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Abstract

Steady states are studied in the framework of ideal Hall magnetohydrodyna-
mics (HMHD) model in arbitrary and axisymmetric geometries. In arbitrary
geometry, conditions are found under which certain magnetohydrodynamics
(MHD) equilibrium solutions can also satisfy the HMHD equations. For
axisymmetric plasmas reduced equations are derived for uniform electron
temperatures on magnetic surfaces and either barotropic ions or incompres-
sible ion flows. The Hall and electron pressure gradient terms result in a
deviation of the magnetic from the ion velocity surfaces and consequently
the axisymmetric equilibria obey a set of coupled partial differential equa-
tions, one for the poloidal magnetic flux function and the other for a flux
function labeling the ion velocity surfaces. Furthermore, the characteristics
of certain classes of axisymmetric steady states with side conditions, as flows
parallel to the magnetic field or purely poloidal incompressible flows, are iden-
tified and compared with respective MHD equilibria. Unlike in the frame of
MHD, steady states with parallel axisymetric flows must be incompressible
and equilibria with purely poloidal incompressible flows are possible. Certain
analytic axisymmetric solutions are also constructed.
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I. Introduction

Hall magnetohydrodynamics (HMHD) is a simple two-fluid model in the
approximation of very small electron mass. Consequently the electron mo-
mentum equation for infinite electrical conductivity can be put in the Ohm’s
law form

E + vi ×B =
j×B

en
− ∇Pe

en
, (1)

where vi is the ion fluid element velocity. The right hand side (rhs) of
(1) contains the Hall and electron pressure gradient terms. As concerns
equilibrium studies the (single-fluid) ideal magnetohydrodynamics (MHD)
model has usually been employed in which the rhs of (1) is neglected. There
are, however, low density astrophysical plasmas in which the Hall and ∇Pe

terms become comparable with the other terms. Also, large electron pressure
gradients are developed in the improved confinement regimes of laboratory
fusion plasmas in connection with internal and edge transport barriers. In
addition, in the edge region the density is up to four orders of magnitude
lower than in plasma core.

Over the last years there is an increasing number of papers on HMHD
equilibria. In Ref. [1] HMHD axisymmetric isentropic equilibria with toroi-
dal rotation were investigated as deviations from the MHD ones. In that
paper the ∇Pe term is neglected. The so called Double-Beltrami HMHD
steady states were found in Ref. [6] and then were employed to study discon-
tinuous changes of the equilibrium configurations with applications to solar
phenomena [3] and to discuss the role of the singular perturbation due to
the Hall effect in producing multi-scale structures [4]. Ref. [5] is devoted to
axisymmetric HMHD equilibria for a barotropic ion equation of state and va-
nishing ion velocity. A variational principle in connection with a constrained
self-organization process was proposed in Ref. [6] to construct Hall-MHD re-
laxed states. Helically symmetric Hall-MHD stationary states were studied
recently in Ref. [7]. Also, there are certain publications on axisymmetric
equilibria in the framework of the full two-fluid model [8]-[12].

In the present report we study ideal HMHD equilibria by including the
convective ion velocity term, (vi ·∇)vi, in the momentum equation together
with the Hall and ∇Pe terms in Ohm’ s law. Unlike in the case of MHD,
the latter two terms in general make the ion velocity surfaces to depart from
the magnetic surfaces. This in conjunction with the (vi ·∇)vi term makes a
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self-consistent treatment of the problem apparently more complicated than
in MHD.

The work is organized as follows. First we examine under which condi-
tions MHD solutions in arbitrary geometry can be extended to the HMHD
model. This is the subject of Sec. II. Specifically, particular stationary
steady states [(vi · ∇)vi 6= 0] with incompressible flows parallel to B are
considered in addition to general quasi-static equilibria [(vi · ∇)vi= 0]. In
Section III reduced stationary axisymmetric equations are derived for uni-
form electron temperatures on magnetic surfaces and either barotropic ion
equation of state or incompressible ion flows. Certain classes of axisymmetric
side-condition equilibria are then examined in Sec. IV, i.e. equilibria with
constant density, flows parallel to B, Beltrami-like flows, toroidal barotropic
flows and poloidal incompressible flows. Certain general characteristics of
these equilibria are identified and compared with the respective MHD ones.
Section V summarizes the conclusions.

