ion ∇B-drift toward the divertor in single-null configuration). The drifts are also 
believed to make a significant impact on the plasma parallel flows in the main SOL, far away 
from the divertor/target, where the influence of the interaction with neutrals on the plasma 
transport is not critical [10-15].  
 
Attempts to quantitatively relate measured asymmetries and parallel flows to theoretical 
cross-field drifts using code-modelling have met with only limited success to date and it is 
not clear that all of the controlling physics has been identified and included in the code-
modelling: some basic physical effect(s) other than drifts may also be playing an important 
role. The identification of any such additional effects requires that the theoretical cross-field 
drifts be fully and correctly described in the code-modelling. In the present paper the particle 
and momentum conservation equations are re-derived with the aim of more completely and 
correctly identifying the non-collisional drift terms, including the effects of curvature and 
divergence of the magnetic field. Fast parallel flows and divertor asymmetries appear to have 
a number of important practical implications for magnetic fusion devices, including the 
transfer of impurities such as carbon to the usually cooler inner divertor region, resulting in 
co-deposition trapping of tritium in a non-saturating process [16-21]. The motivation for 
improved understanding and modelling is therefore strong. Extensive theoretical and 
modelling effort in recent years have confirmed the significant role of drifts in both in-out 
asymmetries and parallel flows [22-39]. Ref. [39] however, presents a convincing 
demonstration that present-day 2D edge codes are failing to predict the large parallel ion 
flows widely measured in the SOL. Whether this is due to improper implementation of drifts 
into the codes, the result of poloidal variations in turbulent transport coefficients, or caused 
by other, unknown reasons, is at present unclear. 
 
Proper accounting of the drift effects in theories and code modelling, however, has proven to 
be a difficult job, to a large extent because of the need for correct averaging of drift velocities 
of individual particles and their various products in order to obtain fluid equations for 
macroscopic plasma parameters. At the edge of the plasma, and in particular in the SOL, 
derivation of transport equations which include drifts is aggravated by difficulties associated 
with the presence of divertors/limiters that introduce poloidal asymmetries, large mean 
parallel velocity (especially in the SOL, with Mach numbers ~1), and also because of the 
effect of neutrals on the plasma.  
 
The usual practice in modelling of the edge, and in particular, the SOL plasma, is to assume 
anomalous perpendicular coefficients, sometimes poloidally dependent, for particle, heat and 
momentum transport, typically diffusion coefficients. This assumption is required in order to 
make the modelling results consistent with experimental observations where plasma 
turbulence is seen to determine perpendicular transport which greatly exceeds classical (and 
sometimes even neoclassical) transport. At the same time, drift fluxes, as already pointed out, 
play an important role in edge transport. In order to account for the most important 
contributions to the plasma transport, and for the sake of clarity of the analysis and the 
results, particle and parallel momentum balance equations in the present paper will be 
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formulated in a way which clearly separates (a) guiding centre drifts, (b) parallel transport 
including parallel viscous forces, and (c) perpendicular anomalous particle and momentum 
fluxes. In addition, the effects of classical collisional perpendicular transport considered e.g. 
in [40] have to be added separately. They, as well as other collisional perpendicular transport, 
e.g. fast ion scattering, will not be evaluated in this paper. 
 
Particle and parallel momentum balance equations for the edge plasma in the Pfirsch-Schlüter 
regime of frequent collisions that include drifts, adapted for the use in numerical codes, can 
be found in various sources (see e.g. [22,26,28,29,31,35]). References [26,31,35] describe the 
main equations used in numerical codes in magnetic configurations with poloidal divertors: 
EDGE2D, UEDGE and B2.5, respectively. The SOL of magnetically-confined plasmas is 
often only weakly collisional, while at the same time, drift effects can be strong. We have 
therefore in Sec. 2 employed a new method for ‘opening’ the total pressure-stress tensor 
which avoids the standard small perturbation analysis assumption of Chapman and Cowling, 
Braginskii, Spitzer, etc.  
 
Here we will follow the practice adopted in the implementation of drifts in EDGE2D [26], 
namely, to formulate transport equations in such a way that clearly separates guiding centre 
drifts from Larmor rotation. In the most important terms describing perpendicular transport of 
both particles and momentum, contributions by the Larmor rotation, which numerically are 
the largest, can then be eliminated from the equations, as a result of a certain cancellation. 
This cancellation has been explicitly demonstrated for the particle equation [40] and is also 
claimed to hold for the momentum equation [41]. In a separate study we will explicitly 
demonstrate this cancellation for the momentum equation ([42], to be submitted for 
publication). This cancellation has proven to greatly improve the stability of numerical codes. 
The fluid parallel momentum balance equation is thus effectively reduced to the parallel 
momentum balance equation for guiding centres of Larmor orbits. The analysis performed in 
the present paper is more rigorous than that in Ref. [26] and we find a number of important 
terms that have not been included in this earlier work. Some of these terms can also be found 
in a later paper [35, as discussed in Sec. 7]. In this paper we analyse only particle and parallel 
momentum balance equations, leaving to future work the formulation of the complete set of 
particle, momentum and energy balance equations.  
 
The general form of the particle and momentum plasma fluid equations is presented below: 
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This equation is applied to each plasma species. The notations are conventional and are 
explained in Sec. 2 where the total pressure-stress tensor, 〉〈= vvP nm

t
, in the fluid 

momentum conservation equation is ‘opened’, i.e. re-written in terms of the basic fluid 
variables, n, V, p⊥ and p|| (or T⊥ and T||) and/or their gradients, also involving terms 
specifying the divergence and curvature of the magnetic field. P

t
 is opened directly, 

permitting direct insertion of classical drift velocities, dr,⊥v , which are calculated from 

individual particle motion given in Sec. 3. (Collisional perpendicular drift velocities, coll,⊥v , 

could also be inserted directly, but that is not done here.) The expression obtained in Sec. 2 
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for the opened P
t

 allows for arbitrary magnetic geometry and for arbitrary levels of 
collisionality. In Sec. 4 the expressions for dr,⊥v taken from Sec. 3 are inserted into the 

opened expression for P
t

. Here capital letter V indicates fluid velocity and small letter v, 
individual particle velocity. 
 
In Sec. 5 we focus attention on a particular drift-term resulting from opening P

t
, namely 

)( || 〉〈⋅∇−= ⊥vvnmFdiv

r
, which includes terms of the form 〉〈 ⊥v~~

||v , the viscous terms. The 

random ⊥v~ that is involved here is not the Larmor velocity L,⊥v , but rather perpendicular 

drifts which include a random component due to a dependence of the drift speed on the 
magnitude of ||v  and ⊥v , where here the latter (with bar above v) indicate the velocities of the 

individual particle averaged over a Larmor orbit, see Eq. (24). 
 
In Sec. 6 we address the critical issue of closure of the fluid equations, including 
approximations for the parallel viscous stress, Π||, which is often introduced as part of the 
closure process. Up until the point of closing the set of equations, the particle and momentum 
equations here are fully general as to the degree of collisionality. Closure, however, requires 
that a specific level of collisionality be assumed. 
 
Finally, the summary of the results and comparison with earlier formulations are presented in 
Sec. 7. 
 
 
2. Opening the parallel component of the gradient of the total pressure-stress tensor 
 
The general form of the particle and momentum plasma fluid equations, Eq. (1), are obtained 
by assuming a distribution of particle velocities f(t, r, v) which is given by the Boltzmann 
kinetic equation. The Boltzmann equation is then multiplied by 1 and mv and integrated over 
individual particle velocity v to give Eq. (1) for ions: (see e.g. [40] (Eq. (1.12)), [43] (Eqs. 
(2.13) and (2.15 ))).  Here V  and ||V  are mean total (vector) and parallel fluid velocities, 

respectively, averaged over the distribution function, S is the particle source, 〉〈= vvP nm
t

 is 
the total pressure-stress tensor, v is individual particle velocity, 〉〈...  denotes averaging over 
the distribution function, R|| is parallel friction force between ions and electrons and F|| stands 
for all other forces (including forces arising from interaction with neutrals and external 
forces, as well as any momentum introduced in association with particle source S); other 
notations are conventional. There is a similar momentum equation for the electrons. 
 
The objective in this paper is to ‘open’ 〉〈= vvP nm

t
 - specifically ||)( P

tr
⋅∇  - i.e. to re-write it 

in a form where the expressions for perpendicular drift velocities – in particular the non-
collisional ones - can be directly inserted, allowing for arbitrary levels of collisionality, and 
also allowing for arbitrary magnetic geometry. In order to accommodate arbitrary levels of 
collisionality, the ion momentum equation is formulated in terms of two pressures, parallel 
and perpendicular. 
 
Different approaches have been employed to open ||)( P

tr
⋅∇ , governed by the method chosen 

to close the set of fluid equations. The closure method is chosen on the basis of the degree of 
(ee, ii, ei) collisionality. Perhaps the best known approach is that of Chapman and Cowling, 
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Spitzer, Braginskii [40], etc., which is appropriate for strong collisionality. In this approach 
the individual particle velocity is divided into two components – a mean velocity V and a 
random velocity v~ = v – V, where V will be identified with the fluid velocity, thus 

|||| ))(()( VVP nm⋅∇=⋅∇
rtr

 + ||)
~

( P
tr
⋅∇ , where 〉〈= vvP ~~~

nm
t

 is the pressure-stress tensor (as 

distinct from P
t

, the total pressure-stress tensor, which includes V). P
t~

 includes both ordinary 
static pressure and viscous terms. Consistent with the assumption of strong collisionality, a 
single isotropic pressure p is assumed. The convective component is retained on the left hand 
side (LHS) of the equation and is combined with the time derivative to form the so-called 
substantive derivative, while the second term is moved to the right hand side (RHS). 
Consistent with the strong collisionality assumption, this approach employs a small 
perturbation analysis, starting from a Maxwellian distribution perturbed by the existence of 
gradients of density, temperature and velocity and with relaxation due to self-collisions. It is 

therefore appropriate that Braginskii etc. then define a viscosity tensor P
~tt

≡ΠΠΠΠ - p I
t

, where I
t

 

is the unit matrix and p is the single, static, isotropic pressure, p ≡ 3/~2 〉〈vnm , since for the 
unperturbed (Maxwellian, possibly drifting, as occurs in the limit of infinitely strong 

collisionality) velocity distribution P
~t

= p I
t

 and ΠΠΠΠ
t

 = 0, and so all of the perturbing effects are 

isolated in ΠΠΠΠ
t

 = 〉−〈 3/~~~ 2vnm Ivv
t

. (The general practice, following Braginskii, is to call ΠΠΠΠ
t

 
the ‘stress tensor’, but to avoid confusion it will be called the ‘viscosity tensor’ here.) 
Braginskii etc. include a third fluid conservation equation – for energy – one each for 
electrons and ions, thus providing equations for pe,i, but this does not close the set of 
equations since there are a number of quantities that still need to be related to the primary 
dependant variables n, Ve,i and pe,i given by the 5 fluid conservation equations, namely, some 
specific quantities that appear in the momentum equations, (a) R||ei (= - R||ie), (b) ΠΠΠΠ

t
e,i , as well 

as some specific quantities that appear in the energy equations, (c) qe,i, the heat flux density 
and  (d) Qe,i, heat gained by electrons and ions as a result of ei collisions. From rudimentary 
kinetic theory one can roughly estimate all these latter quantities as transport coefficients, e.g. 
q|| ~ -nvthλ(dT/ds||), which depends on collisionality through the mean free path λ, thus 
closing the equation set. For better estimates one can use the Chapman and Cowling, 
Braginskii, etc., method of employing small perturbation analysis, that is these quantities are 
related to gradients of the primary fluid variables n, Ve,i and pe,i (or Te,i) using an expansion of 
the distribution function about a Maxwellian in the parameter λ/L, where λ is the collisional 
mean free path and L is the scale length of the gradients of n, Ve,i and pe,i. This analysis is 
therefore valid in the limit of strong collisionality. (As an aside, one may note that by adding 
the electron and ion momentum (also energy) equations together, the need to estimate R||ei 
and Qe,i can be avoided since the e and i terms cancel.) 
 
A completely different approach – and one which we will broadly follow here – was 
employed by Zawaideh, Najamabadi, and Conn, [44], which applies to the full range of 
collisionality, from strong to weak. In a strong magnetic field the anisotropy of the velocity 
distribution is not necessarily small, unless collisionality is very strong, and it is therefore 
desirable to avoid any a priori assumption of small perturbations from a Maxwellian. We are 
also particularly interested in the effect of perpendicular drifts, which may also result in 

strong anisotropy. In this approach one does not introduce P
~tt

≡ΠΠΠΠ - p I
t

, but instead directly 
expands P

t
, which includes both average, V, and random (thermal) velocities, v~ = ⊥

~(v )~, ||v , 

and which results in the appearance of two pressures, p⊥ and p|| in the momentum equation. 
The existence of two pressures p⊥ and p||, is the most basic consequence of not assuming that 
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collisionality is necessarily strong. Since ΠΠΠΠ
t

 does not appear in the momentum equation now, 
and since one can add the electron and ion momentum equations together, thus eliminating 
R||ei, then in this approach the first two conservation equations are general as to the degree of 
collisionality. The closure problem is relegated to the energy equation(s); now two energy 
equations are required, one for p⊥ and one for p|| (for electrons and ions each). In this 
approach, and after adding the e and i momentum equations, collisionality makes its first 
explicit appearance in the energy equations in simple, transparently clear terms, e.g. (p⊥ - 
p||)/τii, [44]’s Eq. (29), greatly facilitating the identification of appropriate equation sets for 
different degrees of collisionality: by taking τii→ 0, [44] recovered the principal terms in the 
strong collisionality equations of Braginskii, while taking τii→ ∞ they recovered the zero 
collisionality equations of Chew, Goldberger and Low, see Sec. 6. The [44] analysis does not 
include drifts or any other cross-field transport – therefore, when applied to the strong 
collisionality case, it recovers the collisional Braginskii transport coefficient estimate for Π|| 
(i.e. Πzz) only; however, as shown by Braginskii, the other (collisional) components of ΠΠΠΠ

t
 are 

often smaller and so less important.  
 
