Bayesian correlation between temperature and blossom onset data
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Abstract

The recent quantification of changes in time series of phenology data with Bayesian meth-
ods has provided compelling evidence for changes during the last twenty years. In this paper
we correlate the phenological observations with spring temperature time series. We provide
quantitative answers to the question whether changes in temperature and phenological time
series should be regarded as coherent or independent. For the three considered species snow-
drops, cherry and lime tree we find factors of 1.05, 2.19 and 3.26 respectively in favor of
coherence. The functional behaviour and the trend in the temperature time series are pre-
sented. They amount to 0.15°C / year for the January - March average, 0.09°C / year for
February - April and 0.1°C / year for March - May in 2002. In addition, we compare blossom
trends for the coherent and independent hypotheses and find that the transition from trend
values slightly positive before 1970 to strongly negative at present becomes sharper as the

temperature data is included in the analysis.



I. INTRODUCTION

Observations of phenological phases is probably the simplest way to track changes in the
ecology of species in response to climate change. The use of phenological data as bio-indicator
for climate variations and global change is based on the well known relationship between
climate parameters and the onset of phenological phases. It was Reaumur, who suggested
in 1735 that differences between years and locations in the date of phenological events
could be explained by differences in temperatures from an arbitrary date to the date of the
phenological event considered. This is probably the first mentioning of a relationship between
phenological spring phases, such as leaf unfolding and flowering, and spring temperatures.
However, phenophases are regarded as an integrating climatological measurement (Schnelle
1955, Menzel 2002) responding to many meteorological and environmental factors such as
light, photoperiod, temperature, precipitation, humidity, wind, and others - though their
particular influence differs: The timing of leaf unfolding of trees is mainly regulated by
temperature, specifically chilling temperatures break winter dormancy and subsequent warm
temperatures induce budburst. Photoperiod may play a major role for flowering, however,
without interaction with temperature it cannot explain the annual variability at a given
location (Chuine et al. 2003). The phenological onset of spring and summer (leaf unfolding,
flowering, fruit maturation) seems to correlate with the temperature of the preceding months.
By contrast, various environmental factors are supposed to drive autumn phenology but none
of the existing models can predict leaf colouring up to now.

Many publications of recent years have pointed to coherence of phenological spring phases
and temperature either by classical statistical methods (correlation analysis, linear and mul-
tiple regression) (e.g. Boyer 1973, Sparks & Carey 1995, Emberlin et al. 1997, Sparks et
al. 2000, Fitter & Fitter 2002, Menzel 2003) or fitting and testing statistical models mainly
based on temperature (e.g. Schwartz 1997). The complexity increases in more mechanis-
tically formulated models incorporating chilling and forcing, both based on temperature
(e.g. Landsberg 1974, Cannell & Smith 1983, Hanninen 1987, Murray et al. 1989, Kramer
1994, Chuine 2000, Linkosalo et al. 2000, see reviews by Hénninen 1990 and Chuine et al.
2003). Most recently, new approaches on a physiological basis use promoting and inhibit-
ing variables which are related to temperature (Schaber & Badeck 2003). Experiments are

another possibility to demonstrate that phenological spring phases are mainly triggered by



temperature (and photoperiod).

Tests of phenological models by cross validation exhibit fairly good results, tests of their
predictive power in carbon enrichment / warming experiments sometimes produce unex-
pected results (Hénninen et al. 1993).

The relationship between spring phenology and temperature enables the use of phenol-
ogy as bio-indicator for climate change (e.g. as suggested by the European Environmental
Agency, see Menzel 2002). Within the Third Assessment Report of the IPCC (2001) results
of publications revealing climate change impacts were included when the study matched 2 of
3 criteria: 1) temperature change over the period, 2) changed impact variable over the time,
3) proved relationship between temperature and variable. This paper focusses on the first
and third of these criteria and derives Bayesian measures for the relationship between blos-
som onset and temperature. Readers who are unfamiliar with Bayesian ideas are referred
to the excellent tutorial by Sivia (1996).