II. Certain three-dimensional equilibria

The HMHD equilibrium states of a quasi-neutral plasma with infinite con-
ductivity in the approximation of very small electron mass are governed in
convenient units by the following set of equations:

∇ · (ρvi) = 0, (2)

ρ(vi ·∇)vi = j×B−∇P, (3)

∇× E = 0, (4)

∇×B = j, (5)

∇ ·B = 0, (6)

E + vi ×B =
h

ρ
(j×B−∇Pe) (7)

An energy equation equation or equation of state (8)

Here, ρ = Mn is the ion-fluid density; h ≡ M/e; P = Pi + Pe is the total
thermal pressure; the rest of notation is standard. The momentum equation
(3) is derived by a superposition of the electron and ion momentum equations
neglecting the electron convective velocity term because of the very small
electron mass. To make further treatment convenient Ohm’s law (7) has
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been expressed in terms of mass density ρ because, with the single exception
of the electron pressure gradient term in (7), the set of equations (2)-(7)
becomes MHD-like in form. The MHD equations are recovered in the limit
of h → 0. Henceforth, to simplify notation the subscript i will be skipped
from the ion velocity (vi ≡ v).

In this section we examine certain characteristics of HMHD equilibria in
arbitrary geometry in connection with the question: under which conditions
solutions of the MHD equilibrium equations can also satisfy the HMHD ones.
Depending on whether the velocity term is kept in the momentum equation
(3) quasi-static or stationary steady states will be examined on an individual
basis as follows. The term quasi-static has been adopted because the linear
velocity term always is kept in the Ohm’s law.

A. Quasi-static equilibria [(v ·∇)v = 0]

Equation (3) then implies that the pressure is uniform on magnetic surfaces
or P = P (ψ) with the function ψ labelling the magnetic surfaces (provided
that such surfaces exist in three dimensional geometry). In the framework of
the MHD model (h → 0), (7) on account of (4) can be put in the form

v ×B = ∇Φ, (9)

where Φ is the electrostatic potential (E = −∇Φ). Therefore, v shares the
same surfaces as B and j on which Φ is uniform [Φ = Φ(ψ)]. Coming to the
HMHD model now we write (7) in the form

v ×B = ∇Φ + h

(
j×B

ρ
− ∇Pe

ρ

)
. (10)

Because of the Hall and ∇Pe terms in (10), v × B can not in general be
expressed as in (9). Therefore the magnetic surfaces deviate from the ve-
locity ones. Assuming the ideal gas law for the electron and ion pressures
(Pj = αρTj, j = e, i) and that both the electron and ion temperatures
are uniform on magnetic surfaces [Te = T (ψ) and Ti = Ti(ψ)] the relation
P = αρ(Ti + Te) implies that ρ = ρ(ψ). It is noted that the assumption
of uniform temperatures on surfaces is best fulfilled in hot plasmas because
of the large thermal conductivity parallel to B. Consequently, the second
and third terms on the RHS of (10) can be put in the form of gradients.
Therefore v × B = ∇g(ψ), where the function g(ψ) can be constructed by
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means of P (ψ), Pe(ψ), ρ(ψ) and Φ(ψ); thus (10) becomes identical in form
with (9). This implies that if the electron and ion temperatures are uniform
on magnetic surfaces any solution of the quasi-static MHD equations satisfies
also the quasi-static HMHD ones. Note that then the flow must be incom-
pressible (∇ · v = 0) as it follows from (2) on account of ρ = ρ(ψ) and the
coincidence of the velocity with the magnetic surfaces. In the case of low
electron temperatures, viz. Te ¿ Ti, the ∇Pe term in (7) can be neglected
and the above conclusion can be replaced by the following: For very small
electron temperatures any solution of the quasi-static MHD equations with
incompressible flows satisfies also the quasi-static HMHD ones.

B. Stationary equilibria [(v ·∇)v 6= 0]

Owing to the velocity term in (3), for generic flows the problem becomes
very tough. For this reason we will consider incompressible flows parallel to
the magnetic field:

v = λB. (11)

As in the quasi-static case it is additionally assumed that the electrons and
ions obey the ideal gas law and their temperatures are uniform on magnetic
surfaces. Then in MHD it was proved by one of the authors [13] that

j×B = ∇h(ψ) (12)

and that the magnetic field modulus is uniform on magnetic surfaces:

B2 = B2(ψ). (13)

In fact Eqs. (12) and (13) follow under the milder assumption that the total
temperature T = Ti + Te is uniform on MHD magnetic surfaces. These
equations remain valid in HMHD because in both models the momentum
equation is identical in form. For the reader’s convenience derivation of (12)
and (13) is given below.