If is often preferred to avoid the additional computational effort involved with two energy 
equations, in which case p and Π|| can be used, rather than p⊥ and p||; however, then some 
transport coefficient estimate is needed for Π|| in the momentum equation, which can be 
derived in various ways, see Sec 6. The standard approximations used to obtain an estimate, 

||
estΠ , however, are only valid when collisionality is strong. The approach based on (p, ||

estΠ ) 

is taken, for example, in the major codes used for modelling the boundary region of 
magnetically-confined devices, e.g. EDGE2D [26], UEDGE [30], and B2.5 [35]. Weakly 
collisional plasmas are typical of the boundary region of present day, strongly heated 
tokamaks, however, and the values of ||

estΠ  often become unphysically large, requiring 

imposition of ad hoc ‘kinetic limit factors’, see Sec. 6. Continuing progress toward 
achievement of fusion power in devices such as the ITER tokamak motivates better 
approximations for the momentum equation, as can be achieved by using two pressures, i.e. 
allowing for the possibility of strong anisotropy of the ion distribution, the approach taken 
here.  
 

We choose here to generally follow the approach of Zaweideh et al [44], since our principal 
interest is in drifts, which are a non-collisional effect, and so it is preferable to delay the 
introduction of collisionality assumptions into the analysis as long as possible. We differ 
from [44] in including the effect on the parallel momentum equation of non-parallel transport 
caused by drifts, anomalous cross-field transport and Larmor rotation. In common with [44] 
we will not assume that B is necessarily spatially constant, but in contrast with [44] we do 
assume B constant in time. Here, in order to bring out more explicitly and clearly the 
contribution of drifts, we will insert expressions for drift velocities given by Eq. (24) below – 
directly into the total pressure-stress tensor 〉〈= vvP nm

t
 in Section 4.  

 
The direct approach to opening P

t
 requires identification of the spatial variation of the 

components of the individual particle velocity vector, ),,( ||21
vvv ⊥⊥=v , where ‘||’ is the 

direction parallel to the magnetic field. The 
1⊥v -direction and 

2⊥v -directions are both 

perpendicular to B and to each other. Any pair of consistently defined perpendicular 
directions can be used and the results of the analysis here do not depend on any specific 
choice for them; however, here for the sake of concreteness (and familiarity) we will use ‘r’ 
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in place of 
1⊥v and ‘d’ in place of  

2⊥v . In tokamak configurations, etc., ‘r’ is generally taken 

to be the ‘radial’ direction, i.e. perpendicular to the magnetic flux surface, while ‘d’ is the 
‘diamagnetic’ direction, i.e. perpendicular to B, but lying within the magnetic flux surface 
(less accurately this 3rd direction is often called the ‘poloidal’ direction, which in tokamaks is 
often close to the diamagnetic direction due to smallness of the ratio of the poloidal to the 
total magnetic field). As noted, the results of the following analysis do not depend on any 
specific magnetic configuration, such as that of the tokamak, nor on the particular choice of 
the perpendicular coordinate pair ),( 21 ⊥⊥ . The perpendicular velocity (by which we here 
understand the whole part of the velocity perpendicular to the magnetic field, 
i.e. ),( dr vv=⊥v ), can also be split into four distinct parts:  
 

collanomdrL ,,,, ⊥⊥⊥⊥⊥ +++= vvvvv                                                                                     (2) 

 
In this paper, we denote individual particle velocities with small letters v and v. Here L,⊥v  

describes fast Larmor rotation about the ‘drifting’ guiding centre of the Larmor orbit. As 
noted, we will drop this term. dr,⊥v  describes the perpendicular component of the guiding 

centre drift in a quasi-stationary electromagnetic field (see Eq. (24) below), anom,⊥v  is the 

perpendicular anomalous velocity due to e.g. the fluctuating electromagnetic field (which is 
usually characterized by much smaller frequencies than the frequency of the Larmor rotation) 
leading to anomalous turbulent transport, and coll,⊥v  gives the deviation from the Larmor 

rotation due to Coulomb collisions.  
 
We defer to subsequent analysis inclusion of coll,⊥v , the most basic effects of which are 

covered by Braginskii’s analysis; the resulting terms are small unless ωτ is very small, where 
ω = eB/m and τ is the self-collisional time. Collisionality can vary significantly within the 
same plasma. For example, collisionality varies greatly in the edge of magnetic confinement 
devices, ranging from almost collisionless conditions that sometimes exist far from solid 
surfaces to extremely collisional conditions near tokamak divertor targets when plasma 
detachment [1] occurs and the role of coll,⊥v  can therefore be very important in tokamak 

edge modelling. In the extreme case of very cold, strongly collisional plasmas, the role of 
drifts in general is expected to be small, however, and the transport is dominated by parallel 
flow [5] and plasma-neutral interaction –  therefore a natural separation of regimes often 
exists, to some degree.  
 
The well known dr,⊥v -terms, i.e. the E×B, B×∇B (or simply ‘∇B’) and centrifugal guiding 

centre drifts, are key contributors to ⊥v  (all contributions can be found in Eq. (24) below). 

Before inserting these dr,⊥v -terms into 〉〈= vvP nm
t

, which is done in Sec. 4, we must first 

carry out a coordinate transformation from rectangular coordinates to curvilinear (r, d, ||) 
coordinates, in order to express 〉〈= vvP nm

t
 in a form appropriate for arbitrary magnetic 

geometry. 
 
Our aim in this section is to provide a straightforward derivation in a convenient, physically 
clear form of the parallel component of the gradient of the total pressure-stress tensor. We 
take here a quite basic and general approach. The derivation involves operations with unit 
vectors of local (related to the direction of the local magnetic field) coordinate system, and it 
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does not require use of tensor algebra, nor operations with metric coefficients. Such an 
approach doesn’t require any specific assumptions about the magnetic geometry, e.g. any 
assumption about toroidal symmetry of the magnetic configuration. Although this overall 
undertaking was motivated by the specific application of the tokamak edge, the analysis here 
should be applicable to a wide range of conditions in magnetic confinement, space and 
astrophysical plasmas. The magnetic field is analyzed locally and is therefore independent of 
the overall magnetic structure and whether it is nested or not, toroidally symmetrical or not, 
reconnected or not, open or closed, etc. It is also precise in accounting for all convective and 
viscous terms involved (including averages of products of parallel and perpendicular 
velocities), since the derivation is based on the transformation of individual particle parallel 
and perpendicular velocity from one coordinate system to the other. Finally, the derivation is 
general as to the assumed degree of collisionality. 
 
In a simple case of a Cartesian system of coordinates with unit direction vectors ix, iy, iz, and 
with the direction of the magnetic field B along iz, and field lines being straight and parallel 
to each other, the parallel component of the gradient of the tensor ||)( P

tr
⋅∇  can be simplified 

by using the identity (note that vv is the dyadic product of 2 vectors, a dyad): 
 

)())(()( 〉〈⋅∇=〉〈⋅∇≡⋅∇ vvvP zzz vnmnm
rvtr

                                                                             (3) 
 
We will also substitute the parallel direction ‘||’ for ‘z’. Terms with parallel and perpendicular 
components of the velocity can then be easily separated. In the more general case of a 
curvilinear geometry, where parallel and perpendicular (with respect to the magnetic field) 
directions change in space, expressing the above quantity in terms of local parallel and 
perpendicular velocities is not so trivial. Eq. (3) still holds, but one cannot replace z-
subscripts with the ‘||’ sign. 
 
We wish to open the tensor at some general point O, see Fig.1. Gradients such as x(f) are 
involved, where f is a quantity dependant on x,y,z and x(f) = 

constant  ,
0→

)0(-)(
lim zy
x x

xfxxf

∆
=∆=

∆
, etc. Thus we need to evaluate f at some point 

incrementally displaced from O, call it Ω, Fig. 1, i.e. f(x = ∆x) = fΩ and Fx(f) =
x

ff O

x ∆
Ω

∆

-
lim

0→
. 

The coordinates of Ω are (x,y,z). However, to emphasize that we need only consider 
incrementally small x, y and z, we indicate them here as (∆x, ∆y, ∆z). v is the velocity at O 
(thus also at Ω, since we will take the limit ∆x→0, etc.). We need to specify v in two 
different, orthogonal coordinate systems (see Fig. 1): 
 

(a) local coordinate system, origin O (but also Ω since we take the limit ∆x→0, etc.),  
with unit direction vectors ir, id, i|| where i|| is parallel to B, ir is perpendicular B, and id 
is perpendicular to both B and ir. In this coordinate system the location of any general 
point is given by r = (sr, sd, s||) = srir +  sd id + s|| i||  and velocity   v = (vr, dv , v||).  

(b) a Cartesian, or rectangular, coordinate system with unit direction vectors ix, iy, iz. Here 
r = (x, y, z) and v ),,(≡ zyx vvv . The origin of this coordinate system is point O. At 

point O, the Cartesian and local coordinate systems are identical 
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We may also note that since increments are involved which → 0, then Fx = Fr, Fy = Fd and F z 
= F||.  
 
We define /≡ Bb B and at point O, b = bo and iz || bo.   
 
We want to express |||| ))(()( 〉〈⋅∇≡⋅∇ vvP nm

vtr
 ultimately in local velocity coordinates v = (vr, 

dv , v||), and we start by opening it in the Cartesian coordinate system using Eq. (3) (|| and z  

directions, of course, coincide at the origin, point O):  
 

)()()())( 2
|| 〉〈∂+〉〈∂+〉〈∂=〉〈⋅∇ yzyxzxzz vvnmvvnmvnmnm vv

v
                                                (4) 

 
We now relate zyx vvv ,,  to rv , dv , v||  by specifying the transformation of coordinates, i.e. 

by relating (x,y,z) to (sr, sd, s||) . While a state variable like n is evaluated at (sr = 0, sd = 0, s|| = 
0), in order to evaluate the velocities vr, dv , v||, which are small spatial increments divided by 

a small time increment, we need to consider a location incrementally removed from Ω, i.e. 
non-zero increments sr, sd, and s||. In order to express the velocity consider the trajectory in 
time of some particle whose location is rL. In the Cartesian coordinates rL = (xL, yL, zL) and in 

local coordinates rL = (srL, sdL , s||L), also vx = 
t

xL

∂
∂

, etc. Then:   
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Time differentiation of Eq. (5) gives the relation between (vx, vy, vz) and (vr, dv , v||), also 

involving, however, the (time-independent) directional cosines such as rx ii ⋅ , which can 

themselves depend on (∆x, ∆y, ∆z) and which we must now evaluate. Quantities ∆x, ∆y and 
∆z are not functions of time t. 
 
Each unit vector of a local coordinate system, e.g. ir, can be expressed as a sum of its value at 
the origin (ix, for the case of the vector ir) and an incremental change caused by the spatial 
displacement from O to Ω. The latter can in turn be expressed through spatial derivatives:  
 

rrdrrxr zyx iiiii ||∂∆+∂∆+∂∆+=                                                                                        (6) 

 
In the limit Frir, Fdir and F||ir in Eq. (6) coincide with Fxir, Fyir and Fzir.  
 
An important feature of small angle rotations of the coordinate system, which we will be 
using extensively below, is that an incremental change in each unit vector, e.g. (ir - ix), is 
almost perpendicular to the initial vector (ix). The direction cosine (ix⋅⋅⋅⋅ir) can be expressed 

through a (small) rotational angle α as )2/1(cos 2αα −≈ , hence 1cos ≈α  to first order. 
Thus in the limit (ix⋅⋅⋅⋅ir) = 1, i.e. α, and thus also ∆x, ∆y, and ∆z, are only involved at 2nd and 
higher orders. By multiplying Eq. (6) by ix and taking into account (a) that (ix⋅⋅⋅⋅ix) = 1 
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identically, (b) that the relation between ir and ix, namely Eq. (6), involves ∆x, ∆y, and ∆z to 
1st order and (c) that ∆x, ∆y, and ∆z are independent variables, one then also obtains that: 
 

0|| =∂⋅=∂⋅=∂⋅ rrrdrrrr iiiiii                                                                                               (7) 

 
which we use below. Similar relations can be obtained for id and i|| unit vectors (although it 
should be noted that 0ii|| ≠∂⋅ rr , for example, because α≈α≈∂ sini rr  and so is first order in 

α, and thus also in ∆x, ∆y, and ∆z). In the Eq. (5) one can therefore assume for all ‘diagonal’ 
direction cosines:  
 
(ix⋅⋅⋅⋅ir), (iy⋅⋅⋅⋅id), (iz⋅⋅⋅⋅i||) ≈ 1                                                                                                               (8) 
 
Thus i|| ),,( zyx bbb≡ ≈ (bx, by, 1), ir ),,( zryrxr iiiiii ⋅⋅⋅≡ ≈ (1, C, D), id 

),,(≡ zdydxd iiiiii ⋅⋅⋅ ≈ (E, 1, F) where the unit vector b=B/B. The quantities C, D, E, F are 

of order bx, by and can be found by using ir = id× i|| and id = i|| × ir. One can therefore obtain: ir 
≈ (1, C, -bx), id ≈ (-C, 1, -by), where C cannot be simply expressed in terms of bx and by 
(which turns out not to be needed anyway, below), resulting in: 
 
(ix⋅ i||) ≈ bx,  (iy⋅ i||) ≈ by,  
(iz⋅ ir) = - (i||⋅ ix) ≈ -bx,                                                                                                               (9) 
(iz⋅ id) = - (i||⋅ iy) ≈ -by 
 
As just noted, the remaining two direction cosines: (iy⋅⋅⋅⋅ir) and (ix⋅id), have equal absolute 
values but opposite signs. Using the relations for the direction cosines obtained earlier the 
transformation of velocity components which follows directly from Eq. (5) can be cast into 
the form: 
 










+−−≈

++⋅≈

+⋅+≈

||

||

||

)(

)(

vvbvbv

vbvvv

vbvvv

dyrxz

ydrryy

xddxrx

ii

ii

                                                                                                   (10) 

 
Using Eq. (6) one can express ix through ir. Taking the dot product of id and ir from Eq. (6) 
and taking into account that (ir⋅id) = 0 one obtains: 
 

rdrddrrddx zyx iiiiiiii ||---)( ∂⋅∆∂⋅∆∂⋅∆=⋅                                                                       (11) 

 
Similarly, for the other direction cosine in Eq. (10) one can obtain: 
 

||( ) - - -y r r r d r d d r dx y z⋅ = ∆ ⋅∂ ∆ ⋅∂ ∆ ⋅∂i i i i i i i i                                                                               (12)       

 
We now substitute (10), (11) and (12) into (4), neglecting in the limit all terms containing bx, 
by, ∆x, ∆y, and ∆z, but retaining their gradients, and taking into account that Fx∆x = Fy∆y = 1 
and  Fx∆y = Fx∆z = Fy∆x = Fy∆z = 0 to obtain: 
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)()()(  v-   

)(  v- )()( -)( -

)()(2 - )(2 -)()(

||||
22

||

22
||||d

||||||
2
||||||

ddrrrrddxxr

yyddyyxrxydr

rxyzdxzr

vvnmvvnmbvnm

bvnmvvnmbvvnmbvvnm

vvnmbvvnmbvvnmvnm

iiii

P

∂⋅〉〈−∂⋅〉〈−∂〉〈+

∂〉〈+〉〈∂+∂〉〈∂〉〈

〉〈∂+∂〉〈∂〉〈〉〈∂=⋅∇
tr

                  (13)       

       
In the above equation all x, y and z – derivatives can be replaced with corresponding r, d and 
|| - derivatives, as already noted. Such a replacement will make this equation be fully written 
in local coordinates, except for the components of the unit vector b which must, of course, be 
defined in the Cartesian system of coordinates. In the above equation Fzbx and Fzby can be 
replaced with F||bx and F||by, respectively.  
 