Our knowledge that spring phenology is primarily driven by temperature prompts us to
attribute observed biological trends to effects of climate variations when we demonstrate
a high statistical coherence between temperature and onset of phenological phases, as sug-
gested by many papers. In addition to physiologically based model frame work, experiments,
and traditional statistical approaches, the relation between temperature data and blossom
onset data can be analyzed employing Bayesian probability theory. This approach allows a
rigorous analysis of the causal interdependence of phenology and temperature observations.
The results of such an analysis are numerical values of the probabilities for the two alterna-
tive hypotheses 1.) the evolution of the temperature and blossom time series is independent
and 2.) there is coherence in the evolution of blossom onset data and temperature time

series.

II. MATERIAL

Three long-term flowering records (1896-2002), observed at the Research Station of the
German Weather Service at Geisenheim (49°59'N, 7°58’E), have been analysed comprising
first flowering of snowdrops (Galanthus nivalis L.), of sweet cherry (Prunus avium L.), and
of lime tree ( Tilia platyphyllos L.). They were also the basis of the analysis in the preceding

paper (Dose & Menzel 2004). Mean monthly air temperatures were available for the period



1935-2002 from the adjacent climate station of Geisenheim research station for which no
inhomogeneities are known, such as a displacement of the climate station or varying urban
heat island effects. The two sets of data stem from the same place which justifies their use
in the analysis described in this paper. In order to avoid later ambiguities: the blossom
time series consists of the day of blossom onset in a given year. The temperature time series
consists also of one entry per year which is obtained from monthly averages characteristic

for each of the three species which will be considered in this paper.

III. TEMPERATURE TIME SERIES

In analogy to the procedure adopted to describe blossom time series (Dose & Menzel 2004)
we shall employ a two section polygonial to model temperature time series. The rational for
this choice is that such a triangular function is the simplest assumption beyond a constant
or a linear time dependence of the assumed temperature evolution. Moreover, it was shown
previously (Dose & Menzel 2004) for blossom onset time series that this model is by far
more probable than the simpler linear or constant models. The model function is supported
at the beginning of the time series in year x; and assumes there the functional value fi, at
the endpoint of the time series in year x and assumes there the functional value fy. While
the endpoints of the time series remain fixed in the subsequent calculations the intermediate
point xp with associated functional value fz can assume all years zo < xp < xy_;. We
shall call the vector f: [f1, fE, fn]T the support functional values. The support functional
values, as well as the matching point of the two linear sections making up the triangular
function are variables of the calculation. Let z, denote the year of observation, d; the data

collected in year x, and ¢, the uncertainty associated with data dj, then

fio-e=te 4oy LT g < gp

The matching position of the two linear segments is xg and will, henceforth, be called
matching point. Index k runs over all N observations. It is convenient to rewrite (1) in
matrix notation

d—AE)f=¢. (2)
Matrix A is a three column matrix with N rows, where /N is the number of observations.

The rows of A have as the first element the coefficient of f; in (1) and as the second element



the coefficient of fg in (1) if 2y < xp. The third element is zero in this case. Conversely if
x > xp the first element is zero, the second the coefficient of fz in (1) and the third the
coefficient of fy in (1). For x;, = xp the first and third elements in the row are zero and the
second is equal to one.

If the expectation values of the errors < ¢; > in (1) are zero and their variance is assumed
to be < €2 >= ¢? then by the principle of maximum entropy (Jaynes 2003, 1957; Kapur &
Kesavan 1992) the sampling distribution of the data becomes

o fn = () el L (T am) (i amf)) o

oV 2m
In terms of the so far unknown conditions o, f, E this function is usually called the likelihood
of the data. There is also the further condition ”I” which enters into all the conditional
probabilities densities. It denotes all background information relevant to the respective
probabilities which need not be made explicit in the calculations (Sivia 1996, Gregory 2005).
It provides the basis for all further inferences employing the product and the marginalization
rules and Bayes theorem. Let us first focus on the probability of a matching point position