From Eqs. (2), (6) and (11)it follows

B ·∇(ρλ) = 0 (14)

or
ρλ ≡ k(ψ). (15)
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Inserting v from (11) to (3) yields

ρ
[
1

2
∇

(
λ2B2

)
− λB× (λ∇×B + ∇λ×B)

]
= (∇×B)×B−∇P (16)

or

ρ
[
1

2
λ2∇B2 + λ (B ·∇λ)B

]
+ ∇P =

(
1− ρλ2

)
(∇×B)×B. (17)

With the aid of P = aρT (ψ), the scalar product of (17) with B leads to

B · ∇
(

1

2
λ2B2 + αT log ρ

)
= 0 (18)

or
1

2
λ2B2 + αT log ρ = Π(ψ). (19)

Owing to incompressibility, (2) implies that ρ = ρ(ψ). (In fact if any of the
relations ∇ · v = 0, λ = λ(ψ) or ρ = ρ(ψ) holds the other two follow.) Then
(13) follows from (19) and (12) from (17).

Eq. (12), formally equivalent to the equation for quasi-static equilibria,
combined with the ψ dependence of B2 has only one solution: the Palumbo
solution [14]. Also, on account of ρ = ρ(ψ), (12) and Pe = Pe(ψ) the RHS
of (10) can be expressed as a gradient. Therefore we can conclude that
for magnetic-field-aligned incompressible flows and uniform electron and ion
temperatures on magnetic surfaces the only solution of the HMHD equili-
brium equations is the Palumbo one. Note that both assumptions Ti = Ti(ψ)
and Te = Te(ψ) are required in addition to incompressibility because of the
∇Pe term on the RHS of (10).

III. Axisymmetric equations

The aim of this section is to derive reduced equilibrium equations for
axisymmetric plasmas for either barotropic ion pressures or incompressible
ion flows and uniform electron temperatures on magnetic surfaces. To this
end certain integrals will first be identified in the form of conserved quantities
either on magnetic surfaces or on ion velocity surfaces. The reduction is
achieved by projecting Eqs. (3) and (7) onto three independent directions
with respect to the velocity surfaces and magnetic surfaces, respectively. It
should be noted here that the main derivations to follow in this Section are
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along the same lines to those in Ref. [1]. However, since Ref. [1] differs from
our study in neglecting the electron pressure gradient term in Ohm’s law and
in adopting an isentropic ion equation of state, for the reader’s convenience
derivations will be given in a self-contained way here.

On account of axisymmetry and Ampere’s law (5) the divergence-free
fields, i.e. the magnetic field B, the current density j, and the momentum
of the ion fluid element ρv can be expressed in terms of the scalar functions
ψ(R, z), I(R, z), F (R, z) and Θ(R, z) as

B = I(R, z)∇φ + ∇φ×∇ψ(R, z), (20)

j = ∆?ψ∇φ−∇φ×∇I(R, z), (21)

ρv = Θ(R, z)∇φ + ∇φ×∇F (R, z). (22)

Here, (R, z, φ) are cylindrical coordinates with z corresponding to the axis
of symmetry; the functions ψ and F label the magnetic and ion velocity
surfaces, respectively; ∆? = R2∇ · (∇/R2). The electron velocity lies on
magnetic surfaces as it follows from the electron momentum equation with
the (ve ·∇)ve term being neglected. First we will project Ohm’s law (7) along
B, the symmetry direction ∇φ and perpendicular to magnetic surfaces ∇ψ.
Using E = −∇Φ(R, z) and Pe = αρTe(ψ) the component of (7) along B
yields

B ·∇ (Φ− hαTe log ρ) = 0 (23)

and therefore the quantity Φ− hαTe log ρ is uniform on magnetic surfaces:

Φ− hαTe log ρ ≡ Ξ(ψ). (24)

Eq. (7) then becomes

v ×B =
h

ρ
j×B +

dΞ

dψ
∇ψ − hα

dTe

dψ
(1− log ρ) ∇ψ. (25)

Projecting (25) along ∇φ yields another integral:

F + hI ≡ f(ψ) (26)

Eq. (26) is consistent with the fact that the velocity surfaces depart from
magnetic surfaces. The coincidence of the magnetic surfaces with the velocity
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surfaces in MHD is recovered for h → 0. Furthermore, the component of (25)
along ∇ψ leads to the equation

h∆?ψ = ρR2

[
dΞ

dψ
− hα

dTe

dψ
(1− log ρ)

]
+ Θ− df

dψ
I. (27)

Further reduction requires an energy equation or an equation of state for the
ions. In the present study we will consider either barotropic ions, or incom-
pressible ion flows as follows.

A. Barotropic ions [Pi = Pi(ρ)]

In addition to plasmas of astrophysical concern this equation of state is
of relevance to self-organized states of tokamaks in connection with the so
called principle of profile consistency [16]. Accordingly, the plasma is self-
organized in such a way that the temperature profiles evolve in dependance
with the density ones, T = T (ρ), and therefore P = P (ρ).