Up to this point in the analysis, vr and vd are general and include all components of the 
perpendicular velocity collanomdr ,,, vvvv ⊥⊥⊥⊥ ++=  where ⊥v = (vr, vd). With little 

significant loss of generality, however, we may take it that all the terms with velocities 
squared on the RHS of equation (13) are large compared to other terms, since their averaging 

over the distribution function gives pressures, to a good approximation. Averages 〉〈 2
rv  and 

〉〈 2
dv  can be represented by sums of the corresponding random and mean parts, e.g.: 

)~( 222
⊥⊥⊥ +〉〈=〉〈 Vvv  and we may, with little loss of generality, assume that 222 ~~

thr vvv ≈〉〈≈〉〈 ⊥ , 

since thermal speeds, vth, greatly exceed all other v⊥ speeds, typically. The first part accounts 

for chaotic (thermal) energy, and it coincides with 〉〈 2~
rv . The second part is much smaller, 

involving E×B, ∇B, etc. drifts. We will be neglecting terms 2
rV , 2

dV  compared with some 

other terms that we will retain. The terms 〉〈 2
rv  and 〉〈 2

dv  can therefore be considered equal 

to each other and both can be expressed as 2/2 〉〈 ⊥v . Other terms that can be neglected are the 

ones with 〉〈 drvv . In this average, the main, chaotic parts are uncorrelated (particles have 

random distributions of their Larmor rotation phases), so it can be roughly estimated as drVV , 

with both velocities in this product being much smaller than thermal velocities, as shown 
above.    
 

After neglecting small terms, replacing 〉〈 2
rv  and 〉〈 2

dv  with 2/2 〉〈 ⊥v , re-arranging positions 

of individual terms and replacing x, y and z – derivatives with r, d and || - derivatives, where 
appropriate, Eq. (13) becomes: 
 

)ii()ii()(2  - )(2  - 

)()()(2/  -)()P(

||||||||||||

||||
22

||
2
||||||

ddrrrrddydxr

ddrryyxx

vvnmvvnmbvvnmbvvnm

vvnmvvnmbbvvnmvnm

∂⋅〉〈−∂⋅〉〈−∂〉〈∂〉〈

〉〈∂+〉〈∂+∂+∂〉〈+〉〈∂=⋅∇ ⊥

tr

          

                                                                                                                                              (14)                   
 
We wish to re-write this equation further to bring out the significance of the various terms 
and to make the equation more compact. We start with the 2nd term on the RHS of Eq. (14) 
and the quantity )( yyxx bb ∂+∂ . Since bz can be expressed 

as 1)2/2/1(1 2222 ≈−−≈−− yxyx bbbb , then 0=∂ zzb  and )( yyxx bb ∂+∂  gives the full 



12

divergence of the unit vector b, divb. Using == )( bB Bdivdiv  0=+⋅∇ bb BdivB
r

, one 

obtains: BBBBdiv // ||−∂=∇⋅−=
r

bb .  

 
Next we consider the 5th and 6th terms on the RHS of Eq. (14) and the quantities xb||∂ and 

yb||∂ . From elementary theory for vector functions and 3D space curves, one of the Fermat-

Serret formulas gives dT/ds|| = kN where T is the unit tangent vector, k is the curvature (k = 
1/Rc where Rc is the radius of curvature) and N is the unit normal vector, cc R/RN −=  

where cR−  points toward the centre of curvature. The curvature vector k = kN = 2/ cc RR− . 

Here T = b thus kb =∂ || . Therefore xb||∂  can be expressed as biib |||| )( ∂⋅=⋅∂ xx  (since ix is a 

unit vector constant in space) and further as xx k=⋅ki , which is the same as kr at the origin 

of the Cartesian coordinate system. Similarly, yb||∂  can be replaced with ky = kd.  

 
We will now group a sub-set of the terms in Eq. (14) into a quantity we will call divF− , 

which we will then show is simply )( || 〉〈⋅∇ ⊥vvnm
r

. The term )( || 〉〈∂ rr vvnm can be combined 

with half of the 5th term on the RHS of Eq. (14), rr kvvnm 〉〈− || , to give 

])([ |||| rrrr kvvnmvvnm 〉〈−〉〈∂ . Handling y terms in the same way, one can obtain a similar 

combination, ])([ |||| dddd kvvnmvvnm 〉〈−〉〈∂ . The sum of these two combinations, plus the 

last two terms in the Eq. (14), is: 
 

)()(

)()(

||||

||||||||

ddrrrrdd

ddddrrrrdiv

vvnmvvnm

kvvnmvvnmkvvnmvvnmF

iiii ∂⋅〉〈−∂⋅〉〈−

〉〈−〉〈∂+〉〈−〉〈∂=−
                                       (15) 

 
We note, without derivation, that a similar analysis of the particle equation gives for the 
divergence term there: 
 

)()(

)/()()()()( ||||||||

ddrrrrdd

ddrr

nVnV

BBnVnnVnVnVn

iiii

kVV

∂⋅−∂⋅−

∇−⋅−∂+∂+∂=⋅∇ ⊥                                         (16) 

 
It can be shown that the above expression for Fdiv represents the full divergence of the 

〉〈 ⊥v||vnm  momentum flux: )( || 〉〈⋅∇=− ⊥vvnmFdiv

r
. Indeed, by writing the full gradient 

operator as )( |||| ddrr ∂+∂+∂=∇ iii
r

, the full perpendicular velocity as )( ddrr vv iiv +=⊥  and 

performing scalar multiplications of individual vector terms, )( || 〉〈⋅∇ ⊥vvnm
r

 can be expanded 

into the sum of the following six terms:  
 

)( |||||| 〉〈∂⋅ rr vvnmii , 

)( |||||| 〉〈∂⋅ dd vvnmii , 

)( || 〉〈∂⋅ rrrr vvnmii ,  

)( || 〉〈∂⋅ dddd vvnmii ,                                                                                                            (17) 

)( || 〉〈∂⋅ ddrr vvnmii ,  
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)( || 〉〈∂⋅ rrdd vvnmii .  

 
The first term here can be further expanded into the sum: 
 

])([ |||||||||||| rrrr vvnmvvnm iiii 〉∂〈⋅+〉〈∂⋅                                                                                    (18) 

 
where the first part is equal to zero, while the second part can be transformed by using 

0=⋅ ||iir , thus |||||||| iiii ∂⋅−=∂⋅ rr  and remembering that bi ≡||  (in our local coordinate 

system) and kb =∂ ||  into rr kvvnm 〉〈− || , which is the second term on the RHS of Eq. (15). 

Similarly, the second term, )( |||||| 〉〈∂⋅ dd vvnmii , will contribute the fourth term on the RHS in 

this equation. The third term, )( || 〉〈∂⋅ rrrr vvnmii , can be expanded into: 

 
])([ |||| rrrrrr vvnmvvnm ii 〉∂〈⋅+〉〈∂                                                                                          (19) 

 
While the first part of this expression coincides with the first term on the RHS of Eq. (15), the 
second part is zero since rrr ii ∂⋅  is zero (Eq. (7)).  
 
Similarly, the fourth term, )vvnm( d||ddd 〉〈∂⋅ ii , will only contribute the third term on the 

RHS of Eq. (15). The fifth term, )( || 〉〈∂⋅ ddrr vvnmii , can be expanded into the sum: 

  
])()(([ |||| drdrrrdr vvnmvvnm iiii ∂〉〈⋅+〉〈∂⋅                                                                             (20) 

 
where the first part is zero while the second part, after taking into account that 

rrddrr iiii ∂⋅−=∂⋅ , becomes identical to the fifth term on the RHS of Eq. (15). Similarly, 

the sixth term, )( || 〉〈∂⋅ rrdd vvnmii , after the expansion into: 

 
])()(([ |||| rdrdrdrd vvnmvvnm iiii ∂〉〈⋅+〉〈∂⋅                                                                            (21) 

 
and using =∂⋅ rdd ii  ddr ii ∂⋅− , coincides with the last term in Eq. (15).  

 
The remaining terms (halves of the fifth and sixth terms in Eq. (14)) can also be written as 

)( |||| ddrr kvvnmkvvnm 〉〈+〉〈−  and, in the vector form, as: 

 
 kv ⋅〉〈−=− ⊥||vnmFcurv                                                                                                        (22) 

 

Finally, by replacing 2/2 〉〈 ⊥vnm  with ⊥p  and splitting 〉〈 2
||vnm  into parts 2

||nmV  and ||p , Eq. 

(14) can be cast into the following form: 
 

curvdiv FFBBppnmVpnmV −−∇−+−+∇=⋅∇ ⊥ /)()()( ||||
2

||||
2

||||||P
tr

                                (23)                    

 
where )( || 〉〈⋅∇−= ⊥vvnmFdiv

r
, kv ⋅〉〈= ⊥||vnmFcurv  and |||| ∂≡∇ . 
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It may be noted that vr and vd do not appear in Eq. (23) and therefore this result is general and 
independent of the specific choice of perpendicular coordinate pair ),( 21 ⊥⊥ . Eq. (23) is also 
general as to the level of collisionality. 
 
One may note that since the total pressure-stress tensor is involved here, there are both 
convective components as well as viscous ones in ||)( P

tr
⋅∇ . Some of the convective 

components are already explicit, i.e. the V|| terms – while others are implicit in the last two 
terms since ||||||

~vVv +≡  and ⊥⊥⊥ + vVv ~≡ .  

 
Eq. (23) does not contain the traditional viscous term proportional to the second derivative of 
the parallel velocity with respect to the parallel coordinate. Therefore well-developed 
methods for the integration of equations of the second order are not applicable here. 
 
We now discuss the physical meaning of different terms in Eq. (23). The first term, 

)( ||
2

|||| pnmV +∇ , is obvious and follows from a 1D equilibrium along the field lines in a 

simple geometry, and with neglect of perpendicular gradients of the plasma parameters. The 
second term, BBppnmV /)( ||||

2
|| ∇−+− ⊥ , can be found e.g. in Refs. [44] (Eq. (17)) and [45] 

(Eqs. (1.27) and (1.28)). The physical interpretation of this term has been given in Ref. [45] 
by considering the force balance of an ensemble of Larmor circles along a flux tube with 
variable cross-section. The part BBpnmV /)( ||||

2
|| ∇+−  comes from the difference in cross-

sections S of a flux tube at its ends, which is inversely proportional to the magnetic field: 
S~1/B (hence, the appearance of BB /||∇ ), whereas BBp /||∇⊥  comes from the projection of 

the volume force B∇−
r

µ  exerted on each Larmor circle inside the tube ( Bmv 2/2
⊥=µ  is the 

magnetic moment of a Larmor circle) on the parallel direction.  
 
The next term, )( || 〉〈⋅∇ ⊥vvnm

r
, accounts for perpendicular flux of parallel momentum across 

the flux tube’s lateral sides. Any actual computation, of course, requires an expansion of this 

compact expression and this is given by Eq. (15). It includes both the terms ( )〉〈
∂
∂

r
r

vvnm
s ||  

and ( )〉〈 d
d

vvnm
s ||∂
∂

, which are intuitively clear contributions and the only ones present in the 

rectangular coordinate system, as well as four other terms appearing due to operations with 
the unit vectors of an arbitrary curvilinear coordinate system. Two of the latter involve 
curvature k but, being due to divergence of the flow field, have a different origin than the last 
term Fcurv =  kv ⋅〉〈 ⊥||vnm , considered next. 

 
The parallel force kv ⋅〉〈 ⊥||vnm  is a volume force exerted on each particle within the flux 

tube. Similar to the µ∇B force acting on a Larmor circle (where parallel energy is 
transformed into perpendicular energy and vice versa, leading to conservation of the 
magnetic moment µ) whose parallel projection accelerates the Larmor circle along the field 
lines, it accounts for mutual transformation between parallel and perpendicular energies in 
the curvilinear magnetic geometry.  However, whereas this transformation in the case of the 
µ∇B force is related to convergence (or divergence) of the field lines and is expressed via 
divb, the kv ⋅〉〈 ⊥||vnm  force originates due to the bending of the field lines, described by 
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their curvature k. From simple geometrical considerations, it is readily shown that the rate of 
change of parallel momentum due to curvature k = 1/Rc is  –mv||v⊥/Rc. 
 