E given the data {x;,d;}. From Bayes theorem

—

p(E|d, 7, 1) = p(E|1) - p(dlF, B, 1) [ p(dIF, 1), (4)

this probability is provided by the prior probability of a matching point position E, p(E|I)
times the marginal likelihood p(d|Z, E, I). The latter is derived from

- —

o(dl7, B, 1) = / dodf p(d.o, fI7, B, 1) . (5)

Employing the product rule to the integrand this becomes

iz B.1) = [ dodf plo|D) (D) - p(dlz. o fLE.1) (6)
Evaluation of (6) requires the specification of the prior probabilities p(o|I) and p(f|I). The
least informative prior on o, which relies only on the transformation invariance requirement

of a scale variable is Jeffreys’ prior (Jeffreys 1961)

poln=—. 7)

Our prior knowledge on f is also very vague and we express this by assigning a flat prior to

—

f
WD = (55 )



over some given range AB. AB is of course somewhat smaller than the data range AB <
dmaz — dmin and sufficiently large that the integration over f in (6) can be extended to infinite
limits with insignificant effect on the value of the integral. Integrations over f and o can
then be performed analytically. The probability of a matching point position E follows then
from (4) after appropriate specification of the prior probability p(F|I). Candidate points for
E are all observation times x,...xy_1 hence all years of observation excluding the initial and
final year. An uninformative choice for the prior probability p(E|I) is therefore the constant

1

p(E|I) = N_29'

(9)

where N is the number of years covered by the data. Finally, using
p(d|Z, 1) = ZpdElfUT > p(E|I) - p(d|7, B, T) (10)
we obtain the normalized probability p(E|J: %, I) for a matching point position E as
p(EId, 7, 1) = p(E|)p(d}7, B, 1) / > pEp(d E.1) (11)

The top row in Fig. 1 shows this function for temperature averages January - March, Febru-
ary - April and March - May as full squares. Open circles in the second row panels represent
the observations d from which these probabilities were calculated. The time range covered
is from 1935 until 2002. The second row in Fig. 1 shows also our final estimates of the
development of the average temperature with time. The uncertainties are also given. The
reader might have expected at this point a triangular function. In fact, this would be the
maximum likelihood estimate for the problem. The outstanding advantage of the Bayesian
approach is that we can get rid of parameters which we need at an intermediate step of the
calculation, here, the position of the matching point zg, by marginalization. It was shown
in detail in (Dose & Menzel 2004) that the result of this marginalization is the weighted
average of all possible NV — 2 triangular functions with weights given by the matching point
probabilities shown in the first row of Fig. 1.

The trend shown in the bottom row was obtained by the same procedure with the deriva-
tive d/dx; of (1) as the model function. Variances of these estimates are obtained from the
posterior estimates of the respective model functions squared.

The results for February - April and March - May are quite similar in shape, note however

that the scales for the trend differ by about a factor of 2. While the current gradient in the
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FIG. 1: Open circles in the middle row represent the temperature data. They are three months
averages. The full dots in the upper row are the matching point probabilities for a two segment
polygonial supported at the ends and at the matching point which we use to model the data. The
centre row shows the modeled evolution of the average temperatures with uncertainties based on
the data. The lower row exhibits the associated trends. Note that the vertical scales differ between

adjacent panels.

February - April trend is about 0.15 °C'/year it is only 0.09 °C'/year for the period March -
May. The current gradient for January - March is 0.1 °C'/year, the functional behaviour of

the temperature differs, however, from the other two cases. While for January - March we



have a monotonous rise since 1940 with acceleration since 1980 for the other cases we find

a weak decrease from 1935 until 1985 with a subsequent strong increase.