Since here Pi = Pi(ρ), it is convenient to define the function Hi(ρ) by the
relation ∇Pi(ρ)

ρ
= ∇Hi(ρ). (28)

Also, we introduce the generalized vorticity

Ω ≡ B + h∇× v. (29)

The quantity Ω is divergence free and therefore it can be expressed by

Ω = N(r, z)∇φ + ∇φ×∇G(R, z). (30)

Using (28), (29), P = Pe + Pi, E = −∇Φ and the identity

(v ·∇)v = ∇v2

2
− v ×∇× v,

Eq. (3) can be cast in the concise form

∇W = v ×Ω, (31)

where

W ≡ h
v2

2
+ hHi + Φ. (32)
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Eq. (31) implies that v and Ω share the same surfaces on which W remains
uniform or because of (22) and (30) it follows

W = W (G), (33)

F = F (G). (34)

The component of (31) perpendicular to the generalized vorticity surfaces,
viz. along ∇G, yields

R2ρ
dW

dG
= N

dF

dG
−Θ. (35)

Substituting the expressions for B and v from (20) and (22) into (30) leads
to the following expressions for N and G:

N = I + h∇
(

1

ρ

dF

dG

)
·∇G + h

1

ρ

dF

dG
∆?G, (36)

G = ψ − h
Θ

ρ
. (37)

Inserting

Θ =
ρ

h
(ψ −G) , (38)

N from (36) and

I =
1

h
(f − F )) , (39)

as it follows from (26), into (27) and (35) they become, respectively,

h2∆?ψ = hρR2

[
dΞ

dψ
− hα

dTe

dψ
(1− log ρ)

]
+ ρ (ψ −G)− df

dψ
[f(ψ)− F (G)]

(40)
and

h2 1

ρ

(
dF

dG

)2

∆?G+h2 dF

dG
∇

(
1

ρ

dF

dG

)
·∇G = hR2ρ

dW

dG
+ρ (ψ −G)−dF

dG
[f(ψ)− F (G)] .

(41)
Summarizing this subsection, the axisymmetric HMHD steady states for iso-
baric ions are governed by the coupled differential equations (40) for the po-
loidal magnetic flux function ψ and (41) for the generalized vorticity function
G together with the algebraic equations (24) and (32). The aforementioned
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equations contain the flux functions Ξ(ψ), Te(ψ), f(ψ), W (G), F (G) and the
function ρ(R, z). In (32) v2(R, z) and Φ(R, z) should be expressed as

v2 =

(
ψ −G

hR

)2

+

(
dF

dG

|∇G|
Rρ

)2

, (42)

as it follows from (22) (34) and (37), and

Φ = hαTe(ψ) log ρ + Ξ(ψ) (43)

by (24). The function Hi(ρ) relates to the ion pressure by

Hi =
∫ dPi(ρ)

ρ
, (44)

as it follows from (28). The functional dependence of Ξ(ψ), Te(ψ), f(ψ),
W (G), F (G), and Pi(ρ) remain free. Note that, depending on the magnitude
of the poloidal velocity, Eq. (41) can become either elliptic or hyperbolic.
In the elliptic regimes, once the above mentioned free functions are assigned
Eqs. (40), (41) and (32) can be solved for ψ, G and ρ under appropriate
boundary conditions. Because of the departure of the velocity surfaces from
the magnetic surfaces the problem is tougher than in MHD in which the equi-
librium reduces to a single differential equation for ψ in conjunction with an
algebraic equation for the density (see for example Ref. [15]).

B. Incompressible ion flow (∇ · v = 0)

Some of the derivations in the previous part of this Section associated
with uniform electron temperature on magnetic surfaces is unaffected and
therefore Eqs. (24), (26) and (27) remain valid for incompressible ion flow.
On account of incompressibility, (2) implies that the density is an ion surface
quantity:

ρ = ρ(F ). (45)

Using (7) and the generalized vorticity (29), the momentum equation (3) is
put in the form

ρ∇W̃ = ρv ×Ω− h∇Pi, (46)

where

W̃ ≡ h
v2

2
+ Φ

= h
v2

2
+ Ξ(ψ) + hαTe(ψ) log ρ(F ). (47)