 
3. Drift fluxes calculated from individual particle analysis 
 
In this section we will obtain expressions for dr,⊥v  from single particle analysis for insertion 

into 〉〈= vvP nm
t

, opened in the previous section.  
 
In the drift approximation particle orbits are described as a superposition of Larmor rotation 
and the motion of the Larmor circle’s centre (‘guiding centre’). The guiding centre velocity in 
a quasi-stationary electromagnetic field (which we will refer to as ‘drift velocity’) is 
calculated from analysis of individual particle motion, smoothed or averaged over the 
Larmor rotation, and is given by (see e.g. Eq. (5.4) of [40], also Eq. (6.1) of [46]): 
 

)(
2

1

2

1
3

2
||

3

2

2

2

|| bBBB
BE

bbbv ∇⋅×+∇×+×+









⋅+= ⊥⊥

ZeB

vm
B

ZeB

vm

B
curl

ZeB

vm
vdr                     (24) 

 
where B/Bb =  is the unit vector along the magnetic field and other notations are standard. 
Often the notation ..cgv  is used for this guiding centre (g.c.) drift velocity. We will, however, 

reserve ..cgv  to mean the time-averaged guiding centre velocity which also includes 

anomalous transport (which in turn includes drift velocity due to fluctuating electric fields), 
while drv  will be understood here to be the guiding centre drift velocity in the quasi-

stationary electromagnetic field (see Eq. (2)). In Eq. (24), ||v  and ⊥v  are not instant particle 

parallel and perpendicular velocities, but, as noted, their values averaged over the period of 
the Larmor rotation (with ⊥v  being essentially the Larmor rotation velocity, Lv ,⊥ , see 

below).  
 
Components of the drift velocity are projected onto the magnetic field direction at the Larmor 
guiding centre, rather than at its direction at the particle’s actual location. This explains the 
appearance of the term with )( bb curl⋅  in Eq. (24). In most practical cases this term can be 
neglected for edge plasmas compared with v|| (unless supra-thermal highly accelerated 

particles are considered). The ratio of the two terms is of order 
B

i

Lv

v ρ
||

⊥ , a very small number, 

where iρ  is the Larmor radius and LB is the scale size of spatial variation of the magnetic 

field structure. In the more approximate Eq. (5.5) of [46], for example, this term is neglected. 
We will, however, retain this term. We note that it is a parallel drift. The second, third and 
fourth terms on the RHS of Eq. (24) are the well known perpendicular drifts - the E×B, 

B×∇B (or simply ∇B) and centrifugal drifts - respectively. In Eq. (24) 2
⊥v  can, to within a 

good approximation (of order of a square of the ratio of drift velocity to thermal velocity, as 

can be easily demonstrated), be replaced with 2
,Lv⊥ , owing to smallness of the drift velocity 

compared to the Larmor velocity, which is of the order of thermal velocity vth. 
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From Eq. (24) we can anticipate two different types of perpendicular drift contribution to the 
total pressure-stress tensor 〉〈= vvP nm

t
, namely convective ones, which involve products of 

V|| and simple averages of the velocities of the 3 perpendicular drifts - and viscous ones. To 
calculate the latter it is necessary to take into account that each individual particle has an 
individual value of (Larmor-orbit-averaged) parallel speed ||v  and an individual (Larmor-

orbit-averaged) perpendicular drift speed ⊥v , and to then construct averages of the product of 
the two speeds over the distribution of the speeds. From Eq. (24) it is clear that E×B drifts 
will not contribute to the viscous part of P

t
 but the other 2 drifts will, since each individual 

ion has an individual value of 2
||v  and 2

⊥v , thus an individual value for each of these drift 

speeds. While Lvv ,⊥⊥ ≈  can thus appear in the viscous part of P
t

 it is not because of any 

direct presence of Larmor rotation velocity in 〉〈vv , as will be demonstrated in [42], but only 

because ⊥v  appears within the expression for one of the perpendicular drift speeds, namely 

B
ZeB

vm
∇×⊥ B

3

2

2
1

, and the latter does appear directly in 〉〈vv . Therefore for straight, constant 

B, Lv ,⊥ will not appear at all in the expression for P
t

, even indirectly.  

 
In the standard neoclassical theory, developed for the core region (see e.g. [43,47]), the three 
main (perpendicular) drift velocities figuring in Eq. (24) are all roughly of the same order, 
assuming equal ion and electron temperatures, radial electric field Er to be of order Ti/er, and 
considering minor radius r and major radius R to be of the same order. In the δ-expansion 
(expansion in the ratio of the Larmor radius to either the scale size of spatial variation of the 
plasma parameters, or the LB size mentioned above), parallel velocities appear to be first 
order in δ (unless large toroidal momentum is introduced into the plasma by e.g. neutral beam 
injection, which is a separate issue not covered by the standard theory). At the plasma edge, 
and in particular in the SOL, the situation is quite different in several respects. For example, 
individual drifts of Eq. (24) are quite different from each other as to their magnitude (e.g. ∇B 
drift velocity is much smaller then the E×B drift velocity). In Appendix A simple estimates 
are made for typical values of the drifts in the SOL of magnetically-confined devices such as 
tokamaks. 
 
To summarize the findings from this section and Appendix A, we conclude that some 
technical procedures and conclusions of the standard neoclassical theory may prove to be 
incorrect for the plasma edge region. In the remainder of the paper, we will carry out the 
analysis by using terms with the best possible practical accuracy, comparing them with each 
other on a one-by-one basis, before making simplifications and drawing conclusions. This is 
particularly important in simplifying the expression for the gradient of the total pressure-
stress tensor that enters the parallel momentum balance equations, considered in the next 
section. 
 
 
4. Formulation of particle and parallel momentum fluid equations 
  
Eq. (23) gives the expression for the opened total pressure-stress tensor, where 

)( 2
||

2
|||| Vvnmp −〉〈=  and 2/2 〉〈= ⊥⊥ vnmp  are parallel and perpendicular pressures, 

respectively, ∇||=∂/∂s|| is the scalar gradient along the parallel direction, 
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)( || 〉〈⋅∇−= ⊥vvnmFdiv

r
, kv ⋅〉〈= ⊥||vnmFcurv , and k is the curvature of the magnetic field 

lines. The physical meaning of individual terms in this equation is given in Sec. 2. The last 
two terms on the RHS of Eq. (23) are comparable in magnitude. Indeed, by substituting v⊥ in 
the Fdiv term with the ∇B drift velocity RvV ithiB /~ , ρ×∇  (Eq. (A2)) and replacing the 

gradient sign with the inverse SOL width, 1/λSOL, (see discussion following Eq. (A2), noting 
that BV∇  has a significant component perpendicular to the magnetic surface) one obtains the 
estimate Fdiv ~ )/(,|| RvnmV SOLithi λρ×  for this term (a similar contribution comes from 

including VE×B in v⊥, taking into consideration that VE×B may be predominately in the poloidal 
direction). Turning to Fcurv,, since the poloidal E×B drift velocity is much greater than the 
poloidal ∇B drift velocity, the latter can be neglected and, by estimating the absolute value of 
the curvature k  as 1/R and using SOLithiBE vV λρθ /~ ,, ××   (Eq. (A1)) for v⊥ in this term, one 

obtains the same estimate )/(,|| RvnmV SOLithi λρ×  for  Fcurv. 

 

Turning now to the term BBppnmV /)( ||||
2

|| ∇−+− ⊥ , which for the simplest case of 

isotropic ion pressure reduces to BBnmV /||
2

|| ∇− . By equating ||V  to ||,EV  (see Eq. (A4); we 

note, however, that experimental values of ||V > ||,EV  have been reported), and using 

qRBB /~/|| ε∇ , this term can be estimated, again, similar to the two above mentioned terms 

as: )/(,|| RvnmV SOLithi λρ× . Hence, all the three terms can be roughly of the same order. 

 
Comparison between the above drift-related terms and the main, pressure gradient term in Eq. 
(23), is difficult in the general case, as much depends on the poloidal distribution of plasma 
parameters and location (‘main SOL’ region, or the region near the divertor target). A 
maximum self-consistent estimate for the effect of drifts can, however, be made if one allows 
for very large pressure (and hence, electric potential) variations, of order of the pressure 
itself, over certain parallel distance l|| (which does not necessarily coincide with qR). The 
parallel force due to the pressure gradient is then |||| /~ lpp∇ . The radial velocity caused by 

the radial E×B drift is  ~ θeBlTV erExB /, = , where the poloidal length is related to the parallel 

length via BBll /|| θθ = . The radial divergence of the momentum flux is ~ SOLrii VVnm λ/|| . 

For an upper estimate for the ion parallel velocity of order the ion thermal velocity, 

thii vV ,|| ~ , one can then obtain for the divergence of the momentum flux the estimate 

)/(~ ||||, SOLidr lpF λρ θ , where ρiθ  is ion poloidal gyroradius. For the ratio of the two forces, 

one then obtains: 
 

SOL

idr

p

F

λ
ρ θ~

||

||,

∇
                                                                                                                        (25) 

 
A similar estimate was obtained for the maximum contribution of drifts to the particle flux 
(both parallel and perpendicular) in the SOL in [5], and it shows that the contribution of drift-
related terms to the parallel momentum balance equation can potentially be rather large. 
 
We may follow the common procedure of introducing parallel viscous stress as a way of 
avoiding the presence of two pressures -  p|| and p⊥ - in the momentum equation, with ||)( P

tr
⋅∇  
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given by Eq. (23). Unless this is done, two energy equations are required for closing the 
hierarchy of conservation equations, one for parallel energy and one for perpendicular 
energy, which is usually avoided for computational reasons. By introducing total 
pressure 3/)2( || ⊥+= ppp , the term |||| p∇  in Eq. (23) can be replaced with the combination 

)( |||||| Π∇+∇ p , where )(
3

2
)( |||||| ⊥−=−≡Π pppp  is the parallel viscous stress. In order to 

close the equations, one then has to introduce an estimate for ||Π  in terms of already defined 

quantities, as will be discussed in Sec. 6. For weakly collisional conditions, which often occur 
in the SOL, however, the estimates for ||Π are only very rough approximations and it can be 

more accurate to retain the two pressures, together with suitable approximations for the 
parallel and perpendicular energy equations. To date, SOL fluid modelling has not followed 
this approach but as hotter, less collisional SOL plasmas are encountered in more powerful 
devices, such as ITER, this may change. 
 
We next consider the term Fdiv. By splitting particle velocity into random v~  and mean V  
parts, so that 0~ =〉〈v , this term can be written as: 
 

)~~()( |||| 〉〈⋅∇−⋅∇−= ⊥⊥ vV vnmnmVFdiv

rr
                                                                                (26) 

 
The last term in this equation is the perpendicular viscous force ⊥Π⋅∇−

rr
and 

〉〈=Π ⊥⊥ v~~
||vnm

r
 is the perpendicular viscous stress. In the literature of the field, the 

perpendicular viscosity term has proven to be one of the most difficult terms to analyse. It has 
a number of sources. In particular, perpendicular velocity ⊥v  is affected by Coulomb 

collisions and the electromagnetic )( BvE ×+ ⊥Ze  force. The former is usually ignored – 
although Braginskii gives estimates for the terms involved but the latter can be especially 
large in the presence of plasma turbulence which e.g. may result in large radial velocity due 
to BE ×θ  drifts caused by fluctuating poloidal electric fields – i.e. ‘anomalous viscosity’.  
 
One contribution to the viscosity comes from fast Larmor rotation (gyration) of particles with 
thermal velocities, in the quasi-stationary electromagnetic field which enters via products 
proportional to Lii vv ,|| ⊥ . However, as noted earlier, it is possible to almost entirely eliminate 

the contribution of the Larmor rotation from the sum - )( curvdiv FF +  in the parallel 

momentum balance equation. The elimination of Larmor rotation is therefore general, 
covering both the convective as well as the viscous terms. Note however, that this elimination 
only applies to the momentum balance equation when formulated in terms of parallel and 
perpendicular pressures as independent variables. It does not apply to the formulation of this 
equation in terms of the total pressure and parallel viscous stress as the two independent 
variables, at least not when the standard approximations for ||Π  are used, since the latter 

does, in fact, include Larmor rotation contributions, see Sec. 6. 
 
As noted in Section 2, the perpendicular velocity can be split into four parts, see Eq. (2). 
Owing to the elimination of the Larmor rotation from the parallel momentum equation, in 
both terms, convective, )( || ⊥⋅∇ VnmV

r
, as well as viscous, )~~( || 〉〈⋅∇ ⊥vvnm

r
, elimination of the 
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’L’ components allows one to replace ⊥v  with .., cg⊥v , where the guiding centre velocity can 

be defined as the sum of drift dr,⊥v  and anomalous anom,⊥v  velocities: 

 

anomdrcg ,,.., ⊥⊥⊥ += vvv ,anom
ZeB

vm
B

ZeB

vm

B
⊥+⋅×+∇×+×= vbBBB

BE
 )∇(

2
1

3

2
||

3

2
⊥

2

r
           (27)                    

  
(The contribution of the velocity coll,⊥v  caused by the Coulomb collisions, to the momentum 

balance equation is usually neglected; as noted, this contribution, however, is included in 
Braginskii’s collisional analysis). One can therefore express the term Fdiv through parallel and 
guiding centre velocities as: 
 

)~~()( ..,||..,|| 〉〈⋅∇−⋅∇−= ⊥⊥ cgcgdiv vnmnmVF vV
rr

                                                                     (28) 

 
The second – viscous – term in Fdiv requires further analysis, Sec. 5. The anomalous part 

anom,
~
⊥v  of the guiding centre velocity ..,

~
cg⊥v  under most common conditions is a time-

dependent quantity, since it accounts for turbulent transport. Strictly speaking, therefore, one 
has to specify whether the whole expression given by Eq. (28) is to be evaluated at each 
particular instant or it is a time-averaged value. This cannot cause any problems when the 
anomalous velocity figures by itself as a term in an equation, as in the case of Eq. (27), since 
the result of the time-averaging is straightforward, and both .., cg⊥v  and ,anom⊥v  can be 

considered either as instantaneous or time-averaged quantities. In the products such as 
〉〈 ⊥ ..,||

~~
cgv v , however, the clear definition between the two possibilities must be made. We 

will be assuming that all such products are averages over time, but, in order not to complicate 
the expressions, will defer the explicit notations for the time-averaging until Sec. 5, when the 
products involving anom,

~
⊥v  specifically will be considered. 