IV. RELATION TO BLOSSOM ONSET OBSERVATIONS

The present identification of matching point probabilities concentrated around the year
1985 bears a strong resemblance to the corresponding matching point probabilities obtained
for blossom time series subject to analysis with the same model function (Dose & Menzel
2004). This raises the question whether we can quantify the hypothesis that the time evo-
lution of the blossom observations can be attributed to the identified temperature changes.
This is a simple case of Bayesian model comparison. We compare the two alternative models
M, : temperature and blossom onset time series evolved independently and M, : tempera-
ture and blossom onset time series exhibit coherence. The results will be probabilities for
M, and M, or alternatively the odds ratio of the two probabilities.

Consider first the joint likelihood of temperature data cfl and blossom data J;
p(czlaczﬂflaf%flaf2701702aE17E27I) . (12)
It can be decomposed employing the product rule into

p (Cmfl,fmf:,fz,Ul,UQ,El,E%I)' (13)

p (d2|d1,f1,fmf17f2,51,52,E1,EZ,[) .

The messy expression simplifies considerably if we assume logical independence of the data
sets d; and dy. This implies in the first place that p(d}|di, ...) should not be conditional on
cfl. In other words, the temperature measurements are not influenced by observations on
blossom onset and vice versa. Moreover, the sampling distribution for data J; is of course
independent of parameters which enter the function modeling cfk,fk, f,;,ak,Ek. The joint

likelihood for data cfl and cfz simplifies therefore to the product
p(czl|flaf_£ao-laE17[)'p(CZ2|J’_:27ﬁ70-27E27I) ) (14)

which provides the basis for the model comparison task. We shall consider two models,
M,, M,. Let M, assume that the functional behaviour of the blossom time series is not

caused by the evolution of temperature. In this case, we have causal independence of the



two sets of data. This is something entirely different from the above expounded logical
independence which allowed to simplify (12) to (14). Neither kind of independence implies
the other (Jaynes 2003). In fact, model M, assumes a causal relationin the time evolution
of temperature and blossom onset while M, denies it. The key quantity which measures the

probability of the respective model is the marginal likelihood

p(d_;a CZ‘2|:Z:‘17 ',fZ; Ma,b7 I) -

> p(ET) - p(Bo|Dp(dy |71, By, 1) - p(do| o, Ba, 1) . (15)

E1,Es
The explicit form of the factors under the summation sign is given by (6). For model M,,
which assumes causal independence between the two time series, the marginal likelihood is
as given in (15) with independent summation over E; and F,. For model M, we obtain a

coherent sum over the common matching point position £

p(CZla CZ‘2|'IJZ:\17:Z:27 Mbal) =

> " p(E|I) - p(dy|@1, B, 1) - pldo|Zs, B, T) . (16)
E

The evaluation of (16) poses a minor problem. Data sets dy and d have different lengths.
While the blossom data extend over all of the 20th century the temperature data start
only in 1935. Two alternatives were considered, truncation of the blossom time series or
restriction of the possible matching point positions in (15, 16) to the range 193541 until
2002-1. We decided to choose the latter possibility since ignoring precious data seems not
appropriate. As a consequence, very tiny differences in the blossom trend shown in the
second row of Fig. 2 arise when compared to corresponding graphs of our previous analysis
(Dose & Menzel 2004).

Numerical values of (15) and (16) have been obtained for the January - March tem-
perature/snowdrop blossom, the February - April temperature/cherry blossom, and the

March - May temperature/lime tree blossom combinations. Using Bayes’ theorem
p(M|dy, do, 71,7, 1) ~ p(M|I) - pldy, doy, 7, M, 1) (17)

they can be converted to the respective (un-normalized) model probabilities. The posterior

odds ratio L. -
p(Mb|d1,d2,fhfZ,[) _ p(Mb|[) ) p(d1,d2|f1,fz,Mb,[) (18)
p(Maldy, do, @1, @2, 1) P(Mall)  p(dy, do|Zy, %, My, 1)




factors into a prior odds and the so-called Bayes factor. The Bayes factor turns out to be
1.05 for the January - March/snowdrop case, 2.19 for February - April/cherry, and 3.26
for the March - May/lime tree combination. In the absence of qualified prior information
we choose p(M;|I) = 1/2 and the Bayes factor equals the posterior odds. The dependence
of blossom onset on the evolution of the characteristic temperature is therefore, obviously
reflected in the late springtime indicator (lime tree), clearly present in the case of cherry
blossom, and absent in the early springtime indicator (snowdrop). The conversion from the
odds ratios Oy, to the respective model probabilities wy, is given by wy, = O/ >, O with
O, =1.