10



The components of (46) along ∇φ, Ω, and ∇G, respectively, yield

F = F (G), (48)

hPi = hP is(G)− ρW̃ , (49)

and

h
(F ′)2

ρ
∆?G +

1

2
h

(
(F ′)2

ρ

)′
|∇G|2 =

R2 [hP ′
is − ρ′ (Ξ(ψ) + hαTe(ψ) log ρ)] + Θ− h

ρ′Θ2

2ρ2
− F ′I, (50)

where the prime denotes derivative with respect to G. For vanishing flow the
surface quantity Pis(G) in (49) coincides with the ion pressure. Note that we
have chosen the function G to label the ion velocity surfaces in place of F .
The functions I and Θ in (50) can be expressed in terms of surface quantities
via (26) and (37) to yield

h2 (F ′)2

ρ
∆?G +

1

2
h2

(
(F ′)2

ρ

)′
|∇G|2 =

R2
[
h2P ′

is − hρ′ (Ξ(ψ) + hαTe(ψ) log ρ)
]

+ρ(ψ −G)− ρ′

2
ρ2(ψ −G)2 − F ′ [f(ψ)− F (G)] . (51)

Recapitulating, the incompressible equilibria obey the coupled elliptic diffe-
rential equations (40) for ψ and (51) for G. They should be solved under
appropriate boundary conditions for the functions ψ and G, after assigning
the free surface functions Ξ(ψ), Te(ψ), f(ψ), ρ(G), F (G), and Psi(G) they
contain. The algebraic equations (49), (47) and (43) can then determine Φ,
W and Pi.

The non-linear term |∇G|2 in (51) can be eliminated by the transforma-
tion

U(G) =
∫ G

0
M(g) dg, (52)

where

M ≡ dF/dG√
ρ

. (53)

11



The transformation satisfies the relations

dU

dG
= M,

dG

dU
= M−1 (54)

and the equation for the transformed function U is

h2∆?U = R2

[
h2dPis

dU
− h

dρ

dU
(Ξ(ψ) + hαTe(ψ) log ρ)

]

+
ρ

M(U)
(ψ −G(U)− 1

2

dρ

dU
ρ2 (ψ −G(U))2

−√ρ (f(ψ)− F (U)) , (55)

The free functions of U to be prescribed in (40) and (55) are Pis(U), ρ(U)
and M(U). The functions G(U) and F (U) then are given by

G(U) =
∫ U

0
M−1(g) dg

and

F (U) =
∫ U

0

√
ρ(g) dg.

IV. Side conditioned axisymmetric equilibria

In this section we will examine general characteristics of side conditioned
equilibria, i.e. steady states of constant density, flows parallel to B, Beltrami-
like flows, purely toroidal barotropic flows, and purely poloidal incompressi-
ble flows. As will be shown, in certain cases the side conditions replace the
equation(s) of state or result to equations non recoverable from the reduced
ones derived in Sec. III, thus yielding different branches of equilibria. For
this reason we will employ in these cases directly the original set of equations.

A. Equilibria with constant density

For ρ = ρ0 = constant the incompressible differential equations (40) and
(51) are written in the simpler forms:

h2∆?ψ = hρ0R
2

[
dΞ

dψ
− hα

dTe

dψ
(1− log ρ0)

]
+ρ0 (ψ −G)− df

dψ
[f(ψ)− F (G)] ,

(56)
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h2 (F ′)2

ρ0

∆?G+
1

2
h2

(
(F ′)2

ρ0

)′
|∇G|2 = h2R2P ′

is+ρ0(ψ−G)−dF

dG
(f−F ). (57)

Eqs. (56) and (57), being coupled only through the terms ψ −G and
f(ψ)− F (G), can be decoupled by the ansatz

f =
√

ρ0ψ, F =
√

ρ0G. (58)

The functions I and Θ associated with the toroidal components of the ma-
gnetic field and the velocity then become equal each other:

I = Θ =
1

h
(f(ψ)− F (G)) =

√
ρ0

h
(ψ −G).

Also, the second of (58) implies poloidal flows such that

(dF/dG)2

ρ0

≡ M2
0 = 1 (59)

and therefore the |∇G|2-term in (57) vanishes. This is the reason we have
not employed transformation (52). The decoupled equations read

h2∆?ψ = hρ0R
2

[
dΞ

dψ
− hα

dTe

dψ
(1− log ρ0)

]
(60)

and

∆?G = R2dPis

dG
. (61)

Eqs. (60) and 61) are similar in form as the Grad-Shafranov equation for
βp = 1 equilibria. Being decoupled, however, they can be solved indepen-
dently and therefore the magnetic surfaces can have different characteristics
than the velocity surfaces. Linearized forms of Eqs. (60) and (61) admit a
variety of analytic solutions for magnetically confined plasmas. Let us men-
tion here in connection with known solutions of the Grad-Shafranov equation
widely employed for tokamak studies the Solovév solution [22, 23] and the
Hernegger-Maschke one [24, 25] associated, respectively, with linear and qua-
dratic assignments of the free flux functions.