 
We now turn to the term kv ⋅〉〈= ⊥||vnmFcurv  in Eq. (23). From the estimates made in App. 

A (related to the small value of curvature, ~ 1/R), it is clear that only relatively large 
contributions to the perpendicular velocity v⊥, compared with the poloidal E×B drift velocity, 
need be included. Since ∇B and centrifugal drifts, as well as radial E×B drift, are much 
smaller than the poloidal E×B drift velocity, the latter is the only drift that needs to be 
included in v⊥. Anomalous/turbulent flux velocity anom,⊥v  is also typically smaller than the 

E×B drift velocity 2/ BBE BEV ×=× . Finally, the diamagnetic velocity is mainly caused by 
the superposition of Larmor rotations of individual particles, as was pointed out earlier, and, 
due to the elimination of the Larmor rotation from the terms containing products ⊥v||v  in the 

parallel momentum balance equation, this velocity also is not to be included in the term Fcurv. 
Therefore, it is sufficient to include only the E×B drift velocity in this term and, since this 
velocity is the same for all particles, no viscous contributions arise, so we can write: 
 

2
|||||| / RnmVnmVvnmF BEBEcurv RVkVkv ⋅−≈⋅≈⋅〉〈= ××⊥                                               (29) 
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In the particle balance equation of the system (1), by integrating Eq. (24) over the particle 

distribution and neglecting a small term )( bbb curl
eB

p
⋅⊥  (a discussion of this parallel drift 

will be presented in [42]), the perpendicular macroscopic drift flux is obtained: 
 

bBBBBEV ∇⋅×
+

+∇×+×= ⊥
⊥ 3

2
||||

32,

)(

ZeB

nmVp
B

ZeB

p

B

n
n dr                                              (30)  

 
Finally, Zecurlnn cg /.. MVV +=  (see, e.g. [40, 1]). The last term here, being the curl of a 

vector, is automatically divergence-free. Hence one can replace Vn  with 

anomdrcg nnnn ,,||.. ⊥⊥ ++= VVVV  in the particle balance equation of the system (1) (also 

neglecting coll,⊥V ).   
 
The system (1), which, as noted, is applicable to each particle species, can now be written as: 
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                 (31) 

 
Usually, the particle balance equation is only written for ions, with an addition of a separate 
equation for electric currents. The momentum balance equations for ions and electrons can, 
however, be summed together. This eliminates contributions from the parallel electric field 
and ion-electron friction forces. Also, since the ion mass is much greater than the electron 
mass, we can then neglect contributions from electrons in all terms except for the pressure 
terms, resulting in: 
 

||||..,||

..,||||||
2

||
2
||||||

||

)~~(

)(/)()(
)(

FVnmvnm

VnmBBppVnmVnmp
t

Vnm

BEiicgiii

cgiiiiii
ii

=⋅−〉〈⋅∇

+⋅∇+∇−+−+∇+
∂

∂

×⊥

⊥⊥

kVv

V
r

r

        (32)                    

 
where parallel pressure p|| and external force F|| are sums of ion plus electron, parallel 
pressure and total external force. It may be noted that Eq. (32) is general, independent of the 
degree of collisionality. 
 
Evaluation of the Fdiv convective term )( ..,|| cgiiiVnm ⊥⋅∇ V

r
 in Eq. (32) is straightforward, 

however, the Fdiv viscous term )~~( ..,|| 〉〈⋅∇ ⊥ cgiii vnm v
r

 requires further analysis, which we turn 

to next. 
 
 
5. Perpendicular convective and perpendicular viscous terms in the parallel momentum 
balance equation 
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We now consider further the drift-term Fdiv containing the average over the particle 
distribution, 〉〈 ⊥ driivn ,||

~~ v , which requires an estimate in terms of the basic fluid variables. As 

explained in the previous section, splitting particle velocity into random v~  and mean V  parts 
allows one to separate averages of the products ⊥v||v  into mean, ⊥⊥ ≡〉〈 VV |||| VV , and 

random, 〉〈 ⊥v~~
||v , parts. The contributions of the former to the momentum balance equation 

are called convective, the latter, viscous. Viscous contributions are always caused by 
deviations of the distribution function from Maxwellian, resulting in viscous stresses 
(described e.g. by vector Π

r
, for the parallel momentum equation). It is important to note, 

however, that viscous forces originate not only due to these stresses, but they also require 
spatial changes, being described by gradients, Π⋅∇−

rr
. 

 
We will follow below the standard procedure of splitting terms into convective and viscous, 
as they are often presented in equations for edge modelling. Some of these terms, e.g. 
anomalous viscous contributions, usually include coefficients which are not well-defined, see 
below. 
 
The convective term )( ..,|| cgiiiVnm ⊥⋅∇ V

r
 in Eq. (32) can be split into drift )( ,|| driiiVnm ⊥⋅∇ V

r
 

and anomalous )( ,|| anomiiiVnm ⊥⋅∇ V
r

 components. The viscous term )~~( ..,|| 〉〈⋅∇ ⊥ cgiii vnm v
r

 can 

also be split into drift )~~( ,|| 〉〈⋅∇ ⊥ driii vnm v
r

 and anomalous )~~( ,|| 〉〈⋅∇ ⊥ anomiii vnm v
r

 

components, where the bar (...)  denotes time-averaging. It turns out that the drift component 
of the viscous term contains a relatively large contribution from the ion centrifugal drift, 
comparable to the contribution of this drift to the convective term )( ,|| driiiVnm ⊥⋅∇ V

r
. This 

contribution must therefore be dealt with separately, and it can later be added to the 
convective drift term. The anomalous convective term includes the average ion velocity 

anomi ,⊥V  which, unlike other quantities in this paper, has to be represented by double 

averaging, over the distribution function as well as time: 〉〈= ⊥⊥ anomianomi v ,,V , as it involves 

time-averaging of a fluctuating perpendicular velocity. The same applies to the anomalous 
viscous term. 
 
The anomalous viscous term has to be represented with some empirical-based ansatz, 
involving an arbitrary coefficient of perpendicular viscosity, for example. The viscous drift 
term needs to be related to the basic fluid variables, such as pressure and heat flux density, 
and to the drift velocities. We will now derive the needed expressions for the viscous drift 
flux, 〉〈 ⊥ driivn ,||

~~ v . It will be found that a particularly simple expression holds for the 

approximation of the actual velocity distribution by a drifting Maxwellian, Eq. (34). For the 
more realistic case it will be found necessary to add some further terms, Eq. (35), an 
approximation for which is given in Sec. 6. 
 
From Eq. (24) for the ion component, by neglecting the first term on its RHS one obtains: 
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Since the particle parallel velocity is almost independent of the gyro-phase, 2
||iv  can be 

replaced with 2
||iv . Note that the E×B drift doesn’t contribute to the above equation since it 

has a constant value for all particles (i.e. there is no dependence on ||iv  or ⊥iv ), resulting in 

0~
|| =〉〈 ×BEiv V  (generally, one can add any constant to the second component of the averaged 

product of ||
~

iv  with that component without changing the result; for this reason, the full 

expression for ion ∇B and centrifugal drifts is used in Eq. (33), as there is no need to 

calculate their random part(s)). In the first term on the RHS of this equation, ⊥iv  can be 

replaced with the perpendicular velocity of an individual Larmor circle: 2
,

2
Lii vv ⊥⊥ ≈ . For the 

approximation given by a drifting ion Maxwellian distribution function (the more realistic 

case is considered below) with mean parallel velocity ||iV , 0~ 2
|| =〉〈 ⊥ii vv , and the first term on 

the RHS of Eq. (33) disappears. Also 〉〈=〉〈 2
||||

2
||||

~2~
iiii vVvv , and we have taken into account 

that 0~~ 3
||

2
|||| =〉〈=〉〈 iii vVv . By replacing 〉〈 2

||
~

ii vnm  with pi||, the last term in Eq. (33) can be 

expressed in the ’convective’ form as ∗
⊥ ||,|| piinV V , where we define: 

 

bBBV ∇⋅×=∗
⊥ 3

||
||,

2

ZeB

p
n i

pi                                                                                                     (34) 

 
Therefore, for the special (approximate) case of a drifting ion Maxwellian distribution 

function the viscous flux 〉〈 ⊥ driivn ,||
~~ v  is reduced to ∗

⊥ ||,|| piinV V . Comparing this flux with the 

expression for the part of the convective flux driinV ,|| ⊥V  associated with the ion centrifugal 

drift (by replacing drin ,⊥V  with bBB ∇⋅×
+

3

2
|||| )(

ZeB

nmVp
, as follows from Eq. (30)), one 

concludes that the contribution of the ion centrifugal drift to the viscous term 
)~~( ,|| 〉〈⋅∇ ⊥ driii vnm v

r
 (which corresponds to the last term of Eq. (33)) is significant: it is almost 

twice as large as its contribution to the convective term )( ,|| driiiVnm ⊥⋅∇ V
r

 under (quite 

typical) conditions when the ion parallel convective energy flux 2
||iiVnm  is much less than the 

parallel ion pressure.  
 
Since one of the main points in this section is the interpretation of the role of the centrifugal 
drift, for the sake of clarity it is useful here to present a compact expansion in parallel 
velocity that results in both convective and viscous forces. The contribution of each 
individual particle to the parallel momentum transport related by this drift is proportional to 

3
||v , where v|| is the parallel velocity of the particle. Splitting it into average (for a particular 

species) and the deviation from this average (which can also be called ‘chaotic’), expanding 

and then averaging over the distribution function, one obtains: =〉〈 3
||v =〉+〈 3

|||| )~( vV  

〉+++〈 3
||

2
||||||

2
||

3
||

~~3~3 vvVvVV . The 1st and part of the 3rd term, namely 〉〈 2
||||

~vV , on the RHS 

correspond to the convective momentum transport, while 〉〈 2
||||

~2 vV  and the last term – to the 



23

viscous contribution. The 2nd term is equal to zero, while the last term is zero only for a 
Maxwellian distribution. It will be considered in more detail below. 
 
Of course, the existence of a (drifting) Maxwellian distribution implies extremely strong 
collisionality, which would also result in p|| = p⊥ = p (and Π|| = 0). Thus we can use pi in Eq. 
(34) in the case of extremely high collisionality. We will, however, retain the version of Eq. 
(34) that depends on p|| for the general case, considered next. 
 
In the general case of an arbitrary (i.e. not necessarily drifting Maxwellian) and more realistic 
ion distribution function, a viscous term centBi +∇⊥Π⋅∇ ,

rr
 has to be added to the LHS of Eq. 

(32), where centBi +∇⊥Π ,

r
 is defined by: 
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nm
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vv i

i
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iicentBi

r
                                           (35) 

 

We need to relate the two averages over the velocity distribution, 〉〈 ⊥
2

||
~

ii vv  and 〉〈 3
||

~
iv , to the 

basic fluid variables, which is done in Sec 6, using estimates obtained in the closure 

procedure. Here we obtain a first rough estimate by taking 〉〈 ⊥
2

||
~

ii vv  ~ 〉〈 3
||

~
iv  ~ Vi||pi; a better 

estimate in terms of ion parallel heat flux density, qi||, will be given in Sec. 6. Also, in most 
cases the difference between B∇×B  and bBB ∇⋅×  vectors can also be neglected, as both 

are approximately equal to RBevert /2r
 with the unit vector verte

r
 pointing vertically in the 

direction of the ion ∇B drift. The convective particle flux due to the sum of the ion ∇B and 

centrifugal drifts can then be expressed as vert
i

centBi e
ZeBR

p
n

r2
, =+∇⊥V . Under these conditions, 

the parallel momentum transport described by the combined convective term 
)( ,|| centBiiiVnm +∇⊥⋅∇ V

r
 is effectively doubled due to the contribution made by the ion 

centrifugal drift to the viscous term )~~( ,|| 〉〈⋅∇ ⊥ driii vnm v
r

. 

 
Using the above results, and by splitting both convective and viscous momentum transport 
terms into the drift and anomalous contributions (see above), the system of particle and 
parallel momentum balance equations given by Eq. (31) can be finally cast into the following 
form: 
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In this system of equations p denotes the sum, ion plus electron, pressure, drin ,⊥V  is ion 

perpendicular drift flux given by Eq. (30), anomin ,⊥V  is ion perpendicular anomalous flux, 
∗
⊥ ||, pinV  is given by Eq. (34), centBi +∇⊥Π ,

r
 is the ion perpendicular viscous stress caused by 

viscous effects given by Eq. (35) in the perpendicular momentum transport caused by the ion 
∇B and centrifugal drifts: namely, by the deviation of the ion distribution function from the 
drifting Maxwellian (for the latter, both terms on the RHS of Eq. (35) are zero, as stated 
earlier);  
 
   〉〈=Π ⊥⊥ anomiiianomi vnm ,||,

~~ v
r

                                                                                              (37) 

 
is the ion perpendicular anomalous viscous stress. Finally, F|| stands for all other forces, 
including forces arising from interaction with neutrals.  
 
In the numerical modelling, anomalous viscosity is usually introduced via an anomalous 
perpendicular viscosity diffusion coefficient ηi⊥,anom, which in turn is often related to the 
anomalous perpendicular particle diffusion coefficient by using a constant numerical 
coefficient α of order unity, so that ηi⊥,anom =αnmiDi⊥,anom. In a simplest rectangular 
geometry, this results in ⊥⊥⊥ ∂∂−=Π sVianomianomi /||,, η

r
 and a parallel viscous force 

⊥⊥ ∂Π∂− sanomi /,

r
. The anomalous perpendicular particle flux will then be equal to 

⊥⊥⊥ ∂∂−=Γ snD anomianom /,, , creating convective momentum flux ||, ianomi Vm ⊥Γ  and the 

corresponding parallel force ⊥⊥ ∂Γ∂− sVm ianomi /)( ||, . The ion perpendicular anomalous 

viscous stress is generally non-zero, in particular because the phasing of ||
~

iv  and anomi ,
~

⊥v  

fluctuations doesn’t have to be orthogonal. The part of the non-zero viscous stress anomi ,⊥Π
r

 

attributed to time-averaging is known as the Reynolds stress. According to [48], this stress, 
by way of a corresponding phasing of the two velocity perturbations, can make a significant 
contribution to the parallel momentum balance equation. 
 