V. POOLING INFORMATION

The results of the last section mean that coherent treatment of the temperature and
blossom data is equally good (snowdrops) or better than assuming independent matching
points for the models of the two data sets. We, therefore, expect that the matching point
probability derived from two data sets will be more informative (e.g. better localized in
time than that obtained from a single series of data). Moreover, it suggests, that also
posterior estimates of trends and functional behaviour should be better in the sense of being
more precise than those based on only one of the data sets. In obvious generalization of
(11) we need to calculate p(E|dy, da, &, T, I) for which we need the marginal likelihood
p(d?, d;|fh To, E/,I). This is obtained by generalization of (6).

p(JI;J2|flafZaE7[) = (19)
[ dordosdfidf s Dol - o7l Dl
p(Cﬂ,CZ;|f1,fz,J?laf;,UhUz,EaI) :
The argument of logical independence of the data sets JI, d; leads to the product expression
(14) for the joint likelihood p(dy, ds| ...). Since the prior probabilities factor also, the right
hand side of (20) is equal to the product of the marginal likelihood of each data set separately
(6). Apart from a constant factor which does not depend on E explicitly (this was our

previous choice of p(E|I) ), these marginal likelihoods are equal to the matching point

probabilities derived from the individual data sets. Hence,

P(Eldy, o, 71, T, B, T) = p(di|, B, ) - pld |, B, T) [ 7, (20)

11



Snowdrops Cherry Lime tree

100 130
O
o [} L
80 °6 o oo o S o 2 o oo o e, 180 &L ©
60 1. OB 8 S 8 110 80 05° 0o %©§% o oo@ 00 o
el OC%Q)O@%)O %OO 5%00 oo ©Oo OO%@ 66 0 @ pad ©
O, ] (o)
40Dé®0%8 070 @o@) o, ©%qg o O%0 160 @00 o ° OO@; 9
° [o) 0 o P00, OO 0096 08 o OOOQD)
20 [olNe) © © OO (0%
o o o
0 70 140
Matching point Matching point Matching point
0.1 prob. 0.1 prob. 01 prob.

. S ]
N oW T

blossom blossom
days/year 1 days/year days/year

o .—nmwm#%+ | | 0 -_W»»N»»H 0"
-1 1
Trend: Trend: Trend:
- blossom & | blossom & blossom &
temperature temperature temperature

days/ days/\ days/!
3 ays/year I ays/year al ays/year

1940 1960 1980 2000 1940 1960 1980 2000 1940 1960 1980 2000

FIG. 2: The figures in the upper row show the original data on blossom onset. The second row
shows matching point probabilities for the chosen two segment polygonial as obtained for the tem-
perature data as full dots, for the blossom time series as the dashed trace and the joint probability
from the pooled data set as a continuous curve. The third row reproduces blossom trend results
obtained earlier on the basis of blossom time series data only (Dose & Menzel 2004). The lower

row shows the corresponding trend predictions based on the joint temperature and blossom data sets.

where Z ensures normalization. The second row of Fig. 2 shows the matching point prob-
ability of the temperature data as full dots, the matching point probability of the blossom
data as the dashed trace, and the matching point probability of the joint data set as the
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continuous curve. All probability densities are normalized to unit area. As expected, we
find considerably better localized distributions from the pooled data which in turn should
allow more robust predictions.