B. Flows parallel to B
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These flows satisfy the relation

ρv = k(R, z)B. (62)

Irrespective of equation of state the component of (7) along ∇φ yields the
integral

I = I(ψ). (63)

Note that within the framework of MHD, (63) does not hold for parallel
compressible flows. Also, acting the operator of divergence to (62), implies
on account of (2) that the function k is uniform on magnetic surfaces:

k = k(ψ). (64)

Projecting (3) along ∇φ leads to

B ·∇
[
I

(
1− k2

ρ

)]
= 0. (65)

If the magnetic field is not purely poloidal (I 6= 0), (65) implies that the
quantity (1− k2/ρ)I is also uniform on magnetic surfaces and consequently

ρ = ρ(ψ). (66)

Therefore, the flow must be incompressible. An alternative proof of this
statement is given in Appendix.

The components of (7) along B and ∇ψ, yield

Pe = Pes(ψ) +
ρ

h
Φ(R, z), (67)

∆?ψ + R2
(
P ′

es +
Φ

h
ρ′

)
+ II ′ = 0. (68)

where Pes(ψ) is a “constant of integration” flux function. Furthermore, the
projections of (3) along B and ∇ψ furnish

P = Ps(ψ)− k2B2

2ρ
, (69)

(
1−M2

A

)
∆?ψ − 1

2

(
M2

A

)′ |∇ψ|2 + R2P ′
s + II ′ = 0, (70)
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where M2
A is the square of the Mach function with respect to the Alfvén

velocity:

M2
A =

(
v

vA

)2

=
k2

ρ
.

This should not be confused with the quantity M defined by (53) which is
not an Alfvén Mach function. Eq. (70) is identical in form with the respec-
tive MHD equilibrium equation [17, 18]. Also, unlike the non conditioned
equations (40) and (55), Eq. (70) has the Alfvén singularity (MA = 1); the-
refore, parallel flows consists a different class of equlibria. The fact that the
Hall effect, appearing as a non-linear singular perturbation, can remove the
MHD Alfvén singularity was analyzed in Ref. [19]. Under the transformation
[20, 21]

U(ψ) =
∫ ψ

0

(
1−M(g)2

)1/2
dg,

(70) becomes identical in form with the Grad-Shafranov equation:

∆?U + R2dPs

dU
+ I

dI

dU
= 0.

By means of any solution of (50) Eqs. (43), (67) and (69), respectively,
determine the electrostatic potential, Φ(R, z), the electron pressure, Pe(R, z),
and the total pressure P (R, z).

Let us consider further the physically plausible case of uniform electron
temperature on magnetic surfaces: Te = Te(ψ). Eq. (43) then implies Φ =
Φ(ψ) and consequently the differential equations (68) and (70) for ψ can be
cast in the forms

∆?ψ = −f(ψ)−R2g(ψ), (71)

|∇ψ|2 = 2
[
i(ψ) + R2j(ψ)

]
. (72)

Here f , g, i and j are known functions of Φ, ρ, Pes, Ps and I. The forms
of Eqs. (71) and (72) indicate that the magnetic surfaces are identical in
shape with those of the Palumbo solution (ψ contours of this solution are
provided in Figures 1 and 2 of Ref. [26]). The pressure, however, is not uni-
form on magnetic surfaces and therefore the equilibrium is not isodynamic.
Only under the additional assumption P = P (ψ), (69) implies B2 = B2(ψ)
in accordance with the results of Section II.

C. Beltrami-like flows
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They are defined by the side condition

v = ν(R, z)∇× v. (73)

Eq. (3) then becomes

ρ∇
(

v2

2

)
= j×B−∇P. (74)

None equation of state will be assumed either for electrons or for ions from
the beginning. The ∇φ-component of (74) implies that I = I(ψ) and conse-
quently it follows from the ∇φ-component of (7) that F = F (ψ). Therefore,
the magnetic surfaces coincide with the velocity surfaces. From the ∇ψ-
component of (73) it follows that Θ/ρ is uniform on magnetic surfaces:

Θ

ρ
≡ Z(ψ). (75)

Projecting then (73) along ∇φ and B, respectively, yield

ν

[
F ′

ρ
∆?ψ + ∇

(
F ′

ρ

)
·∇ψ

]
= Z(ψ) (76)

and
F ′

ρ
+ νZ ′ = 0. (77)