The anomalous perpendicular particle flux is equal to ⊥⊥⊥ ∂∂−=Γ snD anomianom /,, , creating 

convective momentum flux ||, ianomi Vm ⊥Γ  and the corresponding parallel force 

⊥⊥ ∂Γ∂− sVm ianomi /)( ||, . As noted above, a proper calculation of the perpendicular viscous 

stress centBi +∇⊥Π ,

r
 requires knowledge of the averages 〉〈 ⊥

2
||

~
ii vv  and 〉〈 3

||
~

iv . This is addressed 

in Sec. 6 as part of the process of closing the set of equations.  
 
Finally, we may note that Eq. (36) is still explicitly independent of the degree of 
collisionality; however, there are a number of quantities which are averages over the velocity 

distribution – namely )( 2
||

2
|||| Vvnmp −〉〈= , 2/2 〉〈= ⊥⊥ vnmp ,  〉〈 ⊥

2
||

~
ii vv  and 〉〈 3

||
~

iv . The 

treatment of these quantities is governed by the process of closing the set of fluid equations, 
to which we turn next, Sec. 6. In one approach – appropriate for strongly collisional 
conditions – estimates are made for these 4 quantities in terms of the basic fluid variables, n, 
V, p (or T) and their gradients. For weakly collisional conditions it can be appropriate to 
employ two energy equations, for p⊥ and p||, together with assumptions such as the neglect of 

〉〈 3
||

~
iv .  
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6. Closing the Fluid Equations. Collisionality. Parallel Viscosity.  
 
While this paper only deals explicitly with the first two fluid conservation equations, it is not 
possible to entirely avoid consideration of the third – energy – equation because of the 
important issue of how to close the set of fluid equations. Closing the set of equations  in turn 
is intimately related to the degree of collisionality which, in turn, dictates how to deal with 
the presence of two different pressures in the momentum equation - p⊥ and p|| - and the 
question of when it is appropriate to replace them with a single pressure by introducing Π||. 
The choice between using the two individual pressures or introducing the parallel stress is 
one of the principal issues involved in closing the equation set. 
 
The simplest case is the limit of infinitely strong collisionality, which makes the velocity 
distribution a (perhaps drifting) Maxwellian, and thus p|| = ⊥p = p = nT (thus Π|| = 0), also 

0~ 2
|| =〉〈 ⊥ii vv , and 〉〈=〉〈 2

||||
2
||||

~2~
iiii vVvv  = 2Vi||pi/nmi. 

 
At the other extreme - for weak collisionality – as noted above, it is appropriate to retain the 
two pressures in the momentum equation, necessitating two energy equations. Closure is then 
dealt with by invoking various assumptions in the energy equations such as the neglect of 
parallel heat conduction, see discussion in [44] and also below.  
 
For strong collisionality it is appropriate and convenient to work with p and Π||, which 
requires an estimate for Π|| in terms of the basic fluid variables and their gradients. In order to 
close the equation set, similar estimates can be made for the other non-basic variables 
appearing in the momentum and energy equation, such as heat conduction; first estimates for 
these transport coefficients can be made using simple kinetic theory. Better estimates can be 
obtained using the Chapman and Cowling, Spitzer, Braginskii, etc. small perturbation 
method. 
 
The focus of the present paper is on the effect of drifts, arbitrary magnetic geometry and 
Larmor rotation. We do not attempt here to make any original contribution to the methods for 
estimating Π||. For completeness, however, we now briefly review some of the results in the 
literature. 
 
Before addressing the main issue – the ion Π|| - we will first consider Πe||.  The contribution 
from electrons to |||||| ei Π+Π≡Π  (note however that we often omit the subscript ‘i’ in Πi|| in 

this paper where it cannot cause confusion) is usually ignored due to their much higher 
collision rates compared to the ions, as was stated earlier. Further, in strongly collisional 
plasmas maxwellianization of both ions and electrons is rather strong, and any correction 
even to the ion (drifting) Maxwellian distribution due to e.g. the presence of parallel ion heat 
flux, comes only as first order corrections in the expansion in the ratio of the ion mean free 
path to the parallel system size (or characteristic parallel length describing changes of the 
plasma parameters), ||/ Liiλ .  Quite often, however, modelling has to be extended to plasmas 

which, in certain domains of the computational grid, are much less collisional, with iiλ  

approaching, or sometimes even exceeding ||L . Under these circumstances, rather than 

abandoning altogether modelling attempts using collisional codes, it is often possible to 
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extend the collisional model by including kinetic effects via the introduction of various flux 
limits (see e.g. [1 (p.656), 44, 49]). Such limits are typically introduced for ion and electron 
parallel heat flows and for the ion parallel viscosity. In extreme cases it is also possible that 
electron kinetic effects can become so strong that electron parallel and perpendicular chaotic 
energies can be different resulting in a difference between pe⊥ and pe||. Therefore, for 
generality, we will retain terms with ||eΠ  in the equation, even though under typical 

conditions electron parallel viscous stress can be neglected, as stated above. 
 
Turning now to the main closure issue, Πi||: the method employed by Zawaideh et al [44] for 
estimating Πi|| is particularly simple and illuminating. We start from the simplest-case version 
of their two energy equations for p⊥ and p||: 
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assuming steady-state, 1D, constant and straight B, no sources, no heat conduction, and no ei 
heat transfer. The ion-ion collision time in the above equations is the pressure anisotropy 

relaxation time 
Λ

=
ln8

15
4

2/3

en

Tm

i

effi
ii π

τ  used in [44]. The factor 2 in the definition of the energy 

transfer term Qi,⊥→|| reflects the two degrees of freedom in the ⊥-direction compared with one 
in the ||-direction. Subtracting these two equations and neglecting terms involving derivatives 
of Πi|| and the product of Πi|| with dVi||/ds as being small – as implied by the strong 
collisionality assumption of small λ/L which makes all gradients, as well as Πi||, small – one 
obtains: 
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This is identical with the lead term in Braginskii’s estimate, considered next. Zawaideh’s 
approach [44] makes the basic physical concept underlying Π|| particularly clear: acceleration 
of a flow tends to cool it –  reducing T|| in the first instance as parallel random energy is 
converted to parallel flow energy. This tends to cause T|| and T⊥ to diverge, i.e. for |Π||| to 
increase, an effect which is opposed by the collisional heat transfer between the ⊥ and || ‘heat 
reservoirs’. Thus |Π||| increases with |dVi||/ds| and with τii. Although not included in the results 
of [44] or [40], one can readily show that other processes, e.g. heat transport, can also cause 
T|| and T⊥ to diverge. For example, it is readily shown that including the contributions of heat 

conduction to the two energy equations adds terms 
ds

dq
and
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dqi
⊥
||i

||
||   2 to the RHS of Eqs. (38) 

and (39) respectively, where vdv
vm

fq i
ii ||

2
||||

|| ∫ 2
≡  and vdv

vm
fq i
ii ||

2

|| ∫ 2
⊥⊥ ≡  are components of 
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the parallel ion heat flux density vdv
vm

fq
i

ii ||

2

|| ∫ 2
≡ .   This then adds a component to Πi|| of 

ds
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. A collision-based transport coefficient estimate for qi|| is 

then needed to close the equations. From simple kinetic theory one obtains 

iiiiii TmnTq |||| )/(~ ∇− τ . An improved estimate is obtained from the perturbation approach of 

Chapman and Cowling, Spitzer, Braginskii, etc., of i
i

ii
i T

m

nT
q |||| ∇-3.9

τ
= , where τi is the angle 

scattering ion-ion collisional time given by 
ii

ii
i

nZe

Tm
44

2/3

4

3

λπ
τ = . Recently Fundamenski [50] 

has further generalized Eqs. (38, 39), resulting in more complete expressions for Πi||, and 
explicitly bringing out the transition from strong to weak collisionality. 
 
This method of estimating Π|| also makes clear the effect of the transition from strong to weak 
collisionality and also indicates the need for placing a ‘kinetic limit’ factor on any estimate, 
such as Eq. (40), obtained assuming strong collisionality: For very low collisionalities, as 

dsdVii /||τ → ∞, then |Π||| → ∞ also, which is unphysical since Π|| = p|| - p, and so at the 

extreme where p|| → 0, Π|| → -p, i.e. |Π||| cannot exceed p. More detailed considerations 
indicate a limit of about -1/2 p for Π|| [49]. At the other extreme, where p|| = p⊥, Π|| = 0, of 
course. Similarly a kinetic correction factor can be applied to the above collisional transport 
coefficients for q||, see discussion in Chap. 26 of [1] (see also [50]). 
 
We quote next Braginskii’s well-known estimate for the parallel ion viscous stress which has 
been frequently used in theories and numerical codes, as given by his Chapman and Cowling 
type transport-coefficient, small-perturbation analysis, appropriate in the strong collisionality 
limit, and where he also allows for 3D ion fluid velocity [40]: 
 

))3/2(2(η |||||| ii
i
oBragi divV V−∇−=Π                                                                                    (41) 

 

where  iii
i
o Tn τ96.0η =  is the parallel ion viscosity coefficient (note that the ion-ion collision 

time τi is used). The absence of plasma (ion) density multiplier inside the divergence operator 
(which would have otherwise created particle flux nVi, in which the contribution of the 
Larmor rotation, described by the curl of a vector, could then be immediately eliminated) 
implies that the Larmor rotation contribution cannot be eliminated from the parallel viscous 
force. We note here that such an elimination does however occur if, instead of using full ion 

pressure inside the term )( 2
|||| iiVnmp +∇ , one uses parallel pressure p||, as in the original 

expression for the parallel component of the gradient of the stress tensor Eq. (23) and in Eqs. 
(31,32,36), since divVi does not appear in any expression. That is, the replacement of p|| and 
p⊥ with p and Π|| modifies the otherwise simple result that Larmor rotation contributions are 
absent from the particle and momentum equations. 
 
It can be readily shown that the contribution of Larmor rotation, i.e. of the ion diamagnetic 
velocity, to divVi is generally significant compared to ∇||Vi,||, by considering the poloidal 

divergence of the ion diamagnetic velocity 2/ enBpi∇×
r

B  owing to the B- and R-variation. 
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Pfirsch-Schlüter flow is a result of the divergence of poloidal diamagnetic and E×B flows. 
The latter two are roughly the same, so we can expect parallel divergence of the Pfirsch-
Schlüter flow (particle flux density) to be similar to the poloidal divergence of the ion 
diamagnetic flow. We also know that the plasma density tends to be fairly constant poloidally 
in the ‘main SOL’, due to the tendency of the plasma pressure to reach equilibrium and 
relatively poloidally constant Te,Ti. Hence, the above conclusion can also be applied to 
divergences of ion poloidal and parallel velocities. 
 
In the models and numerical codes where drift contributions are not included, the 
contribution of the perpendicular ion flux in Eq. (41) is often ignored, and only the parallel  
ion velocity is left (although, as just shown, it is arguable that this can be justified in most 
experimental conditions, where perpendicular drift and anomalous flux usually play an 
important role in divVi). The expression for the parallel viscous stress given by Eq. (41) can 
then be simplified and adapted for an arbitrary magnetic geometry. Let’s assume a parallel 
plasma flow inside a flux tube of a variable cross-section. For parallel velocities V1 and V2 
(with V1≈ V2≈V) at the ends of a flux tube with cross-sections S1 and S2 (where S1≈ S2≈S) and 
with a small distance between the tube ends ∆l||, divV can be expressed as 

)/()( ||SlSVSV ∆− 1122 , or, in a differential form, as )/( |||| SSVV ∇+∇ . Since the cross-section 

of the flux tube is inversely proportional to the magnetic field B, )/( |||| BBVVdiv ∇−∇=V . 

Hence, we arrive at the following expression: 
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This equation is often used in numerical codes which don’t include drifts. It coincides with 
Eq. (50) of [44], apart from a slightly different numerical coefficient ( iii τp)9/4(− , Eq. (42), 

but note the difference between the ion-ion relaxation times, with  τii being larger by a factor 
of 2.5 than τi). Thus, as noted earlier, the main part of Braginskii’s estimate for Π||i coincides 
with the high collisionality limit of Zawaideh’s  estimate [44] - even including the main part 
of the effect of a spatially varying field.  
 
The expression Eq. (41) has usually been taken to be the largest contribution to the parallel 
ion viscous stress within the framework of the Chapman and Cowling (Braginskii) approach 
for transport equations of a strongly collisional plasma. This corresponds to a situation where 
the principal effect causing T|| (thus p||) to diverge from T⊥ (thus p⊥) along the parallel 
direction, is the cooling caused by acceleration of the flow, which is ∝ ∇||V||. As already 
noted, in principle, many other effects, such as parallel gradients of parallel heat flux, can 
also cause p|| and p⊥ to diverge. In all estimates, the Chapman and Cowling type of 
formulation assumes strong (of order of 100%) variation of plasma parameters along the field 
lines over the collisional mean free path. Under these conditions, other viscous contributions, 
e.g. those arising from the parallel gradients of parallel ion heat flux, ~ |||| ii q∇τ  (see below), 

are only ~ ||/ Liiλ  of the main term ~ ||||η i
i
o V∇  given by Eq. (41) and therefore can be 

neglected. It was later realized, however [41], that such an assumption is not adequate for a 
range of experimental conditions where some special relations between perturbations of 
various plasma parameters occur. Consider, for example, the case of parallel ion particle and 
heat fluxes arising in the main tokamak SOL (far away from the divertor) due to the 
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divergence of corresponding poloidal particle and heat fluxes of order eBpV iri /∇≈θ  and 

eBTpq irii /~ ∇θ , respectively. Assuming irir Tnp ∇∇ ~ , these particle and heat fluxes will 

be related as iii pVq θθ ~ . Since both vary by ~ε over the flux surface, their poloidal 

divergencies result in parallel fluxes of amplitudes (and changing signs over ~qR) of  

iii pVq |||| ~ . The two contributions to the parallel ion viscous stress will then become 

comparable: |||||||| η~ i
i
oii Vq ∇∇τ  [41].  