Predictions based on the coherent processing of the data provide the most probable
predictions, which has to be distinguished from the expected or average predictions. The
latter are of course what we want. After all, an odds ration of 3:1 means that the less probable
model carries still one quarter of the total probability mass, which is far from being negligible.
The ambiguity is easily removed. In our previous paper (Dose & Menzel 2004), predictions
of a particular datum D or functions of D, ¢(D), for a particular year z which need not
lie within the range of the available data, were derived from the predictive distribution
p(D|z,J:f, I). In the present case the conditions must be changed to dy, 7, dy, T and D
can now be either temperature or blossom onset. The information that the two different
models lead to different predictive densities must also be taken into account. We employ

marginalization to account for the different models.

p(D|Z7d’\laflaci27j’27I) — Z p(D,M|Z,CZ1,fl,CZ2,1_"2,I) =

M

> p(Mldy, @y, dy, @, I) - p(DIM, z,dy, &1, do, @o, 1) . (21)
M

The first factor under the summation sign is the probability for model M, based on both
data sets which is of course independent of z, the year of prediction. The second factor is the
predictive density for D given a particular model. We find that the predictive density for
D marginalized over the models under consideration is just their weighted average with the
respective model probabilities as weights. Since the weights do not depend on D, equ. (21)
holds also for expectation values of ¢(D).

The third row of Fig. 2 displays the blossom trends obtained in this work. The bottom
row shows corresponding predictions based on the joint temperature and blossom data sets.
The trend changes are now in all three cases localized in the time interval from 1980 to
1990. Most interesting is the uncertainty of the predicted trend at the right extreme. For
the snowdrop case, the uncertainty of the predicted trend remains unchanged if the estimate
is based on both data sets instead of only one. For the lime tree case, however, we find a
reduction of this uncertainty by a factor of 0.7. This does in fact reflect directly our previous

result that coherent treatment of temperature and blossom data for the lime tree case is
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superior to the incoherent treatment by a factor of 3.26 while for the snowdrop data nothing

is gained by coherent treatments with the respective temperature data.

VI. DISCUSSION

The traditional statistical analysis would quantify the relation between temperature and
blossom onset by a correlation coefficient p?. The correlation coefficient between a variable
y and a variable x is a measure for the linear dependence between x and y. The range of
values of p? is 0 < p? < 1 with p? = 1 signalling perfect linear dependence. Values of p? < 1
arise for different reasons. If the data, neither x nor y are affected by noise then p? < 1
indicates a more complicated relationship. If the noise on the data is non-negligible, then
p? < 1 even if the data generating mechanism is a linear relation. In general, therefore,
p? < 1 includes both, the noise and the deviation from a linear interdependence.

The present problem may be reformulated such that the hypothesis of a linear relation
makes sense. Let T denote temperature, B blossom onset and ¢ the year of observation.
We then have a parameter representation of the relationship between blossom onset and

temperature evolution

B=f(t) , T=g(t),=B=f(g(I)), (22)

where ¢ = ¢g~(¢) is the inverse to g(t). The relation between B and g becomes a linear one
if f ~ ¢ which includes the special case that both ¢ and f are linear mappings.

Numerical values of the correlation coefficients p? are 0.56 for snowdrop/January-March,
0.65 for cherry/February-April and 0.63 for lime tree/March-May. For interpretation of the
numbers it is important to note that we have good reason to assume the noise levels to be
independent of the data combination. Variations of p? can then uniquely be attributed to
different functions f and g in the respective cases. We find that correlation analysis also
gives the weakest result for snowdrop blossom / January - March temperatures, however
correlation analysis does not differentiate between cherry and lime tree in contrast to the
Bayesian result. The Bayesian model comparison outlined above does not require the as-
sumptions we need to make for a correlation analysis and comes up with a unique answer
on the amount of interdependence in the respective time series pairs. For snowdrops the

coherent treatment of both time series explains the data sets equally well as the incoherent
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treatment. For cherry and lime tree data the coherent option is preferred by factors of 2.2
and 3.3, respectively. Concomitant with the preference for a coherent treatment is a decrease
of the uncertainty for the trend predictions in cherry and lime tree blossom based on the
combined data set, in the latter case by as much as a factor of 0.7. The origin of the gain
in precision is the close similarity of the matching point distributions for the blossom and
temperature data as in the upper right panel of Fig. 2. Formally, what happens may be