Note that (75)-77) coming from the side condition (73) are additional equa-
tions to those associated with the momentum equation and Ohm’s law. If
ν = ν(ψ), Eq. (77) implies ρ = ρ(ψ) and vice versa and therefore in this case
the flow is incompressible. This case will further be considered here. The
components of (74) and (7) along B and ∇ψ then yield the equations:

P = Ps(ψ)− ρ
v2

2
(78)

∆?ψ + R2P ′
s + II ′ − ρ′

(
Z2 +

(F ′)2

ρ
|∇ψ|2

)
= 0, (79)

hPe(R, z)− ρΦ(R, z) ≡ Φ̃(ψ), (80)

h∆?ψ + R2
[
Φ(R, z)ρ′ + Φ̃′] + fI ′ − ρZ = 0. (81)
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Here Φ̃ and Ps are “constants of integration” surface functions.
Eqs. (76) and (79) can be put in the forms (71) and (72). Therefore, the

equilibrium is Palumbo-like. As in the case of parallel axisymmetric flows,
the pressure determined by (78) is not uniform on magnetic surfaces. Also,
Eqs. (80) and (81) can determine Φ(R, z) and Pe(R, z).

D. Toroidal (F ′ = 0) barotropic flow

Eq. (26) then implies I = I(ψ) and the generalized vorticity (30) becomes

Ω = I(ψ)∇φ + ∇φ×∇G(R, z). (82)

Note that although the velocity surfaces coincide with the magnetic surfaces
the generalized vorticity surfaces remain departed from the magnetic surfaces
[Eq. (37)]. Since v = (Θ/ρ)∇φ, (31) is put in the simpler form

∇W = − Θ

R2ρ
∇G, (83)

with W = W (G) given by (32). The ∇G-component of (83) implies that the
ion rotation frequency is uniform on the generalized vorticity surfaces:

ω ≡ vφ

R
=

Θ

R2ρ
= −dW

dG
. (84)

Eliminating Θ from this equation and (37) yields the following relation for
functions labeling generalized vorticity and magnetic surfaces:

G = ψ + hR2dW

dG
. (85)

Also, (27) becomes

h∆?ψ = ρR2

[
dΞ

dψ
− hα

dTe

dψ
(1− log ρ)

]
− ρR2dW

dG
− hI

dI

dψ
. (86)

The equilibrium is determined by the single elliptic equation (86) for ψ cou-
pled with the algebraic ones (24), (32) and (85) which contain the flux func-
tions I(ψ), Te(ψ), Ξ(ψ) and W (G) together with Φ(R, z), ρ(R, z) and Hi(ρ).
It is recalled that Hi relates to the ion pressure by (44).
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As an application we will consider a plasma with constant ion and electron
temperatures: Ti = Ti0 and Te = Te0. Eq. (44) then yields Hi = αTi0 ln ρ.
From (24) and (32) eliminating Φ one obtains the following expression for
the density

ρ = exp

[ K
hα(Ti0 + Te0)

]
(87)

with

K ≡ W (G)− hR2

2

(
dW

dG

)2

− Ξ(ψ).

Furthermore, employing the ansatz

W = aG, Ξ = bψ (88)

with a and b constants, (86) assumes a form independent of G:

h∆?ψ = R2 exp

(
h2a2R2

2

)
(b− a) exp [(a− b)ψ]− hI

dI

dψ
. (89)

For a = b (89) reduces to the force-free-like form of the Grad-Shafranov
equation

∆?ψ + II ′ = 0. (90)

For II ′ = cψ with c =const a solution of (90) is

ψ = RJ1

[(
c2 − κ2)1/2R

)]
[a1 cos(κz) + a2 sin(κz)] ,

where J1 is the first order Bessel function and κ, a1 and a2 are arbitrary
constants. In this case, however, the density profile becomes hollow:

ρ = exp

[
ha2R2

2α(Ti0 + Te0)

]
. (91)

Note also that the first of (88) implies rigid body rotation (ω = const.)
For this reason, to construct equilibria pertinent to magnetically confined
plasmas one should consider at least a 6= b. This task requiring numerical
solutions of (89) will not be pursued further here.