 
Recently, further advance in the Chapman and Cowling type of derivation of the parallel ion 
viscous stress has been made by including contributions that arise from the full nonlinear 
form of the collision operator, giving rise to terms proportional to the square of the heat flux 
which can be of the same order as terms ~ |||| iii q∇τ  [51]. The expression for the parallel ion 

viscous stress that follows from [51] (see p.95 of this Ref.) is quoted next: 
 

( )

( ) ( ) ( )iiii
ii

ii
i

ii
i

ii
ii

ii
i

i

ii

ii

ii

ii
i

pp
p

T
T

p

pT

qm

pT

qm

∇⋅−∇⋅−∇⋅−⋅∇+∇⋅−⋅∇

+∇⋅−∇⋅−⋅∇++−=Π

rrrr

rr

||||||||||

||||

2
||

2

||

3
1573.0

3
0419.0

3
4133.0

7131.0
36398.00993.00426.0

qqqbqqbq

qVbV

ννν

νν   (43) 

 
 
Here qi and qi|| are full and parallel ion heat fluxes, respectively, νi is the inverse Braginskii 
ion-ion collision time, 1/τi. The 3rd term on the RHS of the above equation corresponds to 
Braginskii’s viscous stress, and it matches Eq. (42) for the case of simple rectangular 
magnetic geometry. This term, however, as well as the whole expression given by Eq. (43), 
applies for an arbitrary curvilinear magnetic geometry. When qi ~ qi|| and ||∇→⋅∇

r
 the sum 

of the 5th and 6th terms in Eq. (43), proportional to the gradient of the heat flux density, are 
within ~20% of the simple estimate above. All terms in Eq. (43) (except, perhaps, for the 6th 
term on the RHS, which may be numerically small) can be of the same order and should be 
kept in this equation, as was pointed out in [51]. 
 
The pressure difference term BBpp /)( |||| ∇−− ⊥  in the momentum balance equation Eq. 

(36) for ions directly follows from Eq. (43) and 2/3)-( ||⊥|| iii pp Π= .  

 
As noted above, when employing the standard strong-collisionality approach it is necessary 
to include kinetic flux limiters in any expression for Π||, even for refined estimates such as Eq. 
(43), in order to prevent ∇||Π|| from becoming unphysically large when λii/L|| is large 
[49,1,51]. Such kinetic correction factors are, however, only rough estimates. One can also 
obtain approximations for Πi|| using two-pressure (pi⊥, pi||) formulations, such as Eqs. (38, 
39), but this requires making simplifications for the energy equations for pi⊥ and pi||, such as 
neglecting the effect of sources, as in [44, 50]. Therefore, any momentum equation based on 
(pi, ||

estΠ ) is, in principle, inferior to employing a two-pressure (pi⊥, pi||) set of equations that 

includes complete energy equations for pi⊥ and pi||.  
 
Sources are potentially important causes of divergence between p⊥ and p||, i.e. are potentially 
a strong influence on Πi||. The main source of ions in the edge is ionization of neutrals which 
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have recycled from the solid surfaces on which the ions recombined. The recycling neutral 
velocity distribution is generally quite anisotropic, and is governed by various factors such as 
the angle between B and the solid surface from which the neutrals recycled. Thus at the 
instant of creation of the ions it is likely that pi,⊥ and pi,|| differ significantly and in a way for 
which no simple generalizations are possible. An appropriate way to address this aspect is to 
use a two-pressure (pi⊥, pi||) formulation, taking the source terms from a neutral Monte Carlo 
code such as EIRENE, and employing the specific detailed geometry of the solid structures at 
the edge.  
 
There is one further matter to deal with in order to close the equations: as noted in Sec. 5, 
calculation of the perpendicular viscous stress centBi +∇⊥Π ,

r
 requires knowledge of the 

averages 〉〈 ⊥
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~

ii vv  and 〉〈 3
||

~
iv , i.e. ⊥

||iq  and ||
||iq . The sum of the two averages, 〉〈 ⊥
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~
ii vv  and 

〉〈 3
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~
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||
~~

ii vv  which can be estimated – for strong collisionality -  from the well 

known Spitzer, etc. expression for the heat flux: iiiiii Tvvnmq ||||
2

|||| 2/~~ ∇−=〉〈≡ χ , with 

i

ii

m

nT τχ 3.9|| = . Since, however, in Eq. (35) they are present with different weightings, they 

have to be calculated separately. For purposes of a rough estimate, however, we may simply 

take ||||
||
||2 iii qqq ≈+ ⊥  to give: B

ZeB

qm ii
centBi ∇×Π +∇⊥

rr
B

3
||

, ~ , where we have also neglected the 

(usually) small difference between the directions of the ∇B and centrifugal drifts and 
expressed both terms through the direction of the former. 
 
A more refined estimate can be obtained from Braginskii’s analysis, see App. B (which is 
however then dependant on the validity of his small perturbation assumption, i.e. the 

assumption of strong collisionality): the ratios 〉〈 3
||

~
iv / 〉〈 2

||
~~

ii vv  and 〉〈 ⊥
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||
~

ii vv / 〉〈 2
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ii vv  are equal 

to 3/5 and 2/5, respectively which introduces a factor 8/5 in front of the RHS of the above 
expression: 
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We will use the estimate of Eq. (44) rather than the rough estimate in terms of pi obtained in 

Sec. 5, where vert
i

centBi e
ZeBR

p
n

r2
, =+∇⊥V . 

 
An estimate for the relative importance of the viscous force associated with this term can now 
be made by comparing it with e.g. the part of the ion viscous force related to parallel gradient 

of the ion parallel velocity 2
|||| / LVnT iiiτ . The divergence centBi +∇⊥Π⋅∇ ,

rr
 can be estimated as 

SOLcentBi λ/, +∇⊥Π
r

.   Using i
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ii
i T
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nT
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τ
, RBB /~ 2∇×

r
B  and making maximum 

estimates for the ion temperature gradient qRTT ii /~||∇ , and for the viscous term 
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2
,|||| )/(~ qRvnT thiiii τΠ∇ , one can obtain: ~
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. Therefore, 

this viscous term doesn’t appear to be a dominant viscous contribution to the parallel 
momentum balance equation. We note, however, that we used here the maximum possible 
estimate for |||| iΠ∇ , by assuming variation of the parallel ion velocity of order ion thermal 

velocity over the distance qR, which is unlikely to be realized in the main SOL plasma. At the 
same time, the estimate for the centBi +∇⊥Π⋅∇ ,

rr
 term, which used qRTT ii /~||∇ , is fairly 

realistic. This viscous term may therefore become quite an important contribution under 
certain plasma conditions. 
 
It is computationally convenient to use the (pi, ||

estΠ ) (with the latter being an estimate for the 

parallel viscosity, for example one that assumes strong collisionality) form of the momentum 
equation rather than the (pi⊥, pi||) form with two complete energy equations. For conditions 
other than collision-dominated, however, this results in two deficiencies: (a) the values of 

||
estΠ are of uncertain validity, and (b) a false dependence on Larmor rotation is introduced to 

the momentum equation. Ongoing progress toward achievement of fusion power in devices 
such as tokamaks is resulting in hotter, less collisional boundary plasmas, motivating better 
approximations for the momentum equation based on two pressures – and employing 
complete energy equations for pi⊥ and pi||. 
 
This completes the process of closing the set of particle and momentum equations. 
 
 
7. Summary 
 
The system of particle and parallel momentum balance equations for plasma edge modelling 
derived in this paper is presented by Eq. (36), followed by expressions for the individual 
terms. For the most typical case of well Maxwellianized electrons, electron pressure is 
isotropic, so one can neglect the difference )( || ⊥− ee pp and the total pressure anisotropy is 

due entirely to the ion component. While keeping parallel and perpendicular ion pressure as 
separate parameters represents a more general approach, a complete formulation then requires 
that the (two) energy equations be considered, a subject that we defer to a follow-on study. 
Therefore in the rest of this paper we will follow the standard approach and replace |||| ip∇  

with )( |||| iip Π+∇ , therefore formally introducing parallel ion viscous stress ||iΠ  into the 

equations. This is also necessary in order for us to be able to make direct comparisons with 
earlier formulations in the literature. The system Eq. (36) can then be formulated as follows: 
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Expressions for the averaged ion drift flux drin ,⊥V  and extra flux ∗
⊥ ||, pinV  which is only 

present in the momentum balance equation, are given by Eqs. (30) and (34), respectively, 
while ‘anom’ stands for anomalous contributions originating by e.g. fluctuating 
electromagnetic fields. Pressures pe and pi are full electron and ion pressures, respectively. 
The ion pressure anisotropy figures in the 3rd and 6th terms on the LHS of the momentum 
balance equation Eq. (45). The pressure difference )( || ⊥− ii pp  in the 3rd term can be 

expressed as 2/3 ||iΠ  through the ion parallel viscous stress ||iΠ  given by Eq. (43) (while the 

parallel ion pressure itself, needed to calculate ∗
⊥ ||,|| piinV V , is given by |||| iii pp Π+=  through 

the total ion pressure). The gradient |||| iΠ∇  can also be replaced with 3/)(2 |||| ⊥−∇ ii pp , 

where pi|| and pi⊥ are considered independent quantities but this would then require two 
separate energy conservation equations for ion parallel and perpendicular pressures, as noted 
earlier. 

 
The term centBi +∇⊥Π⋅∇ ,

rr
 describes a force (taken with the opposite sign) that originates from 

viscous effects involving ion ∇B and centrifugal drifts related to the deviation of the ion 
distribution function from the drifting Maxwellian, with the corresponding ion viscous stress 
given by Eq. (35). It can typically be simplified (see Eq. (44)). Anomalous viscous force is 
introduced separately by the term anomi ,⊥Π⋅∇

rr
 which, together with the perpendicular 

particle anomalous flux anomin ,⊥V , is usually defined arbitrarily using a prescribed 

coefficient (see Sec. 5). The last term on the LHS of the momentum balance equation Eq. 
(45) accounts for the main part of the ‘curvature force’ for ions kv ⋅〉〈= ⊥iiicurvi vnmF ||,  (k is 

curvature of magnetic field lines) which was derived in Sec. 2 and for which approximate 
expressions are given by Eq. (29) (without specifying the charged particle species). Finally, S 
and F|| stand for particle source and all external forces acting on the plasma, including forces 
arising from interaction with neutrals. Perpendicular particle fluxes and forces arising due to 
Coulomb collisions have not been considered in the present paper due to their secondary 
importance. They can however be added separately to the equations, e.g. from Braginskii’s 
analysis. 
 
In deriving the above equations, effort has been made to include the most important terms 
and to explain their physical meaning. The importance of the terms is assessed by making 
order of magnitude estimates that take into account characteristic velocities, fluxes etc. 
present at the plasma edge, in particular in the SOL region of tokamaks. This system of 
equations, or its simplified (reduced) versions can be used in analytical theories and as well in 
sophisticated numerical codes.  
 
One of the main motivations in deriving the present system of equations was the desire to 
clearly separate terms that have different origins, in particular: (a) guiding centre parallel and 
perpendicular (drift) velocities in quasi-stationary electro-magnetic fields and associated 
fluxes of parallel momentum, including viscous guiding centre drift effects, (b) perpendicular 
(radial) guiding centre anomalous fluxes and associated anomalous convective and viscous 
momentum fluxes, (c) pressure-related terms and parallel viscosity in the parallel momentum 
balance equations. Perpendicular classical diffusive fluxes originating from the distortion of 
Larmor orbits by the Coulomb collisions have not been included in the set of equations, 
however, they can in principal be added separately when these fluxes become particularly 
large. 
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More detailed analysis of the parallel component of the gradient of the total pressure-stress 
tensor has identified a number of important terms that are sometimes not included in the set 
of particle and momentum balance equations for the edge plasma. One of them is the term 

BBppnmV /)( ||||
2

|| ∇−+− ⊥  due to the spatial divergence of the magnetic field lines, while 

the other: kv ⋅〉〈− ⊥||vnm , is due to the bending of the field lines described by their curvature 

k. At the same time, more detailed analysis of convective and viscous terms in the parallel 
momentum balance equation has led to the appearance of an extra term in the parallel 
momentum balance equation required to correctly account for the momentum transport by the 
ion centrifugal drift, namely, a significant contribution by the ion centrifugal drift to the 
viscous term )~~( ,|| 〉〈⋅∇ ⊥ driii vnm v

r
, comparable to the contribution of this drift to the 

convective transport term )( ,|| driiiVnm ⊥⋅∇ V
r

, has been identified. For the drifting Maxwellian 

ion distribution function, the new term can be described by the expression )( ||,||
∗
⊥⋅∇ piiiVnm V

r
, 

having similar form to ordinary convective terms, with the ∗
⊥ ||, pinV  flux given by Eq. (34). 

This term is twice as large as the contribution of the random part of the ion centrifugal drift 
(described by the term with p|| in Eq. (30)) to the convective momentum transport term. In 

situations where the ion parallel convective energy flux 2
||iiVnm  can be neglected compared 

with the ion pressure, and the pressure is isotropic, the presence of the new term effectively 
doubles parallel momentum transport described by the combined convective term 

)( ,|| centBiiiVnm +∇⊥⋅∇ V
r

 due to the ion ∇B and centrifugal drifts. In addition, an extra 

perpendicular viscous term centBi +∇⊥Π⋅∇ ,

rr
 for a general ion distribution function (not 

necessarily drifting Maxwellian, for which this term is zero), originating from the ion ∇B and 

centrifugal drifts, with the vector centBi +∇⊥Π ,

r
 given by Eqs. (35) (more precise form) and 

(44) (more approximate form), must be taken into account. Such a significant contribution of 
the ion centrifugal drift to the parallel momentum balance equation ultimately stems from the 

fact that the centrifugal drift velocity is proportional to 2
||iv , thereby causing strongly non-

linear, ~ 3
||iv , contributions of this drift to the parallel momentum balance equation. 