seen by reference to equ. (2). Rewriting the term under the summation sign
p(B|T) - p(di |71, B, 1) - plda|To, B, 1) = p(E|dy, 71, 1) - p(ds|7a, B, T) (23)

shows that the coherent treatment is equivalent to employing the posterior probability of
E given data set d; (up to a constant p(d;|Z;,)) from the evaluation of data set d; as a
prior probability for the analysis of the data set dy. Since this prior is informative, it has an
influence on the probability distribution of £ based on the prior and data set dy. In fact,
p(E|di, 71, dy, 7, I) is narrower than p(E|JQ, To, I) and, therefore, the changes in the trends
become more localized which in turn is reflected in more precise predictions.

From the biological point of view, the assessment of impacts of climate change on systems,
such as phenology (in our case flowering dates), requires a most rigorous change detection
and the attribution to climate change. Bayesian analysis for change detection in phenological
time series had been introduced by Dose & Menzel (2004); that earlier study revealed for
three flowering records (also subject of this paper) that the model used in this paper was the
most likely one. It also exhibited maximum matching point probabilities in the mid 1980s
(see also second row of Fig. 2. Snowdrop blossom advanced by -1.5 days / year in 2002,
cherry and lime tree blossom by -0.6 days / year (2002).

From literature it is well known that springtime phenological phases are particularly sen-
sitive to temperature, thus phenology seems to be an ideal bio-indicator (see e.g. review by
Walther et al 2002). Spring temperatures at Geisenheim, which correlate with the respective
blossom time series, increased by 0.1°C / year (January - March), 0.15°C / year (February
- April) and 0.09°C / year (March - May).

Within the IPCC report (IPCC 2001) or in recent meta-analyzes (e.g. by Root et al.
2003), Parmesan & Yohe 2003), changes in both phenological and temperature time series
and their correlation would have resulted in a judgement of observed climate change impact.

The presented Bayesian analysis provides further insight in the amount of interdepen-
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dence in the respective time series. First of all, it is of tremendous importance that the
observed ”discontinuity” of the phenological records in Central Europe in the mid 1980s is,
at least for cherry and lime tree blossom, strongly supported by the respective mean spring
temperatures. The reasons for the specific location of the matching points in the mid 1980s
are speculative; most likely, they are connected to altered atmospheric circulation patterns,
such as the North Atlantic Oscillation (NAO) (e.g. Menzel 2003).

Quantitative differences in the Bayes factors of cherry and lime tree, reflecting differ-
ent amounts of interdependence, are not evident in traditional correlation analysis. These
differences between cherry and lime tree results may be related to different temperature
sensitivities, which will be analyzed in a next step.

The fact that no preference for a coherent treatment of snowdrop blossom and January -
March temperatures was found, although traditional correlation analysis gives a correlation
coefficient p? of 0.56, should raise further questions. Either January - March temperatures
are not the most appropriate measure to attribute observed changes in snowdrop blossom
to, and other possibly triggering parameters, such as soil temperatures or snow cover should
be considered, too. Or changes in blossom dates must be (partly) attributed to other causes,
such as changes in variety (e.g. Menzel et al. 2006) or microclimatic conditions at top soil
/ ground level which are not mirrored by air temperature measured at 2m height.

Thus, the Bayesian answer to the question whether changes in temperature and phenology
should be regarded as coherent or independent also offers deeper biological insight.

In conclusion, we find that the Bayesian treatment of the problem does not only provide
us with numbers of well defined meaning as to which of the two alternative hypotheses M, :
the evolution of temperature and blossom onset time series is causally independent and M, :
the two time series exhibit correlation, is supported by the data. In case that M, dominates
it allows also pooling of temperature and blossom data to arrive at much more precise trend
estimates. The return of the Bayesian analysis is therefore much superior to the results of a

traditional correlation analysis.
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