E. Poloidal (Θ = 0) incompressible flow
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Eq. (37) then implies that the generalized vorticity surfaces coincide with
the magnetic surfaces (G = ψ) and therefore ρ = ρ(ψ). In addition, from (26)
and (43), respectively, it follows I = I(ψ) and Φ = Φ(ψ). Note that, unlike
the case of purely toroidal flows, the velocity shares the same surfaces with
the generalized vorticity [Eq. (48)]. Consequently, (40) and (51) become

h∆?ψ = ρ(ψ)R2

[
dΞ

dψ
− hα

dTe

dψ
(1− log ρ(ψ))

]
+

[
dF

dψ
+ h

dI

dψ

]
I, (92)

hM2
A(ψ)∆?ψ +

1

2

dM2
A

dψ
|∇ψ|2 = R2

(
h
dPis

dψ
− dρ

dψ
Φ(ψ)

)
− I(ψ)

dF

dψ
(93)

with M2
A = (dF/dψ)2/ρ. Eqs. (92) and (93) can be cast in the forms (71)

and (72). Therefore, the equilibrium is isodynamic-like with pressure varying
on magnetic surfaces by (49). Note that in the framework of MHD, except
for the particular case of purely poloidal magnetic field (I = 0), it was proved
the non existence of equilibria with purely poloidal incompressible flow [17].

IV. Conclusions

We have studied the equilibrium of a magnetically confined plasma with
flow within the framework of the ideal HMHD model by including the electron
pressure gradient term in Ohm’s law. Depending on whether the (v · ∇)v
ion term is neglected or kept in the momentum equation, the ion velocity
surfaces coincide or depart from the magnetic surfaces, respectively. The
electron velocity always shares the same surfaces with the magnetic field.
For quasi-static steady states [(v ·∇)v ≡ 0] without geometrical symmetry,
if both the electron and ion temperatures are uniform on magnetic surfaces
any MHD equilibrium solution also satisfies the HMHD equations. The flow
then is incompressible. For stationary steady states [(v ·∇)v 6= 0] parallel to
the magnetic field and electron and ion temperatures uniform on magnetic
surfaces the single possible equilibrium is the Palumbo one.

For axisymmetric stationary flows in general the velocity surfaces coi-
ncide with the surfaces of generalized vorticity [Eq. (29)]. We have derived
reduced axisymmetric equations when the electron temperatures are uniform
on magnetic surfaces and either the ions are barotropic or the ion flows are
incompressible. In the former case the equilibrium is determined by a set of
two coupled partial differential equations [Eqs. (40) and (41)], the one for
the function ψ labeling the magnetic surfaces and the other for the function
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G labeling the surfaces of generalized vorticity, together with two Bernoulli-
type equations. For incompressible flows the density becomes uniform on
velocity surfaces and the equilibrium is determined by a set of two coupled
elliptic equations [Eqs. (40) and (51)].

Furthermore, we examined the following side conditioned classes of axisym-
metric equilibria: (i) equilibria with constant density, (ii) flows parallel to
the magnetic field, (iii) Beltrami-like flows, (iv) purely toroidal barotropic
flows, and (v) purely poloidal incompressible flows. In certain of these ca-
ses the equilibrium have different properties from the respective MHD ones;
specifically, in case (ii) the flows must be incompressible while no such a re-
striction is imposed on respective MHD flows and, in case (v) MHD equilibria
are in general not possible. The magnetic surfaces of HMHD steady states of
case (v) are identical in shape with those of the Palumbo equilibrium but the
pressure and the magnetic field modulus varies thereon. Similar Palumbo-like
steady sates can be constructed in case (ii) for uniform electron temperatures
on magnetic surfaces and in case (iii) for incompressible flows. In addition,
we have constructed analytic solutions in cases (i) and (ii), and for constant
electron and ion temperatures in case (iv) .

Finally, it is recalled that the main objectives of the present study were to
examine general characteristics of the HMHD equilibrium model in arbitrary
geometry and in axisymmetric geometry by means of the reduced equations
obtained. Applications on the basis of solutions to these equations to labo-
ratory or astrophysical plasmas, in particular by examining the impact of
the Hall and electron pressure gradient terms on the equilibrium properties,
requires further investigations. The study can also be extended to helically
symmetric steady states.

Appendix: Axisymmetric field aligned flows

We present here an alternative proof of the statement: Axisymmetric
HMHD equilibria with flows parallel to B, with Bφ 6= 0, are necessarily
incompressible. On account of

v = λB (94)

and Ampere’s law (5), the momentum equation (3) can be put in the form

∇
(

λ2B2

2

)
+ λ2j×B− λB× (∇λ×B) =

h

ρ
(j×B−∇Pe) . (95)
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For axisymmetric equilibria the toroidal component of Ohm’s law (7) leads
to

∇φ · j×B = 0. (96)

On account of (96), projection of (95) along ∇φ yields

λ(B ·∇λ) (∇φ ·B) = 0. (97)

If the magnetic field is not purely poloidal, (97) implies B ·∇λ = 0. Conse-
quently, from the divergence of (94) it follows ∇ · v = 0.
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