 
The terms mentioned above are, as was shown earlier (see discussion following Eq. (24)), 
generally of the same order of magnitude as the convective momentum transport term 
attributed to drifts, )( ,|| driiiVnm ⊥⋅∇ V

r
, hence their inclusion in the parallel momentum 

balance equation is equally important as the inclusion of this straightforward convective term. 
There are a number of similarities between the present results and the results of an earlier 
study [35] - that is, over and above the inclusion of obvious pressure gradient, anomalous 
viscosity and convective momentum terms. First, the effect of roughly doubling of the 
convective momentum flux )( ,|| driiiVnm ⊥⋅∇ V

r
 attributable to the combination of the ion ∇B 

and centrifugal drifts, due to the presence of the term )( ||,||
∗
⊥⋅∇ piiiVnm V

r
. Second, both 

formulations effectively contain what is here referred to as the ‘curvature force’, with its 
main part being kV ⋅×BEiVnm || : in [35], this contribution is contained as part of the term 

dubbed the ‘Coriolis force’ Fk (see Eqs. (7) and (8) of [35] (although calling it ‘Coriolis’ is 
confusing since the true Coriolis force differs by a factor of 2)). The term 
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BBppVnm iiii /)( ||||
2
|| ∇−+− ⊥ , however, was neglected in [35] as small. Also not included in 

[35] is the viscous term centBi +∇⊥Π⋅∇ ,

rr
, as the analysis there implicitly assumes the ion 

distribution function to be a drifting Maxwellian. Finally, in this paper we presented a more 
complete expression for parallel viscosity, Eq. (43) [51], by including recent additions (note 
however, that viscous terms of [35] (contained inside the Eq. (7) of the Ref.) are also lacking 
radial (‘y’, according to the nomenclature adopted in [35]) gradients, an omission). 
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Fig. 1. Cartesian (ix, iy, iz) and local ( rΩi , dΩi , ||iΩ ) orthogonal systems of coordinates 

used for opening the parallel component of the gradient of the stress tensor, ||)( P
tr
⋅∇ .  
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Appendix A: Estimates of the magnitude of drifts in the tokamak SOL 
 
In the simple SOL (sheath-limited) case, characteristic of low density operation, Te is 
constant (along B) right up to the target surface, Er is determined by the potential drop of ~ 
3Te/e in the Debye sheath between the plasma and the target [1]. Due to sharp radial gradients 
of Te, a significant radial electric field SOLer eλTE /3≈  is formed in the SOL. In the other 

extreme case of very high plasma density, high recycling divertor conditions cause plasma 
detachment from the target, with Te decreasing strongly (along B) towards the target and 
another effect becomes largely responsible for the formation of the Er, namely the parallel 
thermo-force ||/71.0 sTn e ∂∂−  (for singly charged ions, see e.g. [40]) that is nearly balanced 

by the parallel electric field force enE||, resulting in SOLer eλTE /71.0 ×≈ , assuming absence of 

extremely high electron currents along the SOL. In either case the radial electric field in the 
SOL SOLer eλTE /~ . By assuming Te = Ti, expressing ion temperature through ion thermal 

velocity as 2~ i,thii vmT , and introducing the ion Larmor radius as ithii ωvρ /,= , where 

ii meBω /=  is ion gyrofrequency, one can obtain the following estimate for poloidal E×B 

drift velocity in the SOL: 
 

SOLithiBE /λρvV ×× ,, ~θ                                                                                                         (A1) 

 

By replacing 2
||vm  and 2

⊥vm  in the 4th and 5th terms on the RHS of Eq. (24) with Ti and using 

similar derivations as above, one obtains for the ∇B and centrifugal drift velocities, which are 
of the same order and which in the rest of the paper will be approximately denoted as BV∇ , 
the estimate: 
 

/RρvV ithiB ×∇ ,~                                                                                                                  (A2) 

                                                                                                           
The ratio of the two drift velocities, BpolBE VV ∇× /,  is of order 1/ >>λSOLR . A similar 

(upper) estimate can be made for the radial component of the E×B drift, by allowing for a 
maximum potential variation of ~ Te/e along the flux surface creating a radial E×B drift 

velocity Vr ~ Te/erB. By assuming 2
,~ thiie vmT , this velocity can be expressed as: 

 
/rρvV ithimaxrBE ×× ,,, ~                                                                                                         (A3) 

 
This drift velocity is much smaller than the typical poloidal E×B drift velocity, Eq. (A1), but 
is of the same order as ∇B and centrifugal drift velocities, Eq. (A2). In some circumstances 
this allows one to neglect the ∇B and centrifugal drifts compared with the E×B drift velocity 
which is predominantly in the poloidal direction (more correctly the direction perpendicular 
to B and within the flux surface, i.e. in the ‘diamagnetic’ direction – but in this paper we will 
often follow the usual custom and call this the ‘poloidal’ direction). However in some other 
circumstances ∇B and centrifugal drifts, as well as radial component of the E×B drift, may 
have comparable effects to that of the poloidal E×B drift, when these drift velocities appear in 
the derivative expressions. Indeed, the large magnitude of the poloidal E×B drift is 
compensated by small changes, on the scale of minor radius r, in plasma density, resulting in 
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the particle source/sink n∇⋅V  of order SOLithiBE /rλρnvrnV ×× ,, ~/θ . At the same time, ∇B 

and centrifugal drifts, being mostly in the vertical direction, have a large component across 
the field, i.e. perpendicular to the magnetic flux surface, i.e. in the ‘radial’ cross-field 
direction, and therefore may substantially influence the plasma through sharp radial gradients 
of ne, Te,i at the edge. The correspondent particle source/sink is of order 

SOLithiSOLB /RλρnvλnV ×∇ ,~/ , which is only by a factor of the aspect ratio R/r smaller than 

similar estimate for the poloidal E×B drift, while effect of the (maximum) radial electric field 
is the same as that of the poloidal E×B drift. In any case, the notion of the ‘plasma size’ used 
in the standard neoclassical theory, which figures in the denominator of the expression for δ, 
becomes poorly defined for the SOL.  
 
In addition to the above mentioned drift fluxes/velocities, there exist the diamagnetic flux 

which is equal to )/(∇- 2
⊥ ZeBpn dia BV ×=

r
. Its largest component is in the poloidal 

direction, Vdia,θ ~ kT/eBλSOL  and can be estimated similarly to an estimate Eq. (A1) given for 
the poloidal E×B drift. Its radial component can be given an upper estimate, similar to the 
estimate Eq. (A3) for the radial E×B drift velocity, by assuming large poloidal pressure 
gradients ~ p/r. This estimate, however, does not typically reflect the real experimental 
situation in the plasma, since plasma pressure, as well as electric potential, tend to be rather 
uniform along flux surfaces. The diamagnetic velocity, however, should not be called a ‘drift’ 
velocity, in the sense used in the present paper. We are reserving this term to mean the drift of 
the guiding centres of Larmor circles. It can be shown that the major part of the diamagnetic 
flux is due to the superposition of Larmor rotations which is given by Ln ,⊥V  = curlM/Ze, 

where 2Bp /BM ⊥−=  is the magnetization flux [40,5]. The normalized difference between 

dianV  and curlM/Ze can be shown to be small, of order RSOL /λ , the ion pressure decay 

length divided by major radius, i.e. the difference between dianV  and curlM/Ze is of order 

BV∇   (see e.g. [40, 5]).   

 
Another major difference with the core plasma, as has already been pointed out in the 
Introduction, is the possibility of large ion parallel velocity in the SOL, especially near the 
target (or limiter), where it reaches of order the plasma sound speed iies mTTc /)( +=  due 

to the strong sink action of the target surface. Hence, the equations will include some parallel 
velocity terms which are neglected in the standard neoclassical theory, developed for 
configurations with closed field lines, on the basis of the δ - ordering. If one considers flows 
driven by ionization sources only then the near target region in the divertor with si cv ~||  may 

occupy a relatively small volume of the plasma and one might expect that in the ‘main SOL’ 
(upstream of the entrance to the divertor) si cv <<|| . However, even in the main SOL region, 

far away from the divertor/target, there is a possibility of a strong parallel flow in the SOL 
which is driven by - and can compensate for - the effect of the poloidal E×B drift (a ‘return 
parallel flow’ considered in [23] and also found in the modelling with EDGE2D [36] and 
B2.5 [35] codes.  The complete compensation of the poloidal E×B drift is achieved when the 

poloidal projection of the parallel velocity of the return parallel flow ||,EV
B

Bθ  compensates 
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the drift velocity  
B

E

B

B rφ , i.e. approximately 
θB

E
V r

E =||, . This flow is in the direction of the 

main plasma current. By making a similar estimate as above, one can obtain: 
 

SOL

iθ
thi

SOL

i

θ
thi

r
E λ

ρ
v

ρ
B

B
~v

B

E
V ×=××= ,,||, λθ

                                                                        (A4) 

 
where iθρ  is ion poloidal Larmor radius. This substantial velocity is typically below the ion 

sound velocity cs, but may approach it in extreme cases. Such a return parallel flow also 
exists in the private region. Due to shorter parallel connection length there and, hence, shorter 
radial decay length (shorter than λSOL), the parallel velocity can even be larger in the private 
region than in the SOL.  
 
The foregoing return parallel flow can occur in either cylindrical or toroidal configurations. 
In toroidal configurations, a different contribution to the parallel return flow occurs – the so-
called Pfirsch-Schlüter flow, attributable to the existence of both radial electric field and ion 
pressure gradient in the SOL, has been previously considered [12]. Due to surface area 
variation (~ R) and variation in the magnetic field (~1/R), the combined E×B and ion 
diamagnetic poloidal flow is significantly non-divergence-free, resulting in a compensating 
parallel flow which in a simple circular geometry with nested concentric surfaces, and 

assuming ε = r/R <<1, is given by 





= r

i
PS enE

dr

dp

enB

q
V -

2
sin-||, θ , where q is the safety 

factor and θ  poloidal angle measured from the bottom, see p. 561 of [1]. By replacing dpi/dr 
with nTi/λSOL and making other order of magnitude estimates as above, one obtains for the 
velocity of the ion Pfirsch-Schlüter parallel flow: 
 

SOL

iθ
thi

SOL

i
thiPS λ

ρ
R

r
v

λ
qρ

vV ××=× ,,||, ~                                                                                  (A5) 

 
This velocity is larger than the poloidal E×B drift velocity by a factor of q, but smaller than 
the velocity of the (possible) ‘return parallel flow’ mentioned earlier, Eq. (A4), by a factor 1/ε 
(however, since it contains two contributions, one due to the radial electric field, and the 
other due to radial pressure gradient, numerically these two parallel flows can be close).  
 
It is thus clear that quite fast parallel flow, driven by cross-field drifts, can occur in the SOL – 
including locations far from the targets. 
 

Appendix B: Calculation of averages 〉〈 ⊥
2

||
~

ii vv  and 〉〈 3
||

~
iv  

 
Braginskii’s strong collisionality, perturbation analysis, which evaluates the departure of the 
velocity distribution from Maxwellian, shows, [40] (Eq. (4.17)), that the ion distribution 
function in the presence of parallel temperature gradient can be expressed in the form:  
 

{ }||
2 )(1 vvAff M

ii +=                                                                                                            (B1) 
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where M
if  is a non-shifted Maxwellian distribution function, v and v|| are particle full and 

parallel velocities, respectively, and the term with ||
2 )( vvA  describes a small correction to 

M
if : ||

2 )( vvA  <<1. In order to calculate parallel ion heat flux, the function )( 2vA  must 

satisfy the criterion: 0)(
11 2

||
2

|||| ∫∫ === vv dvvAf
n

dvf
n

V M
ii  (i.e., giving a zero net parallel 

ion flow).  
 
Parallel ion heat flux can then be written as: 
 

vv dv
vm

vAfdv
vm

fq iM
i

i
i

2
||

2
2

||

2

|| ∫∫ 2
)(

2
==                                                                        (B2) 

 
The solution for the heat flux Eq. (B2) is well known from the literature and can, for 
example, be taken from Braginskii. Using the notations adopted in the main text of the 

present paper, this heat flux can be equated to 2/~~ 2
|| 〉〈 iii vvnm , since the v’s in the above 

equations are random velocities. For the purpose of calculating 〉〈 3
||

~
iv  it will be sufficient to 

find the relation between the (newly defined) flux 
 

vv dv
vm

vAfdv
vm

fq iM
i

i
i

2
||

2
||2

||

2
||||

|| ∫∫ 2
)(

2
==                                                                        (B3) 

 

and Eq. (B2). The calculation of the ratio of the fluxes ||
||q  and ||q  is very simple, and it 

doesn’t depend on any details of the Maxwellian distribution, apart from its dependence on 
the full velocity v. In the integration, the velocity space element can be taken as 

dvvdvd ])(sin2[ . ααπ=v , where )/arccos( || vv=α  (after the integration over α, the velocity 

space volume becomes dvvdvvdv 2

0

.. 4])(sin2[ πααπ
π

=∫ ). Since v|| can be represented as 

αcosv , the difference between Eqs. (B2) and (B3) caused by the presence of 2v  in the 

former and 2
||v  in the latter, can be reduced to different integrations over α, whereas within 

each velocity space volume dvv2
.4π  the ratios between the integrals over α are the same. 

Integration over v is therefore not required for the purpose of finding the ratio ||
||q / ||q . 

 

Eq. (B2) contains the following integral over α : 3/2sincos
0

2
. =∫

π
ααα d , while Eq. (B3) has: 

5/2sincos
0

4
. =∫

π
ααα d . Hence, 〉〈 3

||
~

iv / 〉〈 2
||
~~

ii vv = ||
||q / ||q =3/5. Noting that 

〉〈=〉〈+〉〈 ⊥
2

||
3
||

2
||

~~)~~( iiiii vvvvv , leads to 〉〈 ⊥
2

||
~

ii vv / 〉〈 2
||
~~

ii vv  = ⊥
||q / ||q =2/5. 

